生物荧光成像与人嗜中性粒细胞信号转导动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耗散结构理论在物理、化学、生物乃至社会等领域得到了广泛的应用,尤其是近年来在生命科学研究中的应用更是得到了重视,如在信号转导网络调控、免疫系统防御与杀伤调控、胚胎发育调控等研究。在本论文中,我们以耗散结构理论为指导,开展了人嗜中性粒细胞内烟酰胺腺嘌呤二核苷酸(磷酸)[Hydrogenated Nicotinamide Adenine Dinucleotide(Phosphate),NAD(P)H]和钙(Ca~(2+))信号转导动力学的研究。
     人嗜中性粒细胞是免疫系统重要组成之一,其信号转导动力学过程具有耗散现象,如已发现NAD(P)H和Ca~(2+)信号在细胞内转导过程呈现时空有序性的耗散模式。目前,活体细胞内信号转导过程中时空信息的有效获取主要依赖于活体荧光成像技术。因此我们构建了显微弱光高时空分辨率成像系统,可实现毫秒级信号连续采集,同时保证空间信息的获取。依托该系统,本论文在单个嗜中性粒细胞水平上研究了NAD(P)H自体荧光的探测问题,最终克服了NAD(P)H自体荧光强度较弱、易漂白淬灭,以及紫外激发光对细胞光毒性影响等难题,实现了该荧光信号在单个嗜中性粒细胞水平上的实时、快速、可视化成像,从而为研究单个嗜中性粒细胞内NAD(P)H信号转导动力学过程中的时空信息提供高时空分辨实验平台和有效技术支持。
     在此基础上,我们系统地研究了外源性一氧化氮(Nitric Oxide,NO)对佛波酯(Phorbol 12-Myristate 13-Acetate,PMA)激活的人嗜中性粒细胞内Ca~(2+)动力学过程的影响。作为一种重要免疫信使分子,NO对嗜中性粒细胞趋化、粘附、呼吸爆发等生理功能的行使发挥着重要作用。同时,PMA是蛋白激酶C(ProteinKinase C,PKC)的特异性激动剂,可通过激活NAD(P)H氧化酶诱导嗜中性粒细胞呼吸爆发。我们的研究结果首次证明了外源性NO是通过亚硝基化反应途径诱导人嗜中性粒细胞内IP_3受体敏感的钙库释放,而不是通过传统的NO-sGC-cGMP信号途径,钙库释放可诱导明显的胞外钙内流,且整个过程是依赖于PMA诱导人嗜中性粒细胞的呼吸爆发。该发现为临床上使用外源性NO治疗相关免疫类疾病提供了崭新的思考视角及实验支持,也为研究细胞内Ca~(2+)信号耗散现象提供了实验模型。
     此外,我们还应用PMA对类风湿关节炎模型的大鼠滑膜细胞进行了一定研究。类风湿关节炎发病机制与嗜中性粒细胞异常增殖密切相关。我们利用原子力显微成像术,使用PMA刺激滑膜细胞模拟炎症过程,结果显示PMA可以诱导大鼠关节炎模型的大鼠滑膜细胞骨架的明显隆起,并进一步揭示PKC激活可能是引起细胞骨架改变的重要原因,为加深了解类风湿关节炎的发生机制提供了实验基础。
     综上所述,依托构建的显微荧光成像技术,我们对嗜中性粒细胞内NAD(P)H和Ca~(2+)信号转导动力学过程进行了研究,相关结果为进一步了解免疫作用机理和深入认识人体免疫防御系统的耗散现象提供了新的研究视角。
Dissipative structure theory has extensively been applied in the research of physics, chemistry, biology and society. Especially, it is being studied in the field of life science including network regulatory of signal transduction, control of immune defence, control of embryonic development, and so on. In this paper, we studied the dynamics of hydrogenated nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and calcium (Ca~(2+)) signal transductions in neutrophils with dissipative structure theory.
     Neutrophils are one of the body's main components of immune system. Dynamics of NAD(P)H and Ca~(2+) signal transductions has been found to exhibit characteristic spatiotemporal patterns in such immunity processes of human neutrophils. Nowadays, the acquisition of spatiotemporal information depends mainly on the technique of living fluorescence imaging. Therefore, we constructed weak light micro-imaging system with high spatiotemporal resolution to study the autofluorescence NAD(P)H in single human neutrophils. The micro-imaging system can investigate fluorescence signals at about the milliseconds range with high spatial resolution. As a result, we achieved real-time, fast and visual imaging of autofluorescence NAD(P)H in single human neutrophils without running into the quenching or the phototoxicity problem due to the weak light micro-imaging system So that it is able to provide potent experimental support for studying spatiotemporal information in the dynamic process of intracellular NAD(P)H signal transduction.
     On this basis, we detailedly studied the role and signaling pathway of exogenous Nitric oxide (NO) in modulating Cytosolic calcium concentration ([Ca~(2+)]_c) of phorbol 12-myristate 13-acetate (PMA)-activated neutrophils. NO, as an immunoregulatory messenger, has been reported that it can execute modulating in a wide variety of physiological functions and signal transductions in neutrophil chemotaxis, adhesion, phagocytosis, apoptosis, and oxidative burst. Meanwhile, PMA, a potent protein kinase C (PKC) activator, can induce respiratory burst of neutrophils by activating PKC, which subsequently activates NADPH Oxidase. To the best of our knowledge it is the first demonstration that exogenous NO induced calcium release from intracellular IP_3 receptor-sensitive stores and extracellular calcium influx via Snitrosylation reaction, but not via the activation of the NO-sGC-cGMP signaling pathway. More importantly, the effect of SNP on neutrophil [Ca~(2+)]_c was dependent on the PMA-induced respiratory burst. Therefore, this study on modulation of neutrophils [Ca~(2+)]_c by exogenous NO might be much more useful in the research of immunological disease. Meanwhile, it provides an ideal model to the research of dissipative patterns of [Ca~(2+)]_c in neutrophils.
     In addition, this dissertation studied cytoskeleton change in rheumatoid arthritis (RA) rat Synoviocytes induced by PMA via the imaging of atomic force microscopy. The mechanism of RA correlates closely to the abnormal proliferation of neutrophils. PMA is usually used to simulate process of inflammation. The results showed that synoviocyte cytoskeleton changed significantly after PMA activation. The results also indicated that the activation of PKC might play crucial role in cytoskeleton changing of synoviocytes, which could help us to understand the mechanism of RA.
     In conclusion, we have made in-depth study of dynamic process of NAD(P)H and Ca~(2+) signal transductions in human neutrophils with our fluorescence micro-imaging system. The results are able to provide a new perspective for understanding the mechanism of immune response and dissipative patterns of body's immune defense system.
引文
[1]Nicolis G and Prigogine I.Self-organization in non-equilibrium systems:from dissipative structures to order through fluctuations.USA:Wiley,1977
    [2]沈小峰,胡岗,姜璐.耗散结构论.上海:上海人民出版社,1987
    [3]Jan Walleczek.Self-Organized Biological Dynamics and Nonlinear Control.UK:Cambridge University Press,2000
    [4]Philip Nelson.Biological physics:energy,information,life.USA:New York,2004
    [5]Petty H R,Worth R G and Kindzelskii A L.Imaging Sustained Dissipative Patterns in the Metabolism of Individual Living Cells.PRL,2000,84:2754-2757
    [6]Petty H R and Kindzelskii A L.Dissipative metabolic patterns respond during neutrophil transmembrane signaling.PNAS,2001,98:3145-3149
    [7]Kindzelskii A L and Petty H R.Apparent role of traveling metabolic waves in oxidant release by living neutrophils.PNAS,2002,99:9207-9212
    [8]Petty H R.Spatiotemporal chemical dynamics in living cells:From information trafficking to cell physiology.BioSystems,2006,83:217-224
    [9]Kindzelskii A L and Petty H R.Intracellular calcium waves Accompany neutrophil Polarization,Formylmethionylleucylphenylalaine Stimulation,and Phagocytosis:A High Speed Microscopy Study.J Immunol,2003,170:64-72
    [10]Hansen T A and Olsen L F.Spatial Model of Glycolysis in Neutrophils.Proceedings of the 2006 Nordic COMSOL Conference,2006
    [11]Sheppard C J R and Shotton D M.Confocal laser scanning microscopy.Oxford:Bios Scientific Publishers,1997
    [12]Jares-Erijman E A and Jovin T M.FRET imaging.Nature Biotechnology,2003,21:1387-1395
    [13]Bastiaens P I H and Squire A.Fluorescence lifetime imaging microscopy:spatial resolution of biochemical processes in the cell.Trends in Cell Biology,1999,9:48-52
    [14]Sprague B L,Pego R L,Stavreva D A,et al.Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching.Biophysical Journal,2004,86:3473-3495
    [15]Kim S A,Heinze K G,Waxham M N,et al.Intracellular calmodulin availability accessed with two-photon cross-correlation.PNAS,2004,101:105-110
    [16]Kauffman and Stuart A.The origins of order,self-organization and selection in evolution.USA:New York,1993
    [17]Haken H.Information and Self-Organization.Berlin:Springer,2006
    [18]Gollub J P.Pattern formation in nonequilibrium physics.Reviews of Modern Physics,1999,71:s396-s403
    [19] Stange P, Zanette D, Mikhailov A, et al. Self-organizing molecular networks. Biophysical Chemistry, 1998,72:73-85
    [20] Thomas M, Christian W and Stefan C M. Spatio-temporal dynamics in glycolysis. Faraday Discuss, 2001, 120:249-259
    [21] Thomas M and Stefan C M. Traveling NADH and Proton Waves during Oscillatory Glycolysis in Vitro. The Journal of biological chemistry, 1996, 271: 627-630
    [22] Mikhailov A S and HESS B. Self-Organization in Living Cells: Networks of Protein Machines and Nonequilibrium Soft Matter. Journal of Biological Physics, 2002, 28:655-672
    
    [23] Hess B. Periodic patterns in biology. Naturwissenschaften, 2000, 87:199-211
    [24] Sune D, Preben Gr S and Finn H. Sustained oscillations in living cells. Nature, 1999, 402:320-322
    [25] Tom Misteli. The concept of self-organization in cellular architecture. The Journal of Cell Biology, 2001, 155: 181-185
    [26] Neagu A, Jakab K, Jamison R, et al. Role of Physical Mechanisms in Biological Self-Organization. PRL, 2005, 95: 178104
    [27] Pomerening J R, Kim S Y and Ferrell J E. Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations. Cell, 2005, 122:565-578
    [28] Meldolesi J, Grohovaz F. Total calcium ultrastructure: advances in excitable cells. Cell Calcium, 2001,30: 1-8
    [29] Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity,1999,11:443-451
    
    [30] Segal A W. How neutrophils kill microbes. Annu Rev Immunol, 2005, 23: 197-223
    [31] Meyer T and Teruel M N. Fluorescence imaging of signaling networks. Trends Cell Biol,2003,13:101-106
    [32] Stephens D J, Allan V J. Light Microscopy Techniques for Live Cell Imaging. Science,2003, 300: 82-86
    [33] Tsien R Y. The green fluorescent protein. Annual Review of Biochemistry, 1998, 67:509-544
    [34] Chan W C W and S Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281: 2016-2018
    [35] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 2002, 21: 47-51
    [36] Nakano A. Spinning-disk Confocal Microscopy-A Cutting-Edge Tool for Imaging of Membrane Traffic. Cell Structure and Function, 2002, 27: 349-55
    [37] Denk W, Strickler J H, and Webb W W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248: 73-76
    [38]Axelrod D.Total Internal Reflection Fluorescence Microscopy.Berlin:Springer,2007
    [39]Hell S W and Wichmann J.Breaking the diffraction resolution limit by stimulated emission.Opt Lett,1994,19:780-782
    [40]Klar T A and Hell S W.Sub-diffraction resolution in far-field fluorescence microscopy.Opt Lett,1999,24:954-956
    [41]Willig K I,Rizzoli S O,Westphal V,et al.STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis.Nature,2006,440:935-939
    [42]Westphal,V,Kastrup L and Hell S W.Lateral resolution of 28nm(lambda/25) in far-field fluorescence microscopy.Appl Phys B,2003,77:377-380
    [43]Smith N,Coates C,Giltinan A,et al.EMCCD technology and its impact on rapid low-light photometry.Proceedings of SPIE,2004,5499:162
    [44]Ying W.NAD~+/NADH and NADP~+/NADPH in Cellular Functions and Cell Death:Regulation and Biological Consequences.Antioxid Redox Signal,2008,10:179-206
    [45]Wientjes T E and Segal A W.NADPH oxidase and the respiratory burst.Semin Cell Biol,1995,6:357-365
    [46]Pogue B W,Pitts J D,Mycek M A,et al.In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy.Photochem Photobiol,2001,74:817-824
    [47]Hashimoto M,Takeda Y,Sato T,et al.Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils.Brain Res,2000,872:294-300
    [48]Dellinger M,Geze M,Santus R,et al.Imaging of cells by autofluorescence:a new tool in the probing of biopharmaceutical effects at the intracellular level.Biotechnol Appl Biochem,1998,28:25
    [49]Leiting Pan,Xinzheng Zhang,Kun Song,et al.Real-time imaging of autofluorescence NAD(P)H in single human neutrophils.Applied Optics,2009,48:1042-1046
    [50]窦肇华,张远强.免疫细胞学与疾病.北京:中国医科大学科技出版社,2004.467-623
    [51]Nathan C.Neutrophils and immunity:challenges and opportunities.Nat Rev Immunol,2006,6:173-182
    [52]Johnson J L,Park J W,Benna J E,et al.Activation of p47~(phox),a cytosolic subunit of the leukocyte NADPH oxidase.Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity.J Biol Chem,1998,273:35147-35152
    [53]胡天惠,贝冷,沈恂.嗜中性白细胞呼吸爆发与胞内外钙信号的关系研究.生物物理学报,1998,Vol.14(2):233-238
    [54]Seglen P.Preparation of isolated rat liver cells.Methods Cell Biol,1976,13:29-83
    [55]Birkmayer G D.All about NADH.New York:Avery,2000
    [56]Mayevsky A and Rogatsky G G.Mitochondrial function in vivo evaluated by NADH fluorescence:from animal models to human studies.AJP-Cell Physiology,2007,292: C615-C640
    [57] Brambilla L, Sestili P, Guidarelli A. Electron Transport-Mediated Wasteful Consumption of NADH Promotes the Lethal Response of U937 Cells to Tert-Butylhydroperoxide.Journal of Pharmacology and Experimental Therapeutics, 1998, 284: 1112-1121
    [58] Zhang J R, Vrecko K, Nadlinger K, et al. The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin. J Tumor Marker Oncol, 1998, 13: 5-17
    [59] Kuhn W, Miiller T, Winkel R, et al. Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm, 1996, 103: 1187-1193
    [60] Birkmayer J G, Vrecko C, Volc D, et al. Nicotinamide adenine dinucleotide (NADH)-a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl, 1993, 146: 32-35
    [61] Roderick K. NADH shows promise in study, FAD trial a first for nutritional supplements.CFFTDS Chronicle, 1998, 11: 25
    [62] Chance B. Spectrophotometry of intracellular respiratory pigments. Science, 1954, 120:767-775
    [63] Chance B, Cohen P, Jobsis F, et al. Intracellular oxidationreduction states in vivo. Science,1962, 137: 499-508
    [64] Chance B, Schoener B, Oshino R, et al. Oxidationreduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem, 1979,254:4764-4771
    [65] Mayevsky A and Chance B. Oxidation-reduction states of NADH in vivo: From animals to clinical use. Mitochondion, 2007, 7: 330-339
    [66] Piston D W, and Knobel S M. Real-time Analysis of Glucose Metabolism by Microscopy.Trends Endocrinol Metab, 1999, 10:413-417
    [67] Pogue B W, Pitts J D, Mycek M, et al. In Vivo NADH Fluorescence Monitoring as an Assay for Cellular Damage in Photodynamic Therapy. Photochemistry and photobiology,2001,74:817-824
    [68] Decoursey T E, Cherny V V, Zhou W, et al. Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci USA, 2000, 97: 6885-6889
    [69] Coates C G, Denvir D J, Conroy E, et al. Back-illuminated electron multiplying technology:The world's most sensitive CCD for ultra low-light microscopy.http://www.emccd.com/emccd_in_use/publications_and_scientific_papers
    [70] Coates C G, Denvir D J, McHale N G, et al. Ultra-sensitivity, speed and resolution:Optimizing low-light microscopy with the back-illuminated electron multiplying CCD.http://www.emccd.com/emccd_in_use/publications_and_scientific_papers
    [71] Palmer R M, Ferrige A G and Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327: 524-526
    [72] Moncada S, Palmer R M and Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991,43: 109-142
    [73] Neill S, Bright J, Desikan R, et al. Nitric oxide evolution and perception. J Exp Bot, 2008,59: 25-35
    [74] Furchgott R F and Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288: 373-376
    [75] Gnarro L J, Byrns R E and Wood K S. Pharmacological and biochemical properties of endothelium-derived relaxing factor (EDRF): Evidence that EDRF is closely related to nitric oxide (NO) radical. Circulation, 1986, 74: II-287
    [76] Palmer R M J, Ferrige A G and Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327: 524-526
    [77] Ignarro L J, Buga G M, Wood K S, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA, 1987, 84:9265-9269
    [78] Moilanen E and Vapaatalo H. Nitric Oxide in Inflammation and Immune Response. Annals of Medicine, 1995, 27:359-367
    
    [79] Bogdan C. Nitric oxide and the immune response. Nat Immunol, 2001, 2: 907-916
    [80] Tripathi P. Nitric oxide and immune response. Indian journal of biochemistry & biophysics.2007,44:310-319
    [81 ] Laroux F, Pavlick K, Hines I, et al. Role of nitric oxide in inflammation. Acta Physiologica Scandinavica, 2001. 173: 113-118
    [82] Eiserich J P, Hristova M, Cross C E, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature, 1998, 391: 393-397
    [83] Armstrong R. The physiological role and pharmacological potential of nitric oxide in neutrophil activation. Int Immunopharmacol, 2001, 1: 1501-1512
    [84] Nolan S, Dixon R, Norman K, et al. Nitric Oxide Regulates Neutrophil Migration through Microparticle Formation. American Journal of Pathology, 2008, 172: 265-273
    [85] Leiting Pan, Xinzheng Zhang, Kun Song, et al. Exogenous nitric oxide-induced release of calcium from intracellular IP_3 receptor-sensitive stores via S-nitrosylation in respiratory burst-dependent neutrophils. Biochemical and Biophysical Research Communications,2008,77: 1320-1325
    [86] Baird, W. and R. Boutwell. Tumor-promoting Activity of Phorbol and Four Diesters of Phorbol in Mouse Skin. Cancer Research, 1971, 31: 1074-1079
    [87] Pongracz J and Lord J M. Superoxide production in human neutrophils: evidence for signal redundancy and the involvement of more than one PKC isoenzyme class. Biochem Biophys Res Commun, 1998, 247: 624-629
    [88] Benna J E, Faust L P and Babior B M. The phosphorylation of the respiratory burst oxidase component p47~(phox) during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases.J Biol Chem,1994,269:23431-23436
    [89]Chanock S J,Benna J E,Smith R M,et al.The respiratory burst oxidase.J B iol Chem,1994,269:24519-24522
    [90]Dahlgren C and Karlsson A.Respiratory burst in human neutrophils.J Immunol Methods,1999,232:3-14
    [91]Larsson C.Protein kinase C and the regualation of the actin cytoskeleton.Cell Signal,2006,18:276-284
    [92]Krause K H,Schlegel W,Wollheim C B,et al.Chemotactic peptide activation of human neutrophils and HL-60 cells.Pertussis toxin reveals correlation between inositol trisphosphate generation,calcium ion transients,and cellular activation.J Clin Invest,1985,76:1348-1354
    [93]Mullmann T J,Cheewatrakoolpong B,Anthes J C,et al.Phospholipase C and phospholipase D are activated independently of each other in chemotactic peptide-stimulated human neutrophils.J Leukoc Biol,1993 53:630-635
    [94]Sha'afi R I,White J R,Molski T F,ea al.Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium,Biochem.Biophys Res Commun,1983,114:638-645
    [95]潘雷霆,孙文武,齐继伟.佛波酯诱导大鼠滑膜细胞骨架改变的研究.生物化学与生物物理进展,2009,36:83-87
    [96]Firestein G S.Evolving concepts of rheumatoid arthritis.Nature,2003,423:356-361
    [97]Ahmed S,Pakozdi A and Koch A E.Regulation of interleukin-lbeta-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts.Arthritis Rheum,2006,54:2393-2401
    [98]Sekine C.Collagen-induced arthritis(CIA).Nippon Rinsho,2005,63:35-39
    [99]Oberleithner H,Giebisch G and Geibel J.Imaging the lamellipodium of migrating epithelial in vivo by atiomic force microscopy.Pflugers Arch,1993,425:506-510
    [100]Alina H,Richard L,Samuel K,et al.Adhesively-Tensed Cell Membranes:Lysis Kinetics and Atomic Force Microscopy Probing.Biophys J,2003,85:2746-2759
    [101]Chen B,Wang Q,and Han L.Using the atomic force microscope to observe and study the ultrastructure of the living BIU-87 cells of the human bladder cancer.Scanning,2004,26:162-166
    [102]Thie M,R(o|¨)spel R,Dettmann W,et al.Interactions between trophoblast and uterine epithelium:monitoring of adhesive forces.Hum Reprod,1998,13:3211-3219
    [103]Ma J,Liu BF,Xu QY,et al.AFM study of hippocampal cells cultured on silicon wafers with nano-scale surface topograph.Colloids Surf B Biointerfaces,2005,44:152-157
    [104]Henderson E,Haydon P G and Sakaguchi D S.Actin filament dynamics in living glial cells imaged by atomic force microscopy.Science,1992,257:1944-1946
    [105]Santacroce M,Orsini F,Perego C,et al.Atomic force microscopy imaging of actin cortical cytoskeleton of Xenopus laevis oocyte.J Microsc,2006,223:57-65
    [106]Liu F,Mizukami H,Sarnaik S,et al.Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy.J Struct Biol,2005,150(2):200-210
    [107]Brough D,Le Feuvre R A,Wheeler R D,et al.Ca~(2+) stores and Ca~(2+) entry differentially contribute to the release of IL-1 beta and IL-1 alpha from murine macrophages.J Immunol,2003,170:3029-3036
    [108]Shou J,Bull C M,Li L,et al.Identification of blood biomarkers of rheumatoid arthritis by transcript profiling of peripheral blood mononuclear cells from the rat collagen-induced arthritis model,http://arthritis-research.com/content/8/1/R28,2006-01-10
    [109]Sun Wenwu,Hu Fen and Yang Wenxiu.Heat and hyposmotic stimulation increase in [Ca~(2+)]_i by Ca~(2+) influx in rat synoviocytes.Chinese Science Bulletin,2008,53:548-554
    [110]Wada H,Kimura K,Gomi T,et al.Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy.Hear Res,2004,187:51-62
    [111]Isakov N,Gopas J,Priel E,et al.Effect of protein kinase C activating tumor promoters on metastases formation by fibrosarcoma cells.Invasion Metastasis,1991,11:14-24
    [112]V(a|¨)(a|¨)r(a|¨)niemi J,Palovuori R,Lehto V P,et al.Translocation of MARCKS and reorganization of the cytoskeleton by PMA correlates with the ion selectivity,the confluence,and transformation state of kidney epithelial cell lines.J Cell Physiol,1999,181:83-95
    [113]刘景生.细胞信息与调控.北京:中国协和医科大学出版社,2004
    [114]Anderson R and Goolam Mahomed A.Calcium effiux and influx in fmet-leu-phe (fMLP)-activated human neutrophils are chronologically distinct events.Clin Exp Immunol,1997,110:132-138
    [115]Schulz R,Kelm M and Heusch G.Nitric oxide in myocardial ischemia/reperfusion injury.Cardiovasc Res,2004,61:402-413
    [116]Hool L C,Di Maria C A,Viola H M,et al.Role of NAD(P)H oxidase in the regulation of cardiac L-type Ca~(2+) channel function during acute hypoxia.Cardiovasc Res,2005,67:624-635
    [117]Hancock J T,White J I,Jones O T,et al.The use of diphenylene iodonium and its analogues to investigate the role of the NADPH oxidase in the tumoricidal activity of macrophages in vitro.Free Radic Biol Med,1991,11:25-29
    [118]Widmaier E P,Plotsky P M,Sutton S W,et al.Regulation of corticotropin-releasing factor secretion in vitro by glucose.Am J Physiol,1988,255:287-292
    [119]Maruyama T,Kanaji T,Nakade S,et al.2-APB,2-aminoethoxydiphenyl borate,a membrane-penetrable modulator of Ins(1,4,5)P_3-induced Ca~(2+) release.J Biochem,1997,122:498-505
    [120]Ascher-Landsberg J,Saunders T,Elovitz M,et al.The effects of 2-aminoethoxydiphenyl borate,a novel inositol 1,4,5-trisphosphate receptor modulator on myometrial contractions.Biochem Biophys Res Commun,1999,264:979-982
    [121]Ma H T,Patterson R L,Rossum D B,et al.Requirement of the inositol trisphosphate receptor for activation of store-operated Ca~(2+) channels.Science,2000,287:1647-1651
    [122]Peppiatt C M,Collins T J,Mackenzie L,et al.2-Aminoethoxydiphenyl borate(2-APB)antagonises inositol 1,4,5-trisphosphate-induced calcium release,inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels.Cell Calcium,2003,34:97-108
    [123]Hauser C J,Fekete Z,Adams J M,et al.PAF-mediated Ca~(2+) influx in human neutrophils occurs via store-operated.J Leukoc Biol,2001,69:63-68
    [124]Rossum D B,Patterson R L,Ma H T,et al.Ca~(2+) entry mediated by store depletion,S-nitrosylation,and TRP3 channels.J Biol Chem,2000,275:28562-28568
    [125]Palade P,Dettbarn C,AIderson B,et al.Pharmacologic differentiation between inositol-1,4,5-trisphosphate-induced Ca~(2+) release and Ca~(2+) or caffeine-induced Ca~(2+) release from intracellular membrane systems.Mol Pharmacol,1989,36:673-680
    [126]Partida-Sanchez S,Cockayne D A,Monard S,et al.Cyclic ADP-ribose production by CD38 regulates intracellular calcium release,extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo.Nat Med,2001,7:1209-1216
    [127]Bang H,M(u|¨)ller W,Hans M,et al.Activation of Ca~(2+) signaling in neutrophils by the mast cell-released immunophilin FKBP12.Proc Natl Acad Sci USA,1995,92:3435-3438
    [128]Denninger J W and Marletta M A.Guanylate cyclase and the NO/cGMP signaling pathway.Biochim Biophys Acta,1999,1411:334-350
    [129]Murad F.Nitric oxide and cyclic guanosine monophosphate signaling in the eye.Can J Ophthalmol,2008,43:291-294
    [130]Ahern G P,Klyachko V A and Jackson M B.cGMP and S-nitrosylation:two routes for modulation of neuronal excitability by NO.Trends Neurosci,2002,25:510-517
    [131]Graves J D and Krebs E G.Protein phosphorylation and signal transduction.Pharmacol Ther,1999,82:111-121
    [132]Gaston B M,Carver J,Doctor A,et al.S-nitrosylation signaling in cell biology,Mol Interv,2003,3:253-263
    [133]Stamler J S,Lamas S and Fang F C.Nitrosylation:the prototypic redox-based signaling mechanism.Cell,2001,106:675-683
    [134]Hess D T,Matsumoto A,Kim S O,et al.Protein S-nitrosylation:purview and parameters.Nat Rev Mol Cell Biol,2005,6:150-166
    [135]陈畅,黄波,韩佩韦等.蛋白质巯基亚硝基化:一种典型氧化还原依赖的蛋白质翻译后修饰.生物化学与生物物理进展,2006,Vol.33(7):609-615
    [136]Stamler J S.Redox signaling:Nitrosylation and related target interactions of nitric oxide.Cell,1994,78:931-936
    [137]Stamler J S,Simon D I,Osborne J A,et al.S-nitrosylation of proteins with nitric oxide:synthesis and characterization of biologically active compounds.Proc Natl Acad Sci USA,1992,89:444-448
    [138]Mannick J B.Regulation of apoPtosis by protein S-nitrosylation.Amino Acids,2007,32:523-526
    [139] Benhar M and Stamler J S. Central role for S-nitrosylation in apoptosis. Nat Cell Biol,2005, 7: 645-646
    [140] Xu L, Eu J P, Meissner G, et al. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 1998, 279: 234-237
    [141] Foster M W, Hess D T, Stamler J S. S-nitrosylation TRiPs a calcium switch. Nat Chem Biol, 2006, 2:570-571
    [142] Mannick J B, Schonhoff C, Papeta N, et al. S-Nitrosylation of mitochondrial. J Cell Biol,2001, 154:1111-1116
    [143] Jian K, Chen M and Cao X, et al. Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem Biophys Res Commun, 2007, 359: 481-485
    [144] Almanza A, Navarrete F and Vega R. Modulation of voltage-gated Ca~(2+) current in vestibular hair cells by nitric oxide. J Neurophysiol, 2007, 97: 1188-1195
    [145] De Man J G, De Winter B Y, Herman A G, et al. Study on the cyclic GMP-dependency of relaxations to endogenous and exogenous nitric oxide in the mouse gastrointestinal tract.Br J Pharmacol, 2007, 150: 88-96
    [146] Wang J P. GEA3162 stimulates Ca~(2+) entry in neutrophils. Eur J Pharmacol, 2003, 458;243-249
    [147] Hsu M, Sun S, Chen Y, et al. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca~(2+) signals through thiol modification in neutrophils.Biochemical Pharmacology, 2005, 70: 1320-1329
    [148] Furuichi T, Yoshikawa S, Miyawaki A, et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature, 1989, 342: 32-38
    [149] Oppermann M, Mack M, Proudfoot A E, et al. Differential Effects of CC Chemokines on CC Chemokine Receptor 5 (CCR5) Phosphorylation and Identification of Phosphorylation Sites on the CCR5 Carboxyl Terminus . J Biol Chem, 1999, 274: 8875-8885
    [150] Taga M E and Bassler B L. Chemical communication among bacteria. PNAS, 2003, 100:14549-14554
    [151] Zhu J, Miller M B, Bassler B L, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. PNAS, 2002, 99: 3129-3134
    [152] Xavier K B and Bassler B L. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437: 750-753
    [153] Bassler B L. cell to cell communication in bacteria. Cell, 2002, 109: 421-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700