大白菜细胞核雄性不育基因的分子标记及定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜是起源于中国的十字花科芸薹属作物,也是中国及很多其他国家和地区十分重要的蔬菜作物之一。大白菜为典型的异花授粉作物,存在明显的杂种优势。利用自交不亲和系和雄性不育系制种是目前最常用的杂交制种技术。自交不亲和系在利用上存在亲本繁殖困难成本提高、多代自交生活力下降;易受环境影响使杂种纯度不高。利用雄性不育系制种是一种理想的杂种生产模式。雄性不育系又被分为细胞质雄性不育系和细胞核雄性不育系。细胞核雄性不育系不育性完全,不会影响植株生活力。目前,对大白菜细胞核雄性不育的遗传解释存在多种遗传模式,不同遗传模式将直接影响雄性不育的转育。同时,利用分子标记方法对不育基因和恢复基因的研究较为初步。
     本研究对两个隐性细胞核雄性不育系(452AB和454AB)和一个显性细胞核雄性不育系(451AB)进行了遗传学研究,判断不育系的遗传模式,不育基因在自交系中的分布,并对三个不育系的育性恢复基因和不育基因进行了分子标记、基因定位。主要结果如下:
     1.隐性雄性不育系452AB和454AB的可育株和不育株分别与显性雄性不育系451AB中的可育株杂交,并进一步回交。通过数据分析推断451AB系不育基因与454AB系恢复基因为等位基因,这两个系属于复等位遗传模式。452AB系与另外两个系不同,表现为独立遗传。三个不育系与17个自交系进行测交,判断自交系基因型。根据测交结果,4个自交系的可育基因对452AB系不育基因有保持作用。进一步研究判断452AB系也为一复等位雄性不育系。两复等位雄性不育系在基因组中的位置不同,并不存在关联。
     2.隐性细胞核雄性不育系452AB包含164个单株。利用混合分组分离法(BSA)对不育系进行标记分析,并优化SRAP反应体系。在构建的基因池中筛选SRAP引物1 256对,SSR引物187对。获得与大白菜隐性细胞核雄性不育系恢复基因(BrMsf2)连锁的标记两个,PM8K4和Me2M49,与恢复基因的遗传距离分别为2.98 cM和10.92 cM。通过调查PM8K4标记在大白菜DH作图群体中的多态性,将该恢复基因定位在大白菜染色体A08。根据大白菜基因组测序信息,筛选来自染色体A08候选区域的Indel标记23个,其中scaffold20上的标记S20-1与恢复基因的遗传距离为4.22 cM。通过S20-1和PM8K4标记在染色体上的位置,将BrMsf2定位在scaffold20的附近。
     3.显性细胞核雄性不育系451AB包含480个单株。利用混合分组分离法、SRAP和SSR标记技术筛选与不育基因BrMs1连锁的标记。在1 378对SRAP标记和238对SSR标记中,筛选到与不育基因连锁的SRAP标记5个(CuMe7BEm12, BMe9E32, PM8E38, E35BEm10, and M51K2),SSR标记1个(ENA6)。其中PM8E38标记与不育基因的距离最近,为0.37 cM。将该标记多态性片段进行克隆测序,成功的转化为较为简易的SCAR标记PM8E38S。通过SSR标记ENA6在DH作图群体中的位置,不育基因BrMs1被定位在大白菜染色体A07上。
     4.利用2357个单株对451AB系不育基因进行精细定位。初步定位标记PM8E38S在精细定位群体中与不育基因的遗传距离为0.59cM。将初步定位标记的序列与基因组序列进行比对,没有比对在染色体A07上。筛选根据白菜基因组序列设计的内含子多态性(Intron Polymorphism,IP)标记13对,与芥菜中设计的IP标记28对,筛选到一个与不育基因距离较远的标记A0703-2。设计开发基于测序技术的酶切标签标记,并首次应用于雄性不育基因的精细定位中。筛选酶切标签标记76个,获得4个基因组位置已知的标记S17-52、S1727-5、S1727-6、S1729-5和6个基因组位置未知的标记SNONE-2、SNONE-7、SNONE-9,SNONE-16,SNONE-27和SNONE-44,其中SNONE-9与不育基因遗传距离最小(0.51 cM)。S1727-6是与不育基因距离最短(0.76 cM)的位置已知的标记。进一步对该区域Indel标记进行筛选,从26对引物中,筛选到4对存在多态性的Indel标记(S17-1、S17-2、S69-1和S69-2)。通过Indel标记以及酶切标签标记在基因组中的位置,将标记与基因之间的遗传距离与物理距离想对应。通过基因所在区域序列分析结果,预测该基因位于重复序列较多的中心粒区。
     5. 454AB系为隐性细胞核雄性不育系,它包含320个单株。利用混合分组分离法根据育性构建育性池。筛选SRAP标记1 128个,SSR标记187个。筛选出与恢复基因BrMsf3连锁的SRAP标记两个,BMe10SA4和M52K2,与恢复基因的连锁距离为4.38 cM和7.46 cM,这两个标记位于基因的同侧; SSR标记ENA6与恢复基因的遗传连锁距离为11.57cM。通过ENA6标记在DH作图群体中的位置,将该恢复基因定位在大白菜染色体A07上。进一步筛选位于A07上的Indel标记26个,酶切标签标记65个,未发现与恢复基因(BrMsf3)连锁的标记。基因定位结果证实了451AB系和454AB系的复等位遗传关系。
     6.通过遗传学分析和基因定位结果,得到451AB系和454AB系属于复等位遗传,不育基因位于染色体A07上,452AB系属于复等位遗传,不育基因位于染色体A08上,证明大白菜中存在一个以上复等位雄性不育系统。
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an important vegetable crop in China. It originated in China and has many advantageous economic characteristics. It has quite strong heterosis. Self-incompatible lines and male sterile lines are widely used in F1 seed production. The application of self-incompatible lines is limited by the reduction of fitness and vigor, the inconvenience of selfing, and the susceptibility of plants to environmental conditions. Male sterile lines are ideal systems for hybrid production. Plant male sterility can be generally classified into cytoplasmic male sterility (CMS) and genic male sterility (GMS). In GMS lines, sterility is stable and complete, and GMS does not result in reduced vigor. The study of genic male sterility of Brassica rapa showed different genetic models. The methods of transferring male sterility genes depend on certain genetic models. The genetic models of the genic male sterility lines had to be identified before they can be used for breeding. Molecular markers analysis of those male sterility genes just started in recent years.
     This thesis deals with two recessive genic male sterility lines (452AB and 454AB) and one domiant genic male sterility line (451AB) to confirm their genetic models, to investigate distribution of different male sterile genes in male fertile inbred lines, and to find the molecular markers linked to the restoring genes and male sterility gene, and to map these genes. The main conclusions are as follows:
     1. The genetic analysis in the recessive genic male sterility lines (452AB and 454AB) and dominant genic male sterility line (451AB) was conducted. The sterile plants and fertile plants in 452AB line and 454AB line were crossed with the fertile plants in 451AB line. According to the results, BrMs1 gene in 451AB and BrMsf3 gene in 454AB line were at the same allelic locus. So the genetic model of 451AB line and 454AB line was conformed to be a multiple-allele model. 452AB line had no relationship with 451AB line and 454AB line. For transferring these genes to other lines, male sterile plants were backcrossed with 17 inbred lines to confirm their genotypes. Four inbred lines can maintain sterility gene in 452AB line and resulted in 100% male sterile populations. The further experiments confirmed the genetic model of 452AB line also to be multiple-allele, but the genespositions were different from those in line 451AB and line 454AB.
     2. Line 452AB was recessive genic male sterility (RGMS), which contained 164 individuals. Bulked segregant analysis (BSA) was used to screen markers linked to restoring gene BrMsf2. After SRAP (Sequence-related amplified polymorphism) markers system was optimized, 1 256 SRAP primer pairs and 187 simple sequence repeat (SSR) primer pairs were analyzed between fertile bulks. Two SRAP markers PM8K4 and Me2M49 were found, and the distance of PM8K4 and Me2M49 was 2.98 cM and 10.92 cM, respectively. PM8K4 was subsequently mapped on chromosome A08 using a doubled-haploid mapping population. Screened 23 Indel markers on A08 from Brassica rapa genome sequence, one marker (S20-1) in scaffold 20 showed polymorphism, and the genetic distance was 4.22 cM. According the positions of S20-1 and PM8K4 on chromosome A08, BrMsf2 was mapped around scaffold 20 in A08.
     3. Line 451AB was dominant genic male sterility (DGMS), which produced 480 individuals. SRAP, SSR and sequence-characterized amplified region (SCAR) analyses were performed to screen markers linked to BrMs1. Five of the 1 378 SRAP primer pair combinations (CuMe7BEm12, BMe9E32, PM8E38, E35BEm10, and M51K2) and one of 238 SSRs (ENA6) revealed polymorphisms between bulks from male sterile and fertile progeny. PM8E38, the nearest marker linked to BrMs1 (0.37 cM), was converted to the SCAR marker PM8E38S. ENA6 was subsequently mapped on chromosome A07 using a doubled haploid mapping population.
     4. A fine mapping population which contained 2 357 individuals was constructed in 451AB line. In this larger population, the distance between PM8E38S and BrMs1 was changed to 0.59 cM. None of them was mapped on A07 according to the alignment between the sequences of markers found in Chapter four and the whole genome of Brassica rapa. Firstly, Screened 13 Intron Polymorphism (IP) markers designed from Brassica rapa genome and 28 IP markers from Brassica juncea genome, one marker (A0703-2) showed polymorphism, but the genetic distance was larger than other markers. Secondly, a new marker technique based on genome sequencing named Specific Length Amplified Fragment (SLAF) was constructed, and first used on gene fine mapping. After screened 76 SLAF markers, 10 showed polymorphism. Four of them were position-known (S17-52、S1727-5、S1727-6、S1729-5), and six of them were position-unknown (SNONE-2、SNONE-7、SNONE-9,SNONE-16,SNONE-27和SNONE-44). The nearest position-known marker was S1727-6 (0.76 cM), and the nearest position-unknown marker was SNONE-9 (0.51 cM). Finally, 26 Indel markers on A07 were screened, four markers (S17-1、S17-2、S69-1 and S69-2) linked to BrMs1 gene. According the position of SLAF markers and Indel markers, the genetic distances of markers and gene corresponded to physical distances, and the predicted area in physical map was confirmed. By the sequence analysis in the predicted area, the position of BrMs1 was predicted in centriolar region.
     5. Line 454AB was a RGMS line, which gave 320 individuals. SRAP and SSR techniques and bulked segregant analysis (BSA) were used to screen markers linked to the RGMS restoring gene (BrMsf3). Among the 1 128 SRAP primers, only BMe10/SA4 and M52/K2 showed polymorphism between bulks. The polymorphic bands were named as BMe10SA4 and M52K2. The distance of BMe10SA4 and M52K2 was 4.38 cM and 7.46 cM, respectively, and these two markers were on the same side of BrMsf3. SSR marker ENA6 was linked to BrMsf3, and the genetic distance was 11.57 cM. According to the position of ENA6 in genetic map, BrMsf3 was mapped on A07. Subsequently, 26 Indel markers and 65 SLAF markers from A07 were screened, and no one showed polymorphism. This result confirmed the multiple-allele genetic model for 451AB line and 454AB line.
     6. According to the genetic analysis and results of gene mapping, 451AB line and 454AB line were multiple-allele male sterility lines, and the male sterility genes were on A07. 452AB line was also multiple-allele male sterility line, and the male sterility genes were on A08. That verified there were at least two multiple-allele male sterility systems in Chinese cabbage.
引文
1.鲍东兵,王舒华,佟景春,王立杰.大白菜细胞核雄性不育基因的等位性检测.辽宁师专学报, 1999, 1 (3): 91-95
    2.曹家树,叶纨芝,张明,增广文.白菜和雄性不育两用系花蕾的mRNA差别显示及其cDNA差异片段分析.浙江大学学报(农业与生命科学版), 2001, 27: 596-599.
    3.曹寿椿,李式军.矮脚黄白菜雄性不育两用系的选育与利用.南京农学院学报, 1980 (1): 59-67.
    4.曹寿椿,李式军.火白菜“矮杂一号”及雄性不育两用系的选育.园艺学报, 1981, 8 (3): 35-41.
    5.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研1.隐性核不育系9012A的遗传.作物学报, 1998, 24(4): 431-438.
    6.方智远,孙培田,刘玉梅,杨丽梅,王晓武.甘蓝显性雄性不育系的选育及其利用.园艺学报, 1997, 24 (3): 249-254.
    7.方智远,刘玉梅,杨丽梅,王晓武,庄木,张扬勇,孙培田.甘蓝显性核基因雄性不育与胞质雄性不育系的选育及制种.中国农业科学, 2004, 37(5): 717-723.
    8.冯辉,魏毓棠,许明.大白菜核基因雄性不育系遗传假说及其验证.中国科协第二届青年学术年会,园艺学论文集.北京:北京农业大学出版社, 1995: 458-466.
    9.冯辉等,徐巍,王玉刚.‘奶白菜AI23’品系核基因雄性不育系的定向转育,园艺学报, 2007,
    34 (03): 215-219.
    10.傅廷栋,杨光圣,杨小牛,等.甘蓝型油菜波里马胞质雄性不育的发现、研究与利用.自然科学进展——国家重点实验室通讯, 1995, 5 (3): 287-293.
    11.顾兴芳,张圣平,池秀蓉.黄瓜叶色突变、苦味及其他5个性状的基因间连锁遗传关系.园艺学报, 2005, 32 (1): 108-110.
    12.管峰,艾君涛,杨利国.一种SNP检测新方法:四引物扩增受阻突变体系PCR技术.生命的化学, 2004, 24 (6): 514-515.
    13.郭晶心,孙日飞,宋家祥,张淑江.大白菜雄性不育系小孢子发生的细胞形态学研究.园艺学报, 2001, 28 (5): 409-414.
    14.韩玉珠,栗长兰,张汉卿.大白菜细胞质雄性不育系及其保持系的花药发育.吉林农业大学学报, 1990, 21 (1): 52-55.
    15.郝秀明,曹寿椿.萝卜胞质矮脚黄白菜雄性不育系细胞质效应和亲本选配的研究.南京农业大学学报. 1988, 11 (1): 33-40.
    16.胡琼,李云昌,梅德圣,方小平, Hansen L N, Andersen S B.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定.中国农业科学, 2004, 37 (3): 333-338.
    17.黄鹂.白菜三种雄性不育系与保持系花蕾转录组差异分析及三个花粉发育相关基因功能鉴定. [博士学位论文].南京:南京农业大学, 2007.
    18.康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析. [博士学位论文].北京:中国农业科学院, 2006.
    19.柯桂兰,宋胭脂.大白菜异源细胞质雄性不育系的选育及利用.陕西农业科学, 1989 (3): 9-10.
    20.柯桂兰,宋胭脂,张鲁刚.大白菜异源胞质雄性不育系的核型分析及细胞学鉴定.西北农业学报, 1996, 5 (2): 3-9.
    21.李殿荣.甘蓝型油菜雄性不育系1763A和6223A的研究和利用.陕西农业科学, 1984, 9 (1): 7-10.
    22.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及应用.上海农业学报, 1985, 1 (2): 1-12.
    23.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报, 1986, 2 (2): 1-12.
    24.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报, 1987, 3 (2): 1-8.
    25.李树林,周志疆,周熙荣.甘蓝型油菜隐性核雄性不育系S45AB的遗传. 1993, 9 (4): 1-7
    26.李树林,周志疆,周熙荣.油菜显性核不育三系法制种.上海农业学报, 1995, 11 (1): 21-26
    27.李旭峰,杨毅,王幼平,等.油菜染色体工程研究——蓝花子特性导入油菜.四川大学学报(自然科学版), 1995, 32: 599-603.
    28.刘定富.植物显性核不育恢复性遗传的理论探讨.遗传, 1992, 14 (6): 31-36.
    29.刘丽娟,刘灶长,陈海荣,罗利军.莴苣属蔬菜资源SRAP标记PCR体系的构建与优化.植物遗传资源学报吕艳玲,陶承光,王鑫.利用杂交种转育大白菜核基因雄性不育系的研究.华北农学报, 2008, 23(3): 31-33.
    30.吕艳玲,陶承光,王鑫.利用杂交种转育大白菜核基因雄性不育系的研究.华北农学报, 2008, 23(3): 31-33.
    31.钮心恪.大白菜“127”雄性不育两用系的选育与利用.遗传学报, 1978, 5(1): 52-56
    32.钮心恪,吴飞燕,钟急宏,李秀生.利用雄性不育两用系生产大白菜一代杂种种子.农业科技通讯, 1979 (5): 24.
    33.钮心恪,吴飞燕,钟惠宏,李秀生.大白菜雄性不育两用系的选育与利用.园艺学报, 1980,
    7(1):25-32.
    34.沈向群.大白菜雄性不育研究及利用现状.北方园艺, 1992 (4): 12-15.
    35.沈向群,杨文俊.大白菜核基因显性雄性不育育性性育性恢复基因的RAPD标记.园艺学报, 2004, 31(6): 731.
    36.孙日飞,吴飞燕,司家钢,李晓鸥,钮心恪.大白菜核雄性不育两用系小孢子发生的细胞形态学研究.园艺学报, 1995, 22 (2): 153-156.
    37.孙日飞,方智远,张淑江,李菲,钮心恪,吴飞燕.萝卜胞质大白菜雄性不育系的生化分析.园艺学报, 2000, 27 (3): 187-192.
    38.王道杰,郭蔼光,李殿荣,田建华.油菜单显性雄性不育基因的分子标记.植物生理与分子生物学报, 2006, 32 (5): 513-518.
    39.王伟,洪宇,童哲,匡廷云,汤佩松.光周期对光敏核不育水稻光敏色素A含量及其mRNA丰度的影响.植物学报, 1997, 39:914 ~921
    40.王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个与甘蓝显性不育基因连锁的RAPD标记.园艺学报, 1998, 25(2):197-198.
    41.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报, 2000, 27(2): 143-144.
    42.王鑫,冯辉.大白菜核不育复等位基因转育模式.北方园艺, 2002, (1): 32-34.
    43.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报, 2001, 2 8 : 640-646.
    44.魏鹏.大白菜核不育复等位基因的分子标记及定位. [博士学位论文].沈阳:沈阳农业大学, 2009.
    45.韦顺恋、朱宗元.大白菜雄性不育保持两用系的选育.浙江农业科学, 1981, 1: 36-39.
    46.闻凤英,宋连玖,王玉龙,刘晓军,赵冰,邱玉秀.青麻叶结球白菜雄性不育系的转育.园艺学报, 2001, 28 (2): 133-138.
    47.闻凤英,张斌,刘晓军,王玉龙,宋连玖,赵冰.青麻叶大白菜核基因雄性不育性遗传模式的研究.华北农学报, 2003, 18(4): 42-45.
    48.吴为人,周元昌,李维明.数量性状基因型选择与基因型值选择潜力的比较.科学通报, 2002,
    47 : 2080-2083
    49.谢潮添,杨延红,葛丽丽,王瑞,田惠桥.白菜核雄性不育花药超微结构的研究.实验生物学报, 2005, 38 (6): 501-512.
    50.许明,冯辉.大白菜甲乙型核不育系的选育.中国蔬菜, 1999, (5): 13-16.
    51.许明,冯辉,魏毓棠,王世刚.大白菜核复等位基因向可育品系92-11的转育.沈阳农业大学学报, 2000, 31 (4)324-327.
    52.许明,魏毓棠,白明义,朱彤,任喜波,戴希尧.大白菜显性核基因雄性不育性向紫菜薹的转育初报.园艺学报, 2003, 30 (1): 98-100.
    53.杨光圣,傅廷栋, Brown GG.甘蓝型油菜细胞质雄性不育的遗传分类研究.中国农业科学, 1998, 31 (1): 27-31.
    54.叶纨芝,曹家树,余小林,崔辉梅,黄鹂,向殉,陶甦.白菜细胞核雄性不育两用系的细胞学观察.细胞生物学杂志, 2004, 26: 516-522.
    55.张德双,徐家炳,曹鸣庆,张凤兰.大白菜转育新型甘蓝型油菜细胞质雄性不育系的研究.华北农学报, 2002, 17 (1): 60-63.
    56.张书芳,宋兆华,赵雪云.大白菜细胞核基因互作雄性不育系选育及应用模式.园艺学报, 1990, 17 (2): 117-125.
    57.张书芳,赵雪云,周邦福.大白菜核基因互作雄性不育系91-5A遗传机制初探.园艺学报, 1994, 21 (4): 404-405.
    58.张淑江,李菲,韩和平,章时藩,钮心恪,孙日飞.大白菜细胞核显性雄性不育基因连锁标记的筛选.中国农业科学, 2008, 41(8): 2379-2385.
    59.张新梅,武剑,郭蔼光,张慧,方智远,王晓武.甘蓝显性雄性不育基因CDMs399-3紧密连锁的分子标记.中国农业科学, 2009, 42 (11): 3980-3986.
    60.赵雪云,周邦福,张书芳.早熟大白菜——快菜1号.农业科技通讯, 2001, 2001 (10): 36.
    61.周熙荣,李树林,周志疆,庄静,顾龙弟.甘蓝型(Brassica napus L.)显性核不育双低油菜杂交新品种核杂3号的选育.上海交通大学学报(农业科学版), 2003, 21(4): 304-308.
    62.周熙荣,庄静,孙超才,李树林,赛晓峰,胡官保,王伟荣,李延莉,顾龙弟,钱小芳.甘蓝型油菜显性核不育双低杂交种核杂7号的选育.上海农业学报, 2006, 22(4):6-9.
    63. Aarts, M. G., Dirkse W. G., Stiekema W. J., & Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature, 1993, 363, 715-717.
    64. Aarts, M. G., Hodge R., Kalantidis K., Florack D., Wilson Z. A., Mulligan B. J., et al. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J, 1997, 12, 615-623.
    65. Anand I. J. Mchanism of male sterility in B juncea, manifestation of sterility and fertility restoration. Eucaripia Cruciferae Newsletter, 1985, 10: 44-46.
    66. Ashutosh P., Sharma C., Prakash S., & Bhat S.R. Identification of AFLP markers linked to the male fertility restorer gene of CMS (Moricandia arvensis) Brassica juncea and conversion to SCAR marker. Theor Appl Genet, 2007, 114, 385-92.
    67. Bennet S. T., Barnes C., Cox A., Davies L., & Brown C. Toward the 1,000 dollars human genome. Pharmacogenomics, 2005, 6: 373-382.
    68. Brondani C., Rangel P., Brondani R., & Ferreira M. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato to cultivated rice ( Oryza sativa) using microsatellite markers. Theoretical and Applied Genetics, 2002, 104: 1192-1203
    69. Budak H., Sheraman R. C, Parmaksiz I., Gaussoin R. E., Riordan T. P., & Dweikat I. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics, 2004, 108: 328-334.
    70. Choi S. R., Teakle G. R., Plaha P., Kim J. H., Allender C. J,. Beynon E., et al. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theoretical and Applied Genetics, 2007, 115: 777-792.
    71. Chuong P. V., Beversdorf W. D., Poqell A. D., et al. The combination of Polima CMS and cytoplasmic triazine resistance in B napus. Theoretical and Applied Genetics, 1987, 73: 809-814.
    72. Chuong P. V. High-frequency embryogenesis in male sterile plants of Brassica napus through micrispore culture. Can J Bot, 1988, 66: 1676-1680.
    73. Peterson D. G., Tomkins J. P., Frisch D. A., Wing R. A., & Paterson A. H. Construction of plant bacterial aritificial chromosome (BAC) libraries: an illustrated guide. [book]. 2000.
    74. Darwin C. The different formers of flowers on plants of the same species, Murray, London,1877.
    75. Diatchenko L., Lau Y. F. C., Campell A. P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue– specific cDNA probes and libraries or libraries. Proc Natl Acad Sci, 1996, 93:6025-6030.
    76. Dinka, S. J., Campbell M. A., Demers T., & Raizada M.N. Predicting the size of the progeny mapping population required to positionally clone a gene. Genetics, 2007, 176, 2035-54.
    77. Doyle J., & Doyle J. Isolation of plant DNA from fresh tissue. Focus, 1990 , 12: 13-15.
    78. Edwardson J. R. Cytoplasmic male sterility. The Bot. Rev, 1970, 22: 696-732.
    79. Fan J. B., Chee M. S., & Gunderson K. L. Highly parallel genomic assays. Nat Rev Genet, 2006, 7:632–644.
    80. Fang G. H., & McVetty P. B. E. Inheritance of fertility restoration for the Polims CMS system in B napus. Proc of 7th International Rapeseed Congress, 1987, 1: 73-78.
    81. Fang G. H., & McVetty P. B. E. Inheritance of male fertility restoration and allelism of restorer genes for the Polima cytoplasmic male sterility system in oilseed rape. Genome, 1989, 32(6): 1044-1047.
    82. Fang Z. Y., Sun P. T., Liu Y. M., Yang L. M., Wang X. W., Hou A. F., et al. A male sterile line with dominant gene (MS) in cabbage (Brassica oleracea var. capitata) and its utilization for hybrid seed production. Euphytica, 1997, 97 (3): 265-268.
    83. Feng H., Wei P., Piao Z. Y., Liu Z. Y., Li C. Y., Wang Y. G., et al. SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brasscia rapa L.). Theor Appl Genet, 2009, 119: 333-339.
    84. Feys B., Benedetti C.E., Penfold C.N., & Turner J.G. Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. Plant Cell, 1994, 6, 751-759.
    85. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., & Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4: 1251–1261.
    86. Gupta P. K., Rustgi S., & Mir R. R. Array-based high-throughput DNA markers for crop improvement. Heredity, 2008, 101, 5-18.
    87. Hanson M. R. & Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 2004, 16 : S1109–1120.
    88. Hasterok R., Marasek A., Donnison I. S., Armstead I., Thomas A., King I.P., et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics, 2006, 173, 349-62.
    89. Hirsche J., Engelke T., Voller D., Gotz M., & Roitsch T. Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theor Appl Genet, 2009, 118: 235-45.
    90. Hu J. & Vick B. A. Target region amplification polymorphism: A movel marker technique for plant genotyping. Plant Molecular Biology Reporter, 2003, 21: 289-294.
    91. Huang Z., Chen Y. F., Yi B., et al. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007b, 115: 113-118.
    92. Huang L., Cao J.S., Zhang A.H. & Ye Y.Q. Characterization of a putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. chinensis. Mol Biol Rep, 2008, 35: 631-9.
    93. Huang L., Liu Y., Yu X., Xiang X., & Cao J. A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep.2010. DOI: 10.1007/s11033-010-0139-6
    94. Huang X., Feng Q., Qian Q., Zhao Q., Wang L., Wang A., J. et al. High-throughput genotyping bywhole-genome resequencing. Genome Res, 2009, 19: 1068-76.
    95. Huang Z., Chen Y. F., Yi B., et al. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007, 115: 113-118.
    96. Hyten D. L., Song Q., Choi I. Y., Yoon M. S., Specht J. E., Matukumalli L. K., et al. High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet, 2008, doi 10.1007/s00122-008-0726-2.
    97. Jaccoud D., Peng K., Feinstein D. & Kilian A.. Diversity arrays: a solid state technology for sequence information independent genoty-p ing. Nucleic Acids Res, 2001, 29 ( 4) : e25.
    98. James K. E., Schneider H., Ansell S. W., Evers M., Robba L., Uszynski G., et al. Diversity Arrays Technology (DArT) for pan2genomic evolutionary studies of non2model organisms. PlosOne, 2008, 3 ( 2) : e1682.
    99. Jander G., Norris S. R., Rounsley S. D., Bush D. F., Levin I. M., & Last R.L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440-50.
    100. Kang J., Zhang G., Bonnema G., Fang Z. & Wang X., Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol, 2008, 66, 177-92.
    101. Kaul. Male sterility in higher plants. New York: Springer– Verlag Press, 1988. 2-5.
    102. Kim J. S., Chung T. Y., King G. J., Jin M., Yang Y. J., Jin Y. M., et al. A sequence-tagged linkage map of Brassica rapa. Genetics, 2006, 174: 29-39.
    103. Lei S. L., Yao X. Q., Yi B., et al. Towards map-based cloning: fine mapping of a recessive genic male sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007, 115: 643-651.
    104. Li G. & Quiros C. F. Sequence-related amplified polymorphism(SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461.
    105. Lim G. A., Jewell E. G., Li X., Erwin T. A., Love C., Batley J., et al. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis. BMC Plant Biol, 2007a, 7: 40.
    106. Lim K. B., Yang T. J., Hwang Y. J., Kim J. S., Park J. Y., Kwon S. J., et al. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J, 2007b, 49: 173-83.
    107. Lin Z. X., Zhang X. L., Nie Y. C., He D. H. & Wu M. Q. Construction of a genetic linkage map for cotton base on SRAP. Chinese Science Bulletin, 2003, 48(19): 2063-2067.
    108. Lowe A. J., Moule C., Trick M. & Edwards K. J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics, 2004, 108: 1103-1112.
    109. Luikart G., Sherwin W. B., Steele B. M., & Allendorf F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol, 1998, 7: 963-74.
    110. Mace E. S., Xia L., Jordan D. R., Halloran K., Parh D. K., Huttner E., et al. DArT markers:diversity analyses and mapp ing in Sorghum bicolor. BMC Genomics, 2008, 9: 26.
    111. Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376-380.
    112. Meirmans P. G, Lamothe M., Gros-Louis M. C., Perinet P. & Isabel N. Using SNPstream technology to distinguish poplar species and their hybrids. In: Plant and Animal Genomes XIV Conference. San Diego, CA, 2006, P237.
    113. Miao Y., Dreyer F., Cai D. G. & Jung C. Molecular markers for genic male sterility in Chinese cabbage. Euphytica, 2003, 132:227-234.
    114. Michelmore R. W., Paranand J. & Kessalj R. V. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating population. Proceedings of the National Academy of. Sciences of the United States of America, 1991, 88: 9829-9832.
    115. Mun J. H., Kwon S. J., Yang T. J., Kim H. S., Choi B. S., Baek S. H., et al., The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics, 2008, 9:280.
    116. Nahm S. H., Lee H. J., Lee S. W., et al. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.) TAG, 2005, 111: 1191-1200.
    117. Naoya U., Kazuhiko T., Tsukasa U., Isao C., Ryohei T. & Masakazu T. Rapid and highly reliable sex diagnostic PCR assay for Papaya (Carica papaya L.). Breeding Science, 2002, 52: 333-335.
    118. Nayak S. N., Zhu H., Varghese N., Datta S., Choi H. K., Horres R., et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet, 2010, 120: 1415-1441.
    119. Nilmalgoda S. D., Cloutier S., & Walichnowski A.Z. Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome, 2003, 46: 870-878.
    120. Ogura H. Studies on the new male sterility in Japanese radish with special reference to utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agr. Kagoshima Univ, 1968, 6:39-78.
    121. Osborne B. I. & Baker B. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Current opinion in biotechnology, 1995, 7: 406-413.
    122. Panjabi P., Jagannath A., Bisht N. C., Padmaja K. L., Sharma S., Gupta V., et al. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008, 9: 113.
    123. Parkin I. A. P., Gulden S. M., Sharpe A. G., Lukens L., Trick M., et al. Segmental structure of the Brassica napus genome based on comparativeanalysis with Arabidopsis thaliana. Genetics, 2005, 171:765–781.
    124. Qiu D., Gao M., Li G. & Quiros C. Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rep, 2009, 28: 649-661.
    125. Rahman M., McVetty P. B. & Li G. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet, 2007, 115: 1101-1107.
    126. Reichardt J. K. & Mehrian-Shai R. The future of the human SNP identification: which individuals to sequence. Proc Natl Acad Sci U S A , 2009, 106, E50.
    127. Rhoades M. M. Cytoplasmic inheritance of male sterility in Zea Mays. S cience, 1931, 73: 340–341.
    128. Riaz A., Li G., Quresh Z., Swati M. S. & Quiros C. F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding, 2001, 120: 411-415.
    129. Rousselle P. Cytoplasmic male sterility in rape ( B. napus). Crucifera Newsletter: Scottish Crop Research Institute, 1990, 5
    130. Saal B. & Struss D. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theor Appl Genet, 2005, 111: 281-290.
    131. Sanguinetti C. J., Neto E. D. & Simpsor A. J. G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels- polymerase chain reaction produel recovery. Biotechniques, 1994, 17(5): 914-921.
    132. Schranz M. E., Lysak M. A. & Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci, 2006, 11: 535-542.
    133. Sears E. R. Genetics and farming. USDA Yearbook, 1947, 245-255.
    134. Shiga T. & Baba S. Cytoplasmic male sterility in rape plants (Brassica napus L.). Jap J Breeding, 1971, 21(2): 16-17.
    135. Song J. H., Cao J. S., Yu X. L. & Xiang X. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis. J Plant Physiol, 2007, 164: 1097-1100.
    136. Song L. Q., Fu T. D., Tu J. X., Ma C.Z. & Yang G. S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113: 55-62.
    137. Steemers F. J. & Gunderson K. L. Whole genome genotyping technologies on the BeadArrayt platform. Biotechnol J, 2007, 2: 41–49.
    138. Suwabe K., Tsukazaki H., Iketani H., Hatakeyama K., Kondo M., Fujimura M., et al. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173: 309-319.
    139. Tian A., Cao J., Huang L., Yu X. & Ye W. Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp. chinensis. Mol Biol Rep, 2009, 36: 307-14.
    140. Thiel T., Kota R., Grosse I., Stein N. & Graner A. SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res, 2009, 32: e5.
    141. Trick M., Bancroft I. & Lim Y. P. The Brassica rapa genome sequencing initiative. Genes GenomesGenomics, 2007, 1:35-39.
    142. Tyrka M., Blaszcyk L., Chelkowski J., Lind V., Kramer I., Weilepp M., et al. Development of the single nucleotide polymorphism marker of the wheat Lr1 leaf rust resistance gene. Cellular & Molecular Biology Letters, 2004, 9: 879–889.
    143. Ujino-Ihara T., Taguchi Y., Moriguchi Y. & Tsumura Y. An efficient method for developing SNP markers based on EST data combined with high resolution melting (HRM) analysis. BMC Res Notes 3, 51. DOI: 1756-0500-3-51 [pii] 10.1186/1756-0500-3-51
    144. Vos P., Hoger R., Bleeker M., et al. AFLP : a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407-4414.
    145. Wang D. J., Guo A. G., Li D.R., Tian J.H., Huang F. & Sun G.L. Cytological and molecular characterization of a novel monogenic dominant GMS in Brassica napus L. Plant Cell Rep, 2007, 26: 571-579.
    146. Wang G., Pan J. S., Li X. Z., He H. L., Wu A. Z. & Cai R. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in China Ser. C: Life Science, 2005a, 48(3): 213-220.
    147. Wang X. W., Fang Z. Y., Huang S. W., Sun P. T., Liu Y. M., Yang L. M., et al. An extended random primer amplified region (ERPAR) marker linked to a dominant male sterility gene in cabbage (Brassica oleracea var. capitata) . Euphytica, 2000, 112: 267-273.
    148. Wang X. W., Lou P., Bonnema G., Yang B. J., He H. J., Zhang Y. G. & Fang Z. Y. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea. Genome, 2005b, 48:848-854.
    149. Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A. & Kilian A. Diversity Arrays Technology (DArT) for whole genome p rofiling of barley. Proc Natl Acad Sci U S A, 2004, 101 ( 26) : 9915 - 9920.
    150. Williams J. G. K., Kubelik A. R., et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 1990, 18: 6531-6535.
    151. Williams P. H. & Heyn. F. W. The origin and development of cytoplasmic male sterile Chinese cabbage, 1981, N. S. Talekar and T. D. Griggs (eds.) Proc. First Intern. Symp. On Chinese cabbage. Asian Vegetable Reasearch Development Center, Tainan, Taiwan, China.
    152. Willian T. & McVetty P. B. E. Meiotic behaviour of extra chromosome infertility restored Polima CMS, B napus. Plant Genome, 1988, 30: 438-442.
    153. Wilson Z. A., Morroll S.M., Dawson J., Swarup R. & Tighe P. J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 2001, 28: 27-39.
    154. Wittenberg A. H. J., van derLee T., Cayla C., Kilian A., Visser R. G. F. & Schouten H. J. Validation of the high-throughputmarker tech nology DArT using the model p lant Arabidop sis thaliana. Mol Genet Genomics, 2005, 274 ( 1) : 30 - 39.
    155. Wu J., Yuan Y. X., Zhang X. W., Zhao J. J., Song X. F., Li Y., et al. Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage(Brassica rapa L. ssp. pekinensis). Plant Soil, 2008, 310: 25-40.
    156. Xiao S., Xu J., Li Y., Zhang L., Shi S., Wu J., et al. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611-618.
    157. Yang K. Z., Xia C., Liu X. L., Dou X. Y., Wang W., Chen, L.Q., et al. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J, 2009, 57: 870-882.
    158. Yang S., Pang W., Ash G., Harper J., Carling J., Wenzl P., et al. Low level of genetic diversity in cultivated p igeonpea compared to itswild relatives is revealed by Diversity Arrays Technology. TheorApp l Genet, 2006, 113 ( 4) : 585 - 595.
    159. Yang T. J., Kim J. S., Lim K. B., Kwon S. J., Kim J. A., Jin M., et al. The Korea brassica genome project: a glimpse of the brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics, 2005, 6: 138-46.
    160. Yang T. J., Kim J. S., Kwon S. J., Lim K. B., Choi B.S., Kim J. A., Jin M., et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell, 2006, 18: 1339-1347.
    161. Yi B., Chen Y. N., Lei S. L., Tu J. X. & Fu T. D. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet, 2006, 113: 643-650.
    162. Zhang Q., Huang L., Liu T., Yu X. & Cao J. Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep, 2008, 27: 1207-1215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700