高通量酵母双杂交平台的建立及其在蛋白质相互作用组学当中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质通过相互作用所形成的具有一定拓扑结构的互相关联的网络是生物体进行复杂生命活动的基础。通过传统的手段进行逐个的蛋白相互作用研究来逐步构建蛋白质相互作用图谱是一件无法完成的任务,但是研究者又如何摆脱“盲人摸象”的尴尬,而从一个更加宏观的角度审视全蛋白组范围内的蛋白质相互作用的情况呢?高速发展的自动化技术为生物学研究者提供了全新的理念和手段。大多数的重复性试验操作可以通过程序控制的机器人高效率自动化完成,这样既把试验人员从繁重的实验室劳动中解放出来,使他们有精力进行数据的整合和分析。人类蛋白质组学计划(Human Proteomics Project,HPP)是继人类基因组学计划之后,为了更加深入的解析人类生命活动的内在规律而启动的又一项全世界范围内的大型合作研究计划。研究人员已经不再满足于DNA水平的知识,将目光汇聚于蛋白质组的系统研究上来。基因组中绝大部分基因及功能仍然处于未知状态,需要从蛋白质水平予以解释。基因组决定生命体的基本形式,而蛋白质组决定生命的多样性、复杂性及其功能。蛋白质组是指“一种基因组所表达的全套蛋白质的集合”。其研究可以实现与基因组的对接与确认,直接揭示人类重大疾患发生与发展的病理机制。人类蛋白质相互作用图谱(HumanProtein-Protein Interaction Map,HPPIM)是蛋白质组学计划当中重要的一个组成部分。蛋白质相互作用组学在这个背景之下方兴未艾。通过自动化高通量的技术平台,研究者已经可以利用多种手段构建人类蛋白质相互作用的连锁图,其中高通量酵母双杂交就是一个重要的方法。传统酵母双杂交费时费力,无法完成组学计划的任务。本文在已有试验技术的基础上,逐步摸索并初步建立了大规模酵母双杂交的技术平台,并已应用到了人类蛋白质相互作用连锁图的构建过程中。
     在此基础上,本文获得了大量的人类蛋白质相互作用数据,并且初步构建了人类蛋白质相互作用图。后续的研究可以分为两个方面:一对于其中的重要而且尚未报道的相互作用进行深入的研究,揭示其生理生化意义;二利用积累的数据进行生物信息学分析和预测,对试验结果进行分析和评估。
     本论文以高通量酵母双杂交技术平台的初步建立过程入手,转入对筛选得到的具体蛋白质相互作用进行深入研究。首先,本文筛选得到了人类蛋白质MRKβ与MSK1这对相互作用。MRKβ是MAPK途径当MAKPKKK家族成员,它具有一个N端催化结构域,参与蛋白质的磷酸化修饰。MSK1是MAPK途径当中关键的激酶,直接参与调控核内重要转录因子如CREB、ATF1以及NFkBp65等的活性,并且是多种癌症和炎症的潜在药物靶点。最近已经成为研究的热点。该蛋白包括两个激酶结构域,通过一个调控序列连接起来。N端的结构域(N-terminal Kinase,NTK)属于AGC激酶家族,参与对其底物的磷酸化。C端的结构域(C-terminalKinase,CTK)属于CamK家族,目前认为它对N端有激活作用。通过生物信息分析本文发现,MRKβ的N端激酶区域与p38、ERK的磷酸化结构域具有高度的保守性。有报道推断调控MSK1的除了p38和ERK1/2之外,目前为止似乎没有其他蛋白参与这个过程的信号调控,而这与MSK1功能非常相似RSK则不同。RSK除了受到ERK的磷酸化调控之外还受到PDK1的磷酸化修饰,而PDK1与ERK,p38和MRKβ在磷酸化的domain上具有高度的保守性。本文通过体外结合实验、免疫共沉淀实验和亚细胞免疫荧光共定位实验证实了MRKβ与MSK1之间的特异性相互作用,并且通过体外实验发现MRKβ能够将MSK1磷酸化。体外和体内试验表明MRKβ可以通过磷酸化激活MSK1,并且进一步激活下游的转录因子CREB。这表明MRKβ参与了MSK1的磷酸化过程,从而调控信号在细胞中的传导,影响下游基因的转录。这对于经典的MAPK途径中MSK1的激活途径可能是一个新的发现和补充。本文进一步利用质谱技术鉴定了MRKβ在MSK1上的磷酸化位点,
     其次,本文还筛选得到了人类蛋白质MRKβ与14—3—3 zeta(YWHAZ)的相互作用。利用上述方法本文也确定了二者之间的特异性相互作用。这对相互作用对于MRKβ磷酸化MSK1的意义值得进一步的深入研究。
     另外,本文也验证了人类蛋白质CCNH与CtBP2之间的相互作用并且分析了这对相互作用的未来研究意义。
     生物信息学正处于急速发展上升的阶段,已经成为生命科学研究人员必不可少的工具和重要的方法,也成为了蛋白质组学当中不可或缺的重要组成部分,大量的试验数据分析成为了生物研究者理解认识蛋白质分类和功能的有力手段。结构域是蛋白质的基本组成部分,它具有三维的定义。首先,它应该是一段具有序列保守性的蛋白质序列(motif);其次,它具有保守的结构特征;再次,它具有保守的功能。对结构域的研究和认识是理解蛋白质功能的主要方面。本文针对链霉菌噬菌体整合酶phiC31的结构域进行了预测,并结合该整合酶的识别序列特征,预测了将该系统应用于人类基因治疗的风险。本文也利用动态规划以及基于核方法的机器学习方法预测蛋白质结构域,并且以网络服务器的形式免费提供预测服务。为了更好的研究丝氨酸整合酶家族,本文也建立了针对这个蛋白家族的数据库,为生物试验和计算分析提供了良好的平台。
Functional proteins are connected in a dynamic and highly organized network in living cells. And it remains a problem how to parse the complex network and find more meaningful interactions that are related with human diseases. The results are valuable for drug discovery in pharmaceutical industry. Classic methods, such as the yeast two hybrid, are laborious and time-consuming, and it is a mission impossible for researchers finally build up a reliable and integrated protein interaction network even in human cells. Those methods do not meet the needs of proteomics any more. Thus, we have developed the high through-put yeast two hybrid system aiming to build up protein interaction networks in various species including human. It can liberate scientists from repeated operations and help them in exploring the more deep mechanism inside living cells. On setting up this platform, we have built up a interaction network of human proteins and further we focused on human protein MSK1 and we screened its preys and one of them is MRKβ. MRKβis a member of MAPKKK kinases. It has an N terminal catalytic domain which is responsible for the phosphorylation of its substrates. MSK1 is also an important kinase in the MAPK pathway and its activation depends on the phosphorylation of serines and threonines by ERK1/2 or p38. Compared with its relative RSK protein families, MSK1 should also be activated by some certain kinase besides ERK1/2 or p38. However, no such kinases have been found up to now. Our results show that MRKβcould interact with and then activate MSK1 through phosphorylation. Thus, downstream transcription factor CREB can be activated by the active MSK1 at Ser 133. This results in the gene expression in the nucleus responding to the extra signal. We have also use mass spectrum method to detect the phosphorylation sites in MSK1 by MRKβ. MRKβcan possibly phosphorylate MSK1 at Ser 436, Ser522 and Thr523. More research is needed to find out the in-depth mechanism and its physiological meaning.
     We have also identified MRKβcan also interact with YWHAZ which is a member of 14-3-3 protein family. GST pull-down and Co-IP resuts show that they interact with each other. The co-localization of these two proteins may imply an interaction-induced trans-localization of MRKβ. More details are waiting to be discovered.
     We also found human CtBP2 interacts with CCNH in Hela cell nucleus.
     The high through-put yeast two hybrid platform has been applied into the research of interactomics successfully and at the same time we have also found problems in it. Modification and optimization are needed.
     Bioinformatics is now in its blossom. Computational methods are now applied in many fields of biological research. Protein informatics is one of them. Identification of novel domains and the verification of their functions are focus of the third part in this thesis. We have developed a free of charge web server KemaDom to identify domains in proteins and we hope this could be of help to experimental scientists in labs. On the basis, we have identified a C_4 zinc ribbon domain in the C terminus of the phiC31 integrase which is successfully applied in the fundamental research of human gene therapy. We have also used motif finding methods to identify the recognition motif of the phiC31 integrase and thus we calculate the distribution of the motif in the human genome which help us in a conclusion that this system is fairly safe while some hidden risks are still inside the genome. SerRD is a database we have developed to collect information about the serine integrase and we hope this free database could help researchers in the study of this protein family.
     Protein interactomics is a crucial component of the proteomics. By constructing different protein-protein interaction map, researchers could discover those meaningful protein interactions. High through-put yeast two hybrid system inherits from the pervious normal yeast two hybrid system and it has already been applied in the large-scale identification of protein interactions as a main technique platform. It offers a great number of reliable data for researchers to take a comprehensive analysis in the protein function and evolution from the view of system biology. At the same time, the platform also gives reasonable clues to researchers in the medical research and drug targets discovery. Opportunities for both computational scientists and lab researchers are now on the table. On the one hand, we produce high through-put data by using automated equipments and then make detailed verifications in molecular methods; on the other hand, we use computational methods on the accumulated data to find those statistical results which can not be easily be discovered by conventional lab methods. This is a new era in the life science, and we need to be more ready to think computationally and do corporately.
引文
[1] Zhong J, Zhang H, Stanyon CA, Tromp G, Finley RL Jr. A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res; 2003, 13 (12): 2691-9.
    [2] Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., et al. A comprehensive analysis of protein - protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403: 623-627.
    
    [3] Stelzl et al. A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. Cell, 2005, Vol 122, 957-968, 23
    
    [4] Michael Ashburner et al, Gene Ontology: tool for the unification of biology. Nature, 2000, Vol 25,25-29
    
    [5] Heike Goehler et al. A Protein Interaction Network Links GIT1, an Enhancer of Huntingtin Aggregation, to Huntington' s Disease. Molecular Cell, 2004, Vol. 15, 853-865
    
    [6] Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006, 125:801-814.
    
    [7] David C Rubinsztein. Protein-protein interaction networks in the spinocerebellar ataxias. Genome Biology, 2006, 7:229
    
    [8] Anne-Claude Gavin, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, doi: 10.1038/nature04532
    
    [9] Tewis Bouwmeester, et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature, 2004, Vol6, Number 2,97-105
    
    [10] Anne Benzinger, et al. Targeted Proteomic Analysis of 14-3-3σ, a p53Effector Commonly Silenced in Cancer. Molecular & Cellular Proteomics, 2005, 4:785-795.
    
    [11] Brian P. Kelley, et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research, 2004, Vol. 32, Web Server issue W83-W88.
    [12]Bjorn Titz,Matthias Schlesner and Peter Uetz.What do we learn from high-throughput protein interaction data? Expert Rev.Proteomics,2004,1(1),89-99
    [13]Edwards AM,Kus B,Jansen R et al.Bridging structural biology and genomics:assessing protein interaction data withknown complexes.Trends Genet.2002,18(10),529-536.
    [14]John P.Miller,et al Large-scale identification of yeast integral membrane protein interactions.Proc.Natl.Acad.Sci.2005,Vol 102,No.34,12123-12128.
    1. Alpatov, R., et al., Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol, 2004. 24(23): p. 10223-35.
    2. Arthur, J. S. and P. Cohen, MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett, 2000. 482(1-2): p. 44-8.
    3. Barnes, C.J., et al., Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol, 2003. 10(8): p. 622-8.
    4. Ben-Levy, R., et al., Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol, 1998. 8(19): p. 1049-57.
    5. Benzinger, A., et al., Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics, 2005. 4(6): p. 785-95.
    6. Bour, G., et al., Cyclin H binding to the RARalpha activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc Natl Acad Sci U S A, 2005. 102(46): p. 16608-13.
    7. Brannon, M., et al., XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development, 1999. 126(14): p. 3159-70.
    8. Bridges, D. and G. B. Moorhead, 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE, 2004. 2004(242): p. re10.
    9. Chen, Z., et al., MAP kinases. Chem Rev, 2001. 101(8): p. 2449-76.
    10. Chinnadurai, G., CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell, 2002. 9(2): p. 213-24.
    11. Cohen, M.S., et al., Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science, 2005. 308(5726): p. 1318-21.
    12. Cohen, P., The origins of protein phosphorylation. Nat Cell Biol, 2002. 4(5): p. E127-30.
    13. Dalby, K. N., et al., Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-la/p90rsk that are inducible by MAPK. J Biol Chem, 1998. 273(3): p. 1496-505.
    14. Dan, I., N. M. Watanabe, and A. Kusumi, The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol, 2001. 11(5): p. 220-30.
    15. Datta, S. R., et al., 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell, 2000. 6(1): p. 41-51.
    16. Deak, M., et al., Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. Embo J, 1998. 17(15): p. 4426-41.
    17. Deconinck, A. E., et al., FOG acts as a repressor of red blood cell development in Xenopus. Development, 2000. 127(10): p. 2031-40.
    18. Dressel, U., et al., A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem, 2001. 276(20): p. 17007-13.
    19. Dummler, B. A., et al., Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J Biol Chem, 2005. 280(14): p. 13304-14.
    20. Fields, S. (2001). "Proteomics. Proteomics in genomeland. " Science 291(5507): 1221-4.
    21. Fisher, R. P., Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci, 2005. 118(Pt 22): p. 5171-80.
    22. Frodin, M., et al., A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. Embo J, 2002. 21(20): p. 5396-407.
    23. Frodin, M. and S. Gammeltoft, Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol, 1999. 151(1-2): p. 65-77.
    24. Frodin, M., et al., A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. Embo J, 2000. 19(12): p. 2924-34.
    25. Fu, H., R. R. Subramanian, and S. C. Masters, 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol, 2000. 40: p. 617-47.
    26. Fu, H., et al., Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science, 1994. 266(5182): p. 126-9.
    27. Giorgianni, F., S. Beranova-Giorgianni, and D. M. Desiderio, Identification and characterization of phosphorylated proteins in the human pituitary. Proteomics, 2004. 4(3): p. 587-98.
    28. Gronborg, M., et al., A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics, 2002. 1(7): p. 517-27.
    29. Grooteclaes, M. L. and S. M. Frisch, Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 2000. 19(33): p. 3823-8.
    30. Gross, E. A., et al., MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest. J Biol Chem, 2002. 277(16): p. 13873-82.
    31. Hamm, J., D. R. Alessi, and R. M. Biondi, Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase. J Biol Chem, 2002. 277(48): p. 45793-802.
    32. Hanauer, A. and I.D. Young, Coffin-Lowry syndrome: clinical and molecular features. J Med Genet, 2002. 39(10): p. 705-13.
    33. Hermeking, H., The 14-3-3 cancer connection. Nat Rev Cancer, 2003. 3(12): p. 931-43.
    34. Hildebrand, J. D. and P. Soriano, Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol, 2002. 22(15): p. 5296-307.
    35. Izutsu, K., et al., The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood, 2001. 97(9): p. 2815-22.
    36. Janknecht, R., Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1). Oncogene, 2003. 22(5): p. 746-55.
    37. Jin, J., et al., Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol, 2004. 14(16): p. 1436-50.
    38. Kannan-Thulasiraman, P., et al., Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem, 2006. 281(32): p. 22446-52.
    39. Kano, T., et al., Cocaine-induced CREB phosphorylation and c-Fos expression are suppressed in Parkinsonism model mice. Neuroreport, 1995. 6(16): p. 2197-200.
    40. Katsanis, N., J. R. Lupski, and P. L. Beales, Exploring the molecular basis of Bardet-Biedl syndrome. Hum Mol Genet, 2001. 10(20): p. 2293-9.
    41. Kim, H. J., E. J. Song, and K. J. Lee, Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J Biol Chem, 2002. 277(26): p. 23193-207.
    42. Ko, L. J., et al., p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol, 1997. 17(12): p. 7220-9.
    43. Koipally, J. and K. Georgopoulos, Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem, 2000. 275(26): p. 19594-602.
    44. Kolch, W., Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000. 351 Pt 2: p. 289-305.
    45. Kumar, V., et al., Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell, 2002. 10(4): p. 857-69.
    46. Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001. 81(2): p. 807-69.
    47. Lee, C. W., et al., Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. Biochem Biophys Res Commun, 2003. 305(3): p. 455-61.
    48. Li, S., et al., Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem, 1999. 274(16): p. 11334-8.
    49. Lin, X., et al., Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell, 2003. 11(5): p. 1389-96.
    50. Liu, G., et al., Phosphorylation of 4E-BP1 is mediated by the p38/MSK1 pathway in response to UVB irradiation. J Biol Chem, 2002. 277(11): p. 8810-6.
    51. Lonze, B. E. and D. D. Ginty (2002). "Function and regulation of CREB family transcription factors in the nervous system." Neuron 35(4): 605-23.
    52. Lu, H., et al., The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol, 1997. 17(10): p. 5923-34.
    53. Madhani, H. D. and G. R. Fink, The riddle of MAP kinase signaling specificity. Trends Genet, 1998. 14(4): p. 151-5.
    54. Maguire, P. B., et al., Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics, 2002. 2(6): p. 642-8.
    55. McCoy, C.E., et al., MSK1 activity is controlled by multiple phosphorylation sites. Biochem J, 2005. 387(Pt 2): p. 507-17.
    56. McCoy, C. E., et al., Identification of novel phosphorylation sites in MSK1 by precursor ion scanning MS. Biochem J, 2007. 402(3): p. 491-501.
    57. Meek, S. E., W. S. Lane, and H. Piwnica-Worms, Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem, 2004. 279(31): p. 32046-54.
    58. Melhuish, T. A. and D. Wotton, The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem, 2000. 275(50): p. 39762-6.
    59. Mirnezami, A. H., et al., Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol, 2003. 13(14): p. 1234-9.
    60. Moisan, A., et al., BRCA1 can modulate RNA polymerase II carboxy-terminal domain phosphorylation levels. Mol Cell Biol, 2004. 24(16): p. 6947-56.
    61. Nardini, M., et al., CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. Embo J, 2003. 22(12): p. 3122-30.
    62. New, L., et al., Cloning and characterization of RLPK, a novel RSK-related protein kinase. J Biol Chem, 1999. 274(2): p. 1026-32.
    63. Nomura, M., et al., Mitogen- and stress-activated protein kinase 1 mediates activation of Akt by ultraviolet B irradiation. J Biol Chem, 2001. 276(27): p. 25558-67.
    64. Nuhse, T. S., et al., Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass Spectrometry. Mol Cell Proteomics, 2003. 2(11): p. 1234-43.
    65. Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001. 22(2): p. 153-83.
    66. Phippen, T. M., et al., Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression. J Biol Chem, 2000. 275(48): p. 37628-37.
    67. Pierrat, B., et al., RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J Biol Chem, 1998. 273(45): p. 29661-71.
    68. Poortinga, G., M. Watanabe, and S. M. Parkhurst, Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. Embo J, 1998. 17(7): p. 2067-78.
    69. Postigo, A.A. and D. C. Dean, ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci U S A, 1999. 96(12): p. 6683-8.
    70. Roux, P. P. and J. Blenis, ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004. 68(2): p. 320-44.
    71. Roux, P.P., S. A. Richards, and J. Blenis, Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol, 2003. 23(14): p. 4796-804.
    72. Rudolph, D., et al., Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A, 1998. 95(8): p. 4481-6.
    73. Salomon, A. R., et al., Profiling of tyrosine phosphorylation pathways in human cells using mass Spectrometry. Proc Natl Acad Sci U S A, 2003. 100(2): p. 443-8.
    74. 72. Sapkota, G. P., et al., Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem, 2001. 276(22): p. 19469-82.
    75. Sassone-Corsi, P., et al., Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science, 1999. 285(5429): p. 886-91.
    76. Schaeper, U., et al., Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A, 1995. 92(23): p. 10467-71.
    77. Schaeper, U., et al., Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem, 1998. 273(15): p. 8549-52.
    78. Schmitt, A., et al., Histone H3 phosphorylation during Xenopus oocyte maturation: regulation by the MAP kinase/p90Rsk pathway and uncoupling from DNA condensation. FEBS Lett, 2002. 518(1-3): p. 23-8.
    79. Schmitt, A. and A. R. Nebreda, Signalling pathways in oocyte meiotic maturation. J Cell Sci, 2002. 115(Pt 12): p. 2457-9.
    80. Schuck, S., et al., The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol Biol, 2003. 4: p. 6.
    
    81. Sewalt, R. G., et al., C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol, 1999. 19(1): p. 777-87.
    82. She, Q. B., et al., Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation. J Biol Chem, 2002. 277(27): p. 24039-48.
    83. Sindreu, C. B., Z. S. Scheiner, and D. R. Storm, Ca2+ -stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron, 2007. 53(1): p. 79-89.
    84. Smith, J.A., et al., Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res, 2005. 65(3): p. 1027-34.
    85. Smith, K. J., et al., The structure of MSK1 reveals a novel autoinhibitory conformation for a dual kinase protein. Structure, 2004. 12(6): p. 1067-77.
    86. Soloaga, A., et al., MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. Embo J, 2003. 22(11): p. 2788-97.
    87. Steinberg, T. H., et al., Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics, 2003. 3(7): p. 1128-44.
    88. Stelzl, U., et al., A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005. 122(6): p. 957-68.
    89. Sundqvist, A., et al., Functional knockout of the corepressor CtBP by the second exon of adenovirus Ela relieves repression of transcription. Exp Cell Res, 2001. 268(2): p. 284-93.
    90. Sundqvist, A., K. Sollerbrant, and C. Svensson, The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a Oterminal binding protein-histone deacetylase complex. FEBS Lett, 1998. 429(2): p. 183-8.
    91. Thomson, S., et al., The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. Embo J, 1999. 18(17): p. 4779-93.
    92. Titz, B., M. Schlesner, and P. Uetz, What do we learn from high-throughput protein interaction data? Expert Rev Proteomics, 2004. 1(1): p. 111-21.
    93. Tomas-Zuber, M., et al., C-terminal elements control location, activation threshold, and p38 docking of ribosomal S6 kinase B (RSKB). J Biol Chem, 2001. 276(8): p. 5892-9.
    94. Tomas-Zuber, M., J. L. Mary, and W. Lesslauer, Control sites of ribosomal S6 kinase B and persistent activation through tumor necrosis factor. J Biol Chem, 2000. 275(31): p. 23549-58.
    95. Turner, J. and M. Crossley, The CtBP family: enigmatic and enzymatic transcriptional co-repressors. Bioessays, 2001. 23(8): p. 683-90.
    96. Tzivion, G., Y.H. Shen, and J. Zhu, 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene, 2001. 20(44): p. 6331-8.
    97. Uetz, P., et al., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000. 403(6770): p. 623-7.
    98. van Hemert, M. J., H. Y. Steensma, and G. P. van Heusden, 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays, 2001. 23(10): p. 936-46.
    99. van Vliet, J., J. Turner, and M. Crossley, Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res, 2000. 28(9): p. 1955-62.
    100. Vermeulen, L., et al., Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). Embo J, 2003. 22(6): p. 1313-24.
    101. Wierenga, A. T., et al., Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway. Exp Hematol, 2003. 31(5): p. 398-405.
    102. Wiggin, G. R., et al., MSK1 and MSK2 are required for the mitogen-and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol, 2002. 22(8): p. 2871-81.
    103. Williams, M. R., et al., The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol, 2000. 10(8): p. 439-48.
    104. Yaffe, M. B., How do 14-3-3 proteins work?— Gatekeeper phosphorylation and the molecular anvil hypothesis.FEBS Lett,2002.513(1):p.53-7.
    105.Zhang,C.L.,et al.,Association of COOH-terminal-binding protein(CtBP)and MEF2-interacting transcription repressor(MITR)contributes to transcriptional repression of the MEF2 transcription factor.J Biol Chem,2001.276(1):p.35-9.
    106.Zhang,Y.,G.Liu,and Z.Dong,MSK1 and JNKs mediate phosphorylation of STAT3 in UVA-irradiated mouse epidermal JB6 cells.J Biol Chem,2001.276(45):p.42534-42.
    107.Zhao,L.J.,et al.,Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2.J Biol Chem,2006.281(7):p.4183-9.
    108.Hauge,C.and M.Frodin(2006)."RSK and MSK in MAP kinase signalling." J Cell Sci 119(Pt 15):3021-3.
    1. Ahumada, A. and Y. C. Tse-Dinh, The Zn(II) binding motifs of E. coli DNA topoisomerase I is part of a high-affinity DNA binding domain. Biochem Biophys Res Commun, 1998. 251(2): p. 509-14.
    2. Altschul, S. F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
    3. Altschul, S. F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
    4. Anfinsen, C. B., et al., The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A, 1961. 47: p. 1309-14.
    5. Apic, G., J. Gough, and S. A. Teichmann, Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol, 2001. 310(2): p. 311-25.
    6. Apweiler, R., et al., The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res, 2001. 29(1): p. 37-40.
    7. Aravind, L. and E. V. Koonin, DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res, 1999. 27(23): p. 4658-70.
    8. Aravind, L., D. D. Leipe, and E. V. Koonin, Toprim—a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res, 1998. 26(18): p. 4205-13.
    9. Bailey, T. L. and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 1994. 2: p. 28-36.
    10. Bateman, A., et al., The Pfam protein families database. Nucleic Acids Res, 2002. 30(1): p. 276-80.
    11. Benos, P. V., M. L. Bulyk, and G. D. Stormo, Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res, 2002. 30(20): p. 4442-51.
    12. Benos, P. V., A. S. Lapedes, and G. D. Stormo, Probabilistic code for DNA recognition by proteins of the EGR family. J Mol Biol, 2002. 323(4): p. 701-27.
    13. Bode, J., et al., The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem, 2000. 381(9-10): p. 801-13.
    14. Branda, C. S. and S. M. Dymecki, Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell, 2004. 6(1): p. 7-28.
    15. Bryson, K., et al., Protein structure prediction servers at University College London. Nucleic Acids Res, 2005. 33(Web Server issue): p. W36-8.
    16. Bulyk, M. L., et al., A motif co-occurrence approach for genome-wide prediction of transcription-factor-binding sites in Escherichia coli. Genome Res, 2004. 14(2): p. 201-8.
    17. Busuttil, S., J. Abela, and G. J. Pace, Support vector machines with profile-based kernels for remote protein homology detection. Genome Inform, 2004. 15(2): p. 191-200.
    18. Cartharius, K., et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 2005. 21 (13): p. 2933-42.
    19. Cavazzana-Calvo, M., A. Thrasher, and F. Mavilio, The future of gene therapy. Nature, 2004. 427(6977): p. 779-81.
    20. Chalberg, T. W., et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol, 2006. 357(1): p. 28-48.
    21. Champoux, J. J., DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem, 2001. 70: p. 369-413.
    22. Check, E., A tragic setback. Nature, 2002. 420(6912): p. 116-8.
    23. Chivian, D., et al., Automated prediction of CASP-5 structures using the Robetta server. Proteins, 2003. 53 Suppl 6: p. 524-33.
    24. Combes, P., et al., The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol, 2002. 184(20): p. 5746-52.
    25. Crooks, G. E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6): p. 1188-90.
    26. Csete, M. E. and J. C. Doyle, Reverse engineering of biological complexity. Science, 2002. 295(5560): p. 1664-9.
    27. Cuff, J. A., et al., JPred: a consensus secondary structure prediction server. Bioinformatics, 1998. 14(10): p. 892-3.
    28. Eddy, S. R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63.
    29. Eddy, S. R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63.
    30. Eddy, S. R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63.
    31. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004. 32(5): p. 1792-7.
    32. Ekman, D., et al., Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol, 2005. 348(1): p. 231-43.
    33. Esposito, D. and J. J. Scocca, The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res, 1997. 25(18): p. 3605-14.
    34. Gewehr, J. E. and R. Zimmer, SSEP-Domain: protein domain prediction by alignment of secondary structure elements and profiles. Bioinformatics, 2006. 22(2): p. 181-7.
    35. Ginalski, K., et al., 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics, 2003. 19(8): p. 1015-8.
    36. Goodstadt, L. and C. P. Ponting, CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics, 2001. 17(9): p. 845-6.
    37. Grindley, N. D., Site-specific recombination: synapsis and strand exchange revealed. Curr Biol, 1997. 7(10): p. R608-12.
    38. Grishin, N. V., C-terminal domains of Escherichia coli topoisomerase I belong to the zinc-ribbon superfamily. J Mol Biol, 2000. 299(5): p. 1165-77.
    39. Groth, A. C. and M. P. Calos, Phage integrases: biology and applications. J Mol Biol, 2004. 335(3): p. 667-78.
    40. Groth, A. C., et al., A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A, 2000. 97(11): p. 5995-6000.
    41. Guo, J., et al., A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins, 2004. 54(4): p. 738-43.
    42. Guo, J., et al., A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins, 2004. 54(4): p. 738-43.
    43. Gupta, M. and J. S. Liu, De novo cis-regulatory module elicitation for eukaryotic genomes. Proc Natl Acad Sci U S A, 2005. 102(20): p. 7079-84.
    44. Harbison, C.T., et al., Transcriptional regulatory code of a eukaryotic genome. Nature, 2004. 431(7004): p. 99-104.
    45. Heger, A. and L Holm, Exhaustive enumeration of protein domain families. J Mol Biol, 2003. 328(3): p. 749-67.
    46. Held, P. K., et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther, 2005. 11(3): p. 399-408.
    47. Held, P. K., et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther, 2005. 11(3): p. 399-408.
    48. Holm, L and C. Sander, Mapping the protein universe. Science, 1996. 273(5275): p. 595-603.
    49. Hua, S. and Z. Sun, A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol, 2001. 308(2): p. 397-407.
    50. Carson, M. (1997). Ribbons. Methods Enzymol., 277, 493-505.
    51. Jaroszewski, L., L. Rychlewski, and A. Godzik, Improving the quality of twilight-zone alignments. Protein Sci, 2000. 9(8): p. 1487-96.
    52. Jensen, S. T. and J. S. Liu, BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics, 2004. 20(10): p. 1557-64.
    53. Jones, S., et al., Protein-DNA interactions: A structural analysis. J Mol Biol, 1999. 287(5): p. 877-96.
    54. Jurica, M.S. and B. L. Stoddard, Homing endonucleases: structure, function and evolution. Cell Mol Life Sci, 1999. 55(10): p. 1304-26.
    55. Kaplan, T., N. Friedman, and H. Margalit, Ab initio prediction of transcription factor targets using structural knowledge. PLoS Coraput Biol, 2005. 1(1): p. el.
    56. Karplus, K., C. Barrett, and R. Hughey, Hidden Markov models for detecting remote protein homologies. Bioinformatics, 1998. 14(10): p. 846-56.
    57. Karplus, K., C. Barrett, and R. Hughey, Hidden Markov models for detecting remote protein homologies. Bioinformatics, 1998. 14(10): p. 846-56.
    58. Kelley, L. A., R. M. MacCallum, and M. J. Sternberg, Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol, 2000. 299(2): p. 499-520.
    59. Khan, M. S., A.M. Khalid, and K. A. Malik, Phage phiC31 integrase: a new tool in plastid genome engineering. Trends Plant Sci, 2005. 10(1): p. 1-3.
    60. Kinoshita, K. and H. Nakamura, Protein informatics towards function identification. Curr Opin Struct Biol, 2003. 13(3): p. 396-400.
    61. Kohn, D.B., M. Sadelain, and J. C. Glorioso, Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer, 2003. 3(7): p. 477-88.
    62. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
    63. Lawrence, C. E., et al., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 1993. 262(5131): p. 208-14.
    64. Letunic, I., et al., SMART 4.0: towards genomic data integration. Nucleic Acids Res, 2004. 32(Database issue): p. D142-4.
    65. Letunic, I., et al., SMART 4.0: towards genomic data integration. Nucleic Acids Res, 2004. 32(Database issue): p. D142-4.
    66. Levitt, M. and C. Chothia, Structural patterns in globular proteins. Nature, 1976. 261(5561): p. 552-8.
    67. Lexa, M. and G. Valle, PRIMEX: rapid identification of oligonucleotide matches in whole genomes. Bioinformatics, 2003. 19(18): p. 2486-8.
    68. Linding, R., et al., GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res, 2003. 31(13): p. 3701-8.
    69. Liu, J. and B. Rost, Sequence-based prediction of protein domains. Nucleic Acids Res, 2004. 32(12): p. 3522-30.
    70. Liu, J. and G. D. Stormo, Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein. BMC Bioinformatics, 2005. 6: p. 176.
    71. Liu, X., D. L. Brutlag, and J. S. Liu, BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, 2001: p. 127-38.
    72. Liu, X. S., D. L. Brutlag, and J. S. Liu, An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol, 2002. 20(8): p. 835-9.
    73. Luscombe, N. M., et al., An overview of the structures of protein-DNA complexes. Genome Biol, 2000. 1(1): p. REVIEWS001.
    74. Magnani, E., K. Sjolander, and S. Hake, From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell, 2004. 16(9): p. 2265-77.
    75. Mandel-Gutfreund, Y. and H. Margalit, Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. Nucleic Acids Res, 1998. 26(10): p. 2306-12.
    76. McClure, M. A., Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol, 1991. 8(6): p. 835-56.
    77. McClure, M. A., E. Donaldson, and S. Corro, Potential multiple endonuclease functions and a ribonuclease H encoded in retroposon genomes. Virology, 2002. 296(1): p. 147-58.
    78. McGuff in, L. J., K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server. Bioinformatics, 2000. 16(4): p. 404-5.
    79. Mitchell, R. S., et al., Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol, 2004. 2(8): p. E234.
    80. Moult, J., A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol, 2005. 15(3): p. 285-9.
    81. Murzin, A. G., et al., SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40.
    82. Murzin, A. G., et al., SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40.
    83. Nagarajan, N. and G. Yona, Automatic prediction of protein domains from sequence information using a hybrid learning system. Bioinformatics, 2004. 20(9): p. 1335-60.
    84. Naito, T., K. Kusano, and I. Kobayashi, Selfish behavior of restriction-modification systems. Science, 1995. 267(5199): p. 897-9.
    85. Olivares, E.C., et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol, 2002. 20(11): p. 1124-8.
    86. Orengo, C. A., et al., The CATH protein family database: a resource for structural and functional annotation of genomes. Proteomics, 2002. 2(1): p. 11-21.
    87. Orengo, C. A., et al., The CATH protein family database: a resource for structural and functional annotation of genomes. Proteomics, 2002. 2(1): p. 11-21.
    88. Ouali, M. and R. D. King, Cascaded multiple classifiers for secondary structure prediction. Protein Sci, 2000. 9(6): p. 1162-76.
    89. Pavesi, G., et al., Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res, 2004. 32(Web Server issue): p. W199-203.
    90. Qian, X., et al., Novel zinc finger motif in the basal transcriptional machinery: three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry, 1993. 32(38): p. 9944-59.
    91. Quevillon, E., et al., InterProScan: protein domains identifier. Nucleic Acids Res, 2005. 33(Web Server issue): p. W116-20.
    92. Richardson, J. S., The anatomy and taxonomy of protein structure. Adv Protein Chem, 1981. 34: p. 167-339.
    93. Robison, K., A.M. McGuire, and G.M. Church, A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol, 1998. 284(2): p. 241-54.
    94. Roth, F. P., et al., Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol, 1998. 16(10): p. 939-45.
    95. Saigo, H., et al., Protein homology detection using string alignment kernels. Bio informatics, 2004. 20(11): p. 1682-9.
    96. Saini, H. K. and D. Fischer, Meta-DP: domain prediction meta-server. Bioinformatics, 2005. 21(12): p. 2917-20.
    97. Sali, A., Modeling mutations and homologous proteins. Curr Opin Biotechnol, 1995. 6(4): p. 437-51.
    98. Sandelin, A., et al., JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res, 2004. 32(Database issue): p. D91-4.
    99. Sandmeyer, S., Integration by design. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5586-8.
    100. Schones, D. E., P. Sumazin, and M. Q. Zhang, Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics, 2005. 21(3): p. 307-13.
    101. Schroder, A. R., et al., HIV-1 integration in the human genome favors active genes and local hotspots. Cell, 2002. 110(4): p. 521-9.
    102. Sclimenti, C.R., B. Thyagarajan, and M. P. Calos, Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res, 2001. 29(24): p. 5044-51.
    103. Sherratt, D. J. and D. B. Wigley, Conserved themes but novel activities in recombinases and topoisomerases. Cell, 1998. 93(2): p. 149-52.
    104. Shi, J., T. L. Blundell, and K. Mizuguchi, FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol, 2001. 310(1): p. 243-57.
    105. Smith, M. C. and H. M. Thorpe, Diversity in the serine recombinases. Mol Microbiol, 2002. 44(2): p. 299-307.
    106. Stoll, S.M., D. S. Ginsburg, and M. P. Calos, Phage TP901-1 site-specific integrase functions in human cells. J Bacteriol, 2002. 184(13): p. 3657-63.
    107. Stormo, G. D., DNA binding sites: representation and discovery. Bioinformatics, 2000. 16(1): p. 16-23.
    108. Stormo, G. D. and G. W. Hartzell, 3rd, Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci U S A, 1989. 86(4): p. 1183-7.
    109. Thijs, G., et al., A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics, 2001. 17(12): p. 1113-22.
    110. Thyagarajan, B., et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol, 2001. 21(12): p. 3926-34.
    111. Tompa, M., et al., Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol, 2005. 23(1): p. 137-44.
    112. Tse-Dinh, Y. C. and R. K. Beran-Steed, Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. J Biol Chem, 1988. 263(31): p. 15857-9.
    113. Vogel, C., et al., Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol, 2004. 14(2): p. 208-16.
    114. Vogel, C., S. A. Teichmann, and J. Pereira-Leal, The relationship between domain duplication and recombination. J Mol Biol, 2005. 346(1): p. 355-65.
    115. von Ohsen, N., et al., Arby: automatic protein structure prediction using profile-profile alignment and confidence measures. Bioinformatics, 2004. 20(14): p. 2228-35.
    116. Voziyanov, Y., S. Pathania, and M. Jayaram, A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res, 1999. 27(4): p. 930-41.
    117. Wang, B., et al., High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure, 1998. 6(5): p. 555-69.
    118. Wheelan, S.J., A. Marchler-Bauer, and S. H. Bryant, Domain size distributions can predict domain boundaries. Bioinformatics, 2000. 16(7): p. 613-8.
    119. Wingender, E., et al., TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res, 1996. 24(1): p. 238-41.
    120. Yona, G. and M. Levitt, Within the twilight zone: a sensitive profile-profile comparison tool based on information theory. J Mol Biol, 2002. 315(5): p. 1257-75.
    121. Yu, L., et al., Solution structure of the C-terminal single-stranded DNA-binding domain of Escherichia coli topoisomerase I. Biochemistry, 1995. 34(23): p. 7622-8.
    122. Zhan, X., et al., Mutagenesis of murine cytomegalovirus using a Tn3-based transposon. Virology, 2000. 266(2): p. 264-74.
    123. Zhu, W., et al., The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol, 1996. 3(2): p. 122-4.
    124. A. Bertoni, R. Folgieri, and G. Valentini, "Bio-molecular cancer prediction with random subspace ensembles of Support Vector Machines," Neurocomputing, vol. 63C, pp. 535-539, 2005.
    125. H. Kim, S. Pang, H. M. Je, D. Kim, and S. Y. Bang, "Pattern Classification Using Support Vector Machine Ensemble," presented at International Conference on Pattern Recognition, 2002.
    126 H. Kim, S. Pang, H. M. Je, D. Kim, and S. Y. Bang, "Constructing support vector machine ensemble, " Pattern Recognition, vol. 36, pp. 2757-2767, 2003.
    127. H. Kim, S. Pang, H. M. Je, D. Kim, and S. Y. Bang, "Support Vector Machine Ensemble with Bagging," presented at Proceedings of the First International Workshop on Pattern Recognition with Support Vector Machines, 2002.
    128 Deshpande, N., et al., The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res, 2005. 33(Database issue): p. D233-7.
    129 J. Cheng, et al, DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks," Data Mining and Knowledge Discovery, vol. In press, 2006.
    130 L. Holm and C. Sander, Touring protein fold space with Dali/FSSP, " Nucleic Acids Res, vol. 26, pp. 316-319, 1998.
    131 S. Busuttil, J. Abela, and G. J. Pace, "Support vector machines with profile-based kernels for remote protein homology detection, " Genome Inform Ser Workshop Genome Inform, vol. 15, pp. 191-200, 2004.
    132 T. Ho, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intel., vol. 20, pp. 832-844, 1998.
    133 T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, "Support vector machine classification and validation of cancer tissue samples using microarray expression data," Bioinformatics, vol. 16, pp. 906-914, 2000.
    134 S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of discrimination methods for the classification of tumors using gene expression data," J. Am. Stat. Assoc., vol. 97, pp. 77-87, 2002.
    135 P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection.," IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 711-720, 1997.
    136 R. Cappelli, D. Maio, and D. Maltoni, "Subspace classification for face recognition," presented at Proc. Workshop on Biometric Authentication, Copenhagen, Denmark, 2002.
    137 W. Zhao, "Subspace methods in object/face recognition," presented at Proc. Internat. Joint Conf. on Neural Networks, Washington DC, USA, 1999.
    138 R. L. Marsden, L J. McGuffin, and D. T. Jones, Rapid protein domain assignment from amino acid sequence using predicted secondary structure, Protein Sci, vol. 11, pp. 2814-2824, 2002.
    139 J. G. Henikoff and S. Henikoff, "Using substitution probabilities to improve position-specific scoring matrices," Comput Appl Biosci, vol. 12, pp. 135-143, 1996.
    140 E. A. Ferran, B. Pflugfelder, and P. Ferrara, "Self-organized neural maps of 52 human protein sequences, " Protein Sci, vol. 3, pp. 507-521, 1994.
    [1] Arrigo, A. P. and M. R. Michel (1991). "Decreased heat- and tumor necrosis factor-mediated hsp28 phosphorylation in thermotolerant HeLa cells." FEBS Lett 282(1): 152-6.
    [2] Arthur, J. S. and P. Cohen (2000). "MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. " FEBS Lett 482(1-2): 44-8.
    
    [3] Bader, J. S., A. Chaudhuri, et al. (2004). "Gaining confidence in high-throughput protein interaction networks." Nat Biotechnol 22(1): 78-85.
    
    [4] Barabasi, A. L. and R. Albert (1999). "Emergence of scaling in random networks." Science 286(5439): 509-12.
    
    [5] Bartel, P. L., J. A. Roecklein, et al. (1996). "A protein linkage map of Escherichia coli bacteriophage T7. " Nat Genet 12(1): 72-7.
    
    [6] Ben-Levy, R., S. Hooper, et al. (1998). "Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. " Curr Biol 8(19): 1049-57.
    
    [7] Chen, Z., T. B. Gibson, et al. (2001). "MAP kinases. " Chem Rev 101(8): 2449-76.
    
    [8] Clarke, P., P. O. Cuiv, et al. (2005). "Novel mobilizable prokaryotic two-hybrid system vectors for high-throughput protein interaction mapping in Escherichia coli by bacterial conjugation. " Nucleic Acids Res 33(2): e18.
    
    [9] Cohen, M. S., C. Zhang, et al. (2005). "Structural bioinformatics-based design of selective, irreversible kinase inhibitors." Science 308(5726): 1318-21.
    
    [10] Cohen, P. (2002). "The origins of protein phosphorylation. " Nat Cell Biol 4(5): E127-30.
    
    [11] Csar, X. F., N. J. Wilson, et al. (2001). "Proteomic analysis of macrophage differentiation. p46/52(Shc) Tyrosine phosphorylation is required for CSF-1-mediated macrophage differentiation." J Biol Chem 276(28): 26211-7.
    
    [12] Dalby, K. N., N. Morrice, et al. (1998). "Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-la/p90rsk that are inducible by MAPK. " J Biol Chem 273(3): 1496-505.
    
    [13] Dan, I., N. M. Watanabe, et al. (2001). "The Ste20 group kinases as regulators of MAP kinase cascades." Trends Cell Biol 11(5): 220-30.
    
    [14] Deak, M., A. D. Clifton, et al. (1998). "Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. " Embo J 17(15): 4426-41.
    
    [15] Degterev, A., A. Lugovskoy, et al. (2001). "Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL." Nat Cell Biol 3(2): 173-82.
    
    [16] Drees, B. L., B. Sundin, et al. (2001). "A protein interaction map for cell polarity development." J Cell Biol 154(3): 549-71.
    
    [17] Dummler, B. A., C. Hauge, et al. (2005). "Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types." J Biol Chem 280(14): 13304-14.
    
    [18] Edwards, A. M., B. Kus, et al. (2002). "Bridging structural biology and genomics: assessing protein interaction data with known complexes." Trends Genet 18(10): 529-36.
    
    [19] Ficarro, S., O. Chertihin, et al. (2003). "Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. " J Biol Chem 278(13): 11579-89.
    
    [20] Ficarro, S. B., M. L McCleland, et al. (2002). "Phosphoproteome analysis by mass Spectrometry and its application to Saccharomyces cerevisiae." Nat Biotechnol 20(3): 301-5.
    
    [21] Frodin,M., T. L. Antal, etal. (2002). "A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation." Embo J 21(20): 5396-407.
    
    [22] Frodin, M. and S. Gammeltoft (1999). "Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction." Mol Cell Endocrinol 151(1-2): 65-77.
    [23] Frodin, M., C. J. Jensen, et al. (2000). "A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. " Embo J 19(12): 2924-34.
    
    [24] Fromont-Racine, M., A. E. Mayes, et al. (2000). "Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins." Yeast 17(2): 95-110.
    
    [25] Giorgianni, F., S. Beranova-Giorgianni, et al. (2004). "Identification and characterization of phosphorylated proteins in the human pituitary." Proteomics 4(3): 587-98.
    
    [26] Giot, L., J. S. Bader, et al. (2003). "A protein interaction map of Drosophila melanogaster." Science 302(5651): 1727-36.
    
    [27] Goehler, H., M. Lalowski, et al. (2004). "A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease." Mol Cell 15(6): 853-65.
    
    [28] Gronborg, M., T. Z. Kristiansen, et al. (2002). "A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate." Mol Cell Proteomics 1(7): 517-27.
    
    [29] Hamm, J., D. R. Alessi, et al. (2002). "Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase." J Biol Chem 277(48): 45793-802.
    
    [30] Hanauer, A. and I. D. Young (2002). "Coffin-Lowry syndrome: clinical and molecular features." J Med Genet 39(10): 705-13.
    
    [31] Ito, T., T. Chiba, et al. (2001). "A comprehensive two-hybrid analysis to explore the yeast protein interactome. " Proc Natl Acad Sci U S A 98(8): 4569-74.
    
    [32] Janknecht, R. (2003). "Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1)." Oncogene 22(5): 746-55.
    
    [33] Jeong, H., S. P. Mason, et al. (2001). "Lethality and centrality in protein networks." Nature 411(6833): 41-2.
    
    [34] Jin, Y., Y. Wang, et al. (1999). "JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. " Mol Cell 4(1): 129-35.
    
    [35] Jordan, I. K., Y. I. Wolf, et al. (2003). "No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. " BMC Evol Biol 3: 1.
    
    [36] Katsanis, N., J. R. Lupski, et al. (2001). "Exploring the molecular basis of Bardet-Biedl syndrome." Hum Mol Genet 10(20): 2293-9.
    
    [37] Kaufmann, H., J. E. Bailey, et al. (2001). "Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis." Proteomics 1(2): 194-9.
    
    [38] Kim, H. J., E. J. Song, et al. (2002). "Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. " J Biol Chem 277(26): 23193-207.
    
    [39] Kim, S. H., W. Wang, et al. (2002). "Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity." Proc Natl Acad Sci U S A 99(18): 11611-5.
    
    [40] Kolch, W. (2000). "Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions." Biochem J 351 Pt 2: 289-305.
    
    [41] Kyriakis, J. M. and J. Avruch (2001). "Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation." Physiol Rev 81(2): 807-69.
    
    [42] Lamarre, D., P. C. Anderson, et al. (2003). "An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. " Nature 426(6963): 186-9.
    
    [43] Lee, C. W., J. S. Nam, et al. (2003). "Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. " Biochem Biophys Res Commun 305(3): 455-61.
    
    [44] Li, S., C. M. Armstrong, et al. (2004). "A map of the interactome network of the metazoan C. elegans. " Science 303(5657): 540-3.
    
    [45] Liu, G., Y. Zhang, et al. (2002). "Phosphorylation of 4E-BP1 is mediated by the p38/MSKl pathway in response to UVB irradiation. " J Biol Chem 277(11): 8810-6.
    [46] MacCoss, M. J., W. H. McDonald, et al. (2002). "Shotgun identification of protein modifications from protein complexes and lens tissue." Proc Natl Acad Sci U S A 99(12): 7900-5.
    
    [47] Madhani, H. D. and G. R. Fink (1998)." The riddle of MAP kinase signaling specificity." Trends Genet 14(4): 151-5.
    
    [48] Maguire, P. B., K. J. Wynne, et al. (2002). "Identification of the phosphotyrosine proteome from thrombin activated platelets." Proteomics 2(6): 642-8.
    
    [49] Mailer, J. L, M. S. Schwab, et al. (2002). "The mechanism of CSF arrest in vertebrate oocytes." Mol Cell Endocrinol 187(1-2): 173-8.
    
    [50] McCoy, C. E., D. G. Campbell, et al. (2005). "MSK1 activity is controlled by multiple phosphorylation sites." Biochem J 387(Pt 2): 507-17.
    
    [51] McCraith, S., T. Holtzman, et al. (2000). "Genome-wide analysis of vaccinia virus protein-protein interactions." Proc Natl Acad Sci U S A 97(9): 4879-84.
    
    [52] Miller, J. P., R. S. Lo, et al. (2005). "Large-scale identification of yeast integral membrane protein interactions." Proc Natl Acad Sci (J S A 102(34): 12123-8.
    [
    53] New, L., M. Zhao, et al. (1999). "Cloning and characterization of RLPK, a novel RSK-related protein kinase. " J Biol Chem 274(2): 1026-32.
    
    [54] Nomura, M., A. Kaji, et al. (2001). "Mitogen- and stress-activated protein kinase 1 mediates activation of Akt by ultraviolet B irradiation. " J Biol Chem 276(27): 25558-67.
    
    [55] Nuhse, T. S., A. Stensballe, et al. (2003). "Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass Spectrometry. " Mol Cell Proteomics 2(11): 1234-43.
    
    [56] Pearson, G., F. Robinson, et al. (2001). "Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions." Endocr Rev 22(2): 153-83.
    
    [57] Pierrat, B., J. S. Correia, et al. (1998). "RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK)." J Biol Chem 273(45): 29661-71.
    
    [58] Rain, J. C., L. Selig, et al. (2001). "The protein-protein interaction map of Helicobacter pylori." Nature 409(6817): 211-5.
    
    [59] Roux, P. P. and J. Blenis (2004). "ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. " Microbiol Mol Biol Rev 68(2): 320-44.
    
    [60] Roux, P. P., S. A. Richards, et al. (2003). "Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity." Mol Cell Biol 23(14): 4796-804.
    
    [61] Salomon, A. R., S. B. Ficarro, et al. (2003). "Profiling of tyrosine phosphorylation pathways in human cells using mass Spectrometry." Proc Natl Acad Sci U S A 100(2): 443-8.
    
    [62] Sapkota, G. P., A. Kieloch, et al. (2001). "Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. " J Biol Chem 276(22): 19469-82.
    
    [63] Sassone-Corsi, P., C. A. Mizzen, et al. (1999). "Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. " Science 285(5429): 886-91.
    
    [64] Schmitt, A., G. J. Gutierrez, et al. (2002). "Histone H3 phosphorylation during Xenopus oocyte maturation: regulation by the MAP kinase/p90Rsk pathway and uncoupling from DNA condensation." FEBS Lett 518(1-3): 23-8.
    
    [65] Schmitt, A. and A. R. Nebreda (2002). "Signalling pathways in oocyte meiotic maturation." J Cell Sci 115(Pt 12): 2457-9.
    
    [66] Schuck, S., A. Soloaga, et al. (2003). "The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells." BMC Mol Biol 4: 6.
    
    [67] She, Q. B., W. Y. Ma, et al. (2002). "Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation." J Biol Chem 277(27): 24039-48.
    
    [68] Smith, J. A., C. E. Poteet-Smith, et al. (2005). "Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. " Cancer Res 65(3): 1027-34.
    
    [69] Soloaga, A., S. Thomson, et al. (2003). "MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14." Embo J 22(11): 2788-97.
    
    [70] Spirin, V. and L A. Mirny (2003). "Protein complexes and functional modules in molecular networks. " Proc Natl Acad Sci U S A 100(21): 12123-8.
    
    [71] Steinberg, T. H., B. J. Agnew, et al. (2003). "Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology." Proteomics 3(7): 1128-44.
    
    [72] Stelzl, U., U. Worm, et al. (2005). "A human protein-protein interaction network: a resource for annotating the proteome. " Cell 122(6): 957-68.
    
    [73] Thomson, S., A. L. Clayton, et al. (1999). "The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. " Embo J 18(17): 4779-93.
    
    [74] Titz, B., M. Schlesner, et al. (2004). "What do we learn from high-throughput protein interaction data?" Expert Rev Proteomics 1(1): 111-21.
    
    [75] Tomas-Zuber, M., J. L. Mary, et al. (2001). "C-terminal elements control location, activation threshold, and p38 docking of ribosomal S6 kinase B (RSKB)." J Biol Chem 276(8): 5892-9.
    
    [76] Tomas-Zuber, M., J. L. Mary, et al. (2000). "Control sites of ribosomal S6 kinase B and persistent activation through tumor necrosis factor." J Biol Chem 275(31): 23549-58.
    
    [77] Uetz, P., L. Giot, et al. (2000). "A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae." Nature 403(6770): 623-7.
    
    [78] Vermeulen, L., G. De Wilde, et al. (2003). "Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1)." Embo J 22(6): 1313-24.
    
    [79] Walhout, A. J., R. Sordella, et al. (2000). "Protein interaction mapping in C. elegans using proteins involved in vulval development. " Science 287(5450): 116-22.
    
    [80] Wierenga, A. T., I. Vogelzang, et al. (2003). "Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway." Exp Hematol 31(5): 398-405.
    
    [81] Wiggin, G. R., A. Soloaga, et al. (2002). "MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts." Mol Cell Biol 22(8): 2871-81.
    
    [82] Williams, M. R., J. S. Arthur, et al. (2000). "The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells." Curr Biol 10(8): 439-48.
    
    [83] Zhang, Y., G. Liu, et al. (2001). "MSK1 and JNKs mediate phosphorylation of STAT3 in UVA-irradiated mouse epidermal JB6 cells. " J Biol Chem 276(45): 42534-42.
    
    [84] Zhu, S. and D. S. Gerhard (1998). "A transcript map of an 800-kb region on human chromosome 11q13, part of the candidate region for SCA5 and BBS1. " Hum Genet 103(6): 674-80.
    
    [85] Zhong J, Zhang H, et al. (2003) .A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res 13 (12):2691-9.
    
    [85] NCBI http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html (Viewed March 18 2006)
    
    [86] Whitehead Institute www. pathblast. org (Viewed March 2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700