甘蓝型油菜显性细胞核雄性不育基因和抑制基因的分子标记及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国主要的油料作物,大约有50%的食用植物油来源于油菜。长期以来,选育高产优质油菜一直是育种家所面临的主要任务。实践证明,杂种优势利用是提高油菜产量的主要途径。目前,细胞核雄性不育是甘蓝型油菜杂种优势利用的一条有效途径。
     1985年,李树林等报道了一批新型的细胞核雄性不育材料,他们同时提出这些材料的育性是受由两对显性基因互作控制的,即双基因互作控制模式。这一遗传模式的提出,为显性细胞核雄性不育应用于杂交种生产提供了理论依据。由于显性细胞核雄性不育具有败育彻底、不育性稳定、无不良胞质效应、可以实现“三系”配套等优点,因而在杂交油菜育种中具有重要的应用价值。为了使显性细胞核雄性不育得到更加广泛的应用,很有必要对其进行深入的研究。
     本研究以甘蓝型油菜显性细胞核雄性不育纯合两型系Rs1046AB为亲本,与不同来源的甘蓝型油菜品种(品系)进行杂交或回交,开展的研究内容包括:显性细胞核雄性不育的遗传分析;显性细胞核雄性不育在不同细胞质、细胞核和环境条件下的遗传表现;显性核不育基因的图谱定位;上位抑制基因的图谱定位;显性细胞核雄性不育“三系”的分子标记辅助选择育种等。取得的主要实验结果如下:
     1.经测交分析,从14份甘蓝型油菜品种(品系)中筛选到3份带有抑制基因的材料,它们可以作为显性细胞核雄性不育系的恢复系,其余11份材料不带有抑制基因,可能是双隐性类型,可以作为显性细胞核雄性不育系的临时保持系。
     2.以Rs1046B为共同母本,与不同来源的品种(品系)组配了11个同质异核的杂交组合。育性调查发现,不同杂交组合间的不育株率相差很大(最低为22.7%,最高为55.3%),个别组合还出现了部分可育现象。这似乎说明,某些核背景对显性细胞核雄性不育的育性表现存在一定影响。
     3.以Rs1046B为亲本之一,与2份双隐性材料一共配制了6对正反交组合,运用最小差数法和成对数据法对各组合的不育株率进行统计分析,结果发现正反交组合的育性差异不显著。由此说明,显性细胞核雄性不育的育性表达不受细胞质的影响。
     4.将7个杂交组合种植于兰州(5月至10月)和武昌(10月至次年5月)两地并进行育性对比观察,结果发现部分杂交组合后代的不育株率在两地相差较大,在兰州的生态条件下不育株率接近正常的50%,而在武昌的生态条件下不育株率大为降低。这说明,不同的生态环境条件对显性细胞核雄性不育的育性表现存在一定的影响。
     5.在个别组合F_1不育株(Msmsrfrf)上发现有少量的部分可育花,将其自交,后代发生1∶1的育性分离,继续兄妹交可以选育到杂合两型系。遗传分析表明,部
    
    华中农业大学博士学位论文2003
     分可育株自交后代发生1二1分离的原因可能是部分可育株产生了Msrf和msrf
     两种雌配子而仅仅产生msrf一种雄配子的缘故。
    6.在回交分离群体[(Rs 1 o46AX“samourai”)X“samourai”]中,运用BSA法构
     建了不育集团和可育集团,在两个集团之间一共筛选了480对AFLP引物,找到
     了5个与不育基因紧密连锁的AFLP标记,其中4个标记(E3M151。。、E7M1230、
     Pl3M8’00和P10M1335。)位于不育基因的同一侧,与不育基因的遗传图距分别为
     3.7。M、5.2 cM、5.9 cM和8.9 eM,剩下的1个标记(P6M641。)位于不育基因
     的另一侧,与不育基因的遗传图距为5.9 cM。将最有应用价值的标记E3M15100
     和P6M6引。的差异片段进行回收、克隆和侧序,结合PCR步行方法,成功地将
     这两个AFLP标记转化为便于在育种应用的SCAR标记。
    7.在兄妹交群体(Rs 1 046A x Rs1046B)中运用BSA法构建了不育集团和可育集团,
     在2个集团间一共筛选了640条RAPD引物和1 024对AFLP引物,最后找到了
     一个与抑制基因紧密连锁的AFLP标记EI 6MG4205,该标记与抑制基因之间的交
     换率仅为6.1%。将标记差异片段进行了回收、克隆和测序,序列分析和BLAST
     搜索结果表明,标记片段包含有一个O盯结构区,该ORF区编码的34个氨基
     酸序列与4个来源于拟南芥的蛋白质高度相似,但其具体功能不详。
    8.利用BCI群体[(Rslo46AX“Samourai”)X“samourai”]构建了一个包含15个
     主要连锁群、2个三联体和1个连锁对的甘蓝型油菜分子标记遗传图谱,图谱总
     长2667.1 cM,整合了138个AFLP标记、83个SSR标记和1个形态标记,标记
     间平均距离为13.27 cM。不育基因入介定位于第十连锁群(LG10)上,第八、第
     十六连锁群的末端各有一个明显的偏分离标记密集区。
    9.文中还讨论了建立显性细胞核雄性不育三系选育的分子标记辅助选择体系的可
     能性。
Rapeseed is one of the major oilseed crops in China. It contributes to appropriately 50% of the vegetable oil consumption. In the past and the near future, canola breeders still face the common and major goal of improving the productivity level of rapeseed. To achieve this, heterosis utilization is proved to be a very effective way, and now genie male sterility (GMS) is becoming a practicable approach to improve yield performance in Brassica napus.
    Li et al (1985) had reported several new GMS mutants in Brassica napus, also they proposed that the sterility of these mutants followed a digenic mode of inheritance with epistasic interaction. This hypothesis hence provides a theoretical base for employing the GMS in hybrid seed production. This GMS system is a promising approach to be use in hybrid breeding, because its sterility is stable and complete, no negative cytoplasmic effects are involved and, it can be used in a "three-line" system. To make this GMS system a wider application, it is necessary to initiate further study on it.
    In the present study, Rsl046AB, a homozygous GMS two-type line in Brassica napus, is used as one of the parent to cross with several Brassica napus accessions to study: genetic analysis of the dominant GMS; fertility performance of the dominant GMS under various genetic background, cytoplasm and environments; genetic mapping of the dominant GMS gene (My); genetic mapping of the suppressor gene (Rf) and the establishment of a MAS system for breeding dominant GMS three lines. Main results of the present studies are as follow:
    1. Three out of the fourteen accessions carrying Rfallele were identified by test-crossing, which could be served as restorers. The other eleven accessions did not carry Rfallele and were possibly in recessive nature of Rf and Ms loci, which could be served as temporary maintainers.
    2. Using Rsl046B as the mother parent, eleven crosses were made with eleven accessions having different genetic background. Fertility investigation showed that the percentage of male sterile plants varied among the eleven F1populations (from minimum of 22.7% to maximum of 55.3%), and a few partial fertile plants were observed in some FI populations, it seemed that a special genetic background had influence on the expression of the genie male sterility gene.
    3. Six pairs of reciprocal crosses were made by crossing Rsl046B with two cultivars in recessive nature of Rf and Ms loci. Statistic analysis revealed that the percentage of male sterile plants in the reciprocal crosses were not significantly differrents, which indicated that the expression of the male sterility gene is not influenced by cytoplasm.
    4. Seven crosses were grown in Lanzhou (from May to October) and Wuchang (from October to May in the next year). Fertility investigation showed that the percentage of male sterile plants in seven crosses grown in Lanzhou were near the expected 50%, but this values decrease sharply in five of the seven crosses grown in Wuchang, this
    
    
    
    indicated that fertility performance could be affected by environments.
    5. A few partial fertile flowers could be observed in the FI male sterile plants (Msmsrfrf). When selfmg such plant, an unexpected 1 : 1 fertility segregating ratio could be observed in the resulting progeny, in which when sibmating sterile plants with fertile plants, the heterozygous GMS two-type line could be bred. Furthur genetic analysis revealed that the partial fertile plants generated two kinds of female gametes (Msrf and msrf) but only one kind of male gamete (msrf). This might partially account for the 1 : 1 fertility segregation in the progeny derived from partial fertile plant.
    6. In the BCi population of [(Rsl046AX "Samourai" ) X "Samourai" ], AFLP technology in conjunction with bulked segregant analysis were perform to identify genetic markers for the male sterility gene. From the survey of 480 pair of AFLP primers, five markers closely linked to the male sterility were obtained. Four of them (E3M15100. E7Ml230. P13M84oo and PlOMl3 350) flanking the male steri
引文
1.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育的遗传研究.Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):22-26
    2.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993,2:20-25
    3.陈卫江,席代汶,易冬莲.甘蓝型油菜低芥酸显性雄性核不育“三系”选育研究.湖南农业科学,1995,(3):21-22
    4.崔德訢,邓锡兴.甘蓝型杂交油菜的研究利用.中国油料,1979,2:15-20
    5.董云麟.杜禾.一个甘蓝型独菜显性核不育材料的选育及利用研究.西南农业学报,1993,6(4):6-10
    6.董振生,刘创社,景军胜,冉龙贵,张修森,董军刚,刘绚侠.白菜型油菜双显性核不育896AB恢复系基因型的鉴定.作物学报,1999,25(2):193-198
    7.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    8.傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育的选育与研究.华中农业大学学报,1989.3:201-207
    9.傅廷栋.加入WTO对我国农业的影响和发展优质油菜生产问题.安徽农学通报,2001,7(5):8-12
    10.傅廷栋主编.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000
    11.傅廷栋主编.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    12.干滟,曾凡亚,赵云.甘蓝型油菜“79.9”细胞核雄性不育基因RAPD分子标记初步研究.西南农业学报,1999,12:111-115
    13.龚仁才.甘蓝型油菜(B. napus L)细胞核雄性不育系杂种“中杂3号”的选育和遗传分析.作物研究,1990,4(3):5-8
    14.官春云.李枸,王国槐,陈社员,袁晏松.化学杂交剂诱导油菜雄性不育机理的研究:Ⅰ.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响.作物学报,1997,23(5):513-521
    15.官春云,李枸,王国槐,陈社员,袁晏松.化学杂交诱导油菜雄性不育机理的研究:Ⅱ.KMS-1对甘蓝型油菜育性的影响.中国油料作物学报,1998,20(3):1-4
    16.管荣展.盖钧镒.甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系.中国油料作物学报,1998,20(4):11-15
    17.侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察.种子,1991,5:29-31
    18.胡洪凯,石艳华,王朝斌,赵虎臣.“Ch型”谷子显性核不育的杂优利用研究.内蒙古农业科技,1993,2:1-4
    19.胡胜武,于澄宇,赵会兰,柯桂兰.甘蓝型油菜新型不育材Shaan-GMS的遗传研究.西北植物学报,1999,19(6):33-35
    20.胡胜武.甘蓝型油菜(Brassica napus)新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003.
    21.华中农业大学.甘蓝型油菜自交不亲和系的选育简报.油料作物科技,1975,(4):77-85
    22.黄邦全,罗鹏,吴书惠.甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),2000,22(2):182-184
    23.黄继英,庄顺琪.白菜型油菜杂种优势利用的研究.中国油料,1980,1:38-41
    
    
    24.黄先群,唐丽,黄燕芬,颜怀珍,杨业止.甘蓝型油菜核不育系组织培养快速繁殖.植物生理学通讯,1995,31(2):119-120
    25.黄燕芬,黄先群,唐丽,颜怀珍.甘蓝型油菜雄性核不育系快速繁殖及其植株性状的初步研究.贵州农业科学,1996,24(2):23-26
    26.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的PCR标记初报.西南农业大学学报,2000,22(3):199-202
    27.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基冈的RAPD标记.中国油料作物学报,2000,22(2):1-4
    28.李德谋,侯磊,罗小英,裴炎,杨光伟.甘蓝型油菜隐性核不育两用系S45AB中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,28(1):1-5
    29.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,1:26-29
    30.李加纳,湛利,唐章林,张学昆.油菜细胞核+细胞质双重不育系选育初报.四川联合大学学报,1994,16(4):403-405
    31.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13(5):521-523
    32.李石开,刘其宁,吴学英,苏报喜,张庆莹,邱怀珊,赵庭周.芥菜型油菜光温敏核不育系K121S的选育.中国油料作物学报,2002,24(3):1-5
    33.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    34.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    35.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    36.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    37.李树林,周志疆,周熙荣.双低油菜纯合两型系48AB的转育.上海农业学报,1996,12(2):1-4
    38.李树林,周志疆,周熙荣.油菜显性核不育三系法制种.上海农业学报,1995,11(1):21-26
    39.林娟,罗鹏,李旭峰.组织培养法快速繁殖无融合生殖油菜.植物生理学通讯,1997,33(1):39-40
    40.刘秉华,王山荭,杨丽.小麦核不育的遗传研究和雄性不育遗传模式的建立.中国农业学,1999,32(2):18-23
    41.刘春林,官春云,李枸,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报,2000,27(10):918-924
    42.刘定富.植物显性核不育恢复性遗传的理论探讨.遗传,1992,14(6):31-36
    43.刘峰,吴晓雷,陈受宜.大豆分子标记在RIL群体中的偏分离分析.遗传学报,2000,27(10):883-887
    44.刘后利.油菜的遗传与育种.上海:上海科技出版社,1985.
    45.刘后利编著,油菜遗传育种学.北京:中国农业大学出版社,2000.
    46.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    47.刘忠松,官春云,陈社员编著.植物雄性不育机理的研究及应用.北京:中国农业出版社,2001
    48.卢钢,曹家树,陈杭,向殉.白菜几个重要园艺性状的 QTLs分析.中国农业科学,2002,35(8):969-974
    
    
    49.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20(5):413-415
    50.马尚耀,董歧福,成慧娟,李一中.谷子雄性不育复等位基因的发现初报.遗传,1990,12(1):9-11
    51.南京农业大学主编.田间实验和统计方法.北京:农业出版社.1979
    52.潘家驹主编.作物遗传育种总论.北京:中国农业出版社.1995.82-87
    53.青海省门源农科所.油菜天然杂交种增产显著.遗传与育种.1976,6:19
    54.沈金雄,傅廷栋,杨光圣.双低甘蓝型油菜自交不亲和系杂种优势的研究.中国农业科学,2002,35:1060-1065
    55.沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士学位论文].武汉:华中农业大学图书馆,2003
    56.四川南充地区农科所.油菜杂种优势初步观察.油料作物科技,1976,4:14-15
    57.陶爱林.光温敏不育水稻不育临界温度的遗传与分子机理研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    58.涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫杆基因与可育基因连锁的分子证据.作物学报,1999,25(6):669-673
    59.王华,汤小华,赵继献.甘蓝型油菜核不育材料H90s的遗传研究.中国油料作物学报,2001,23(4):11-15
    60.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578
    61.王俊霞.甘蓝型油菜Pol CMS育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择.[博士学位论文].武汉:华中农业大学图书馆,2000
    62.王通强,田筑萍,黄泽素,魏忠芬,邵明波.甘蓝型双低油菜细胞核显性核不育系黔油 2AB的选育.贵州农业科学,1999,27(5):14-18
    63.王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报,1992,(1):37-40
    64.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因辅助选择的SCAR标记.园艺学报,2000,27(2):143-144
    65.王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个甘蓝显性雄性不育基因的RAPD标记.园艺学报,1998,25(2):197-198
    66.魏毓棠,冯辉,张蜀宁.大白菜雄性不育遗传规律的研究.沈阳农业大学学报,1992,23(3):260-266
    67.席代汶,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘91S”的选育.湖南农业科学,1994(4):25-27
    68.杨光圣,傅廷栋,马朝芝,杨小牛.甘蓝型油菜波里马细胞质雄性不育恢复系轮回选择群体的建立.华中农业大学学报,1996,15(4):316-321
    69.杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径—细胞核+细胞质雄性不育.华中农业大学学报,1993,12(4):307-316
    70.杨光圣,翟波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999,18(5):405-408
    71.杨光圣,翟波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学观察.华中农业大学学报,1999,18(6):520-523.
    72.杨光圣,傅廷栋,马朝芝,杨小牛.油菜波里马细胞质雄性不育恢复基因的筛选与遗传.中
    
    国农业科学,1996,29(4):17-22
    73.杨光圣.甘蓝型油菜细胞质雄性不育研究.遗传,1988,10(5):8-11
    74.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8:209-216
    75.张德水,陈受宜,惠东威,庄炳昌.栽培大豆与半野生大豆杂种F_2群体中RRLP标记的偏分离及其形成原因的分析.遗传学报,1997,24(4):362-367
    76.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998.5:3-12
    77.张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42(5):485-489
    78.张书芳,宋兆华,赵雪云.大白菜细胞核基因互作雄性不育系选育及应用模式.园艺学报,1990,17(2):117-125
    79.赵云,王茂林,郑洪武,潘涛,张帆.细胞核雄性不育油菜无性繁殖研究:Ⅰ.细胞核不育油菜试管繁殖.中国油料,1997,19(1):1-5
    80.浙江农业大学主编.遗传学(第二版).北京:中国农业出版社,1999
    81.周永明.甘蓝型油菜轮回选择研究Ⅰ.向不同细胞质来源的基因型中导入显性核不育基因.作物学报,1993,19(1):70-75
    82. Aarts M G M, Dirkse W G, Stiekema W J and Pereira A. Transposon tagging of a male sterility gene inArabidopsis. Nature, 1993, 363, 715-717.
    83. Aarts M, Rachel H and Kriton K. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexs. Plant J, 1997, 12(3): 615-623
    84. Adam-Blondon A F, Sevignac M, Bannerot H and Dron M. SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet, 1994, 88: 865-870
    85. Ahmadi N, Albar L and Pressoir G. Genetic basis and mapping of the resistance to rice yellow mottle virus Ⅲ. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet, 2001, 103: 1084-1092
    86. Akkaya M S, Bhagwat A A and Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131-1139
    87. Austin D F and Lee M. Comparative mapping in F2:3 and 6:7 generations of quantitative trait loci for grain yield and yield components in maize. TheorAppl Genet, 1997, 95: 343-352
    88. Balzerguel S, Dubreucq B, Chauvinl S, Le-Clainche I, Le Boulaire F, De Rose R, Samsonl F, Biaudetl V, Lecharny A, Cruaud C, Weissenbach J, Caboche M and Lepiniec L. Improved PCR-Walking for large-scale isolation of plant T-DNA borders. Biotechniques, 2001, 30: 496-504
    89. Bartkowiak-Broda I and Poplawska W. Characteristic of double low winter rapeseed lines with introduced restorer gene for CMS Ogura. Proc 10~(th) Int Rapeseed Cong (Canberra, Australia), 1999, 172
    90. Becker J, Vos P and Kuiper M. Combined mapping of RFLP and AFLP markers in barley. Mol Gen Genet, 1995, 249: 65-73
    91. Bell C J and Ecken J R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994, 19: 137-144.
    92. Bennerot H, Boudidard L and Chupeau Y. Unexpected difficulties met with the radish cytoplasm in B. Oleracea. Eucarpia Cruciferae Newsl, 1977, (2): 16.
    93. Bennett M D and Leitch I J. Nuclear DNA amounts in angiosperms. Ann Bot (Lond), 1995, 76: 113-176
    
    
    94. Bernacchi D, Beck-Bunn T, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D and Tanksley S. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170-180
    95. Bonhomme S and Budar F. A 2.5 kb Nco Ⅰ fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male sterility in Brassica cybrids. Curr Genet, 1991, 19: 121-127
    96. Bonhomme S and Budar F. Sequence and transcript analysis of the Nco-2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrid. Mol Gen Genet, 1992, 235: 340-348
    97. Bonierbale M W, Plaisted R L and Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120: 1095-1103
    98. Bonnet A. Breeding in France of a radish F_1 hybrid obtained by use of cytoplasmic male sterility. Euearpia Cruciferae Newsl, 1977, 2: 5
    99. BrandleJE(杨镇译). 油菜的地区分布,亲本选择杂种优势.国外农学,1990,11-14
    100. Brondani C, Rangel P and Brondani R. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104: 1192-1203
    101. Camargo L E A, Savides L, Jung G, Nienhuis J and Osborn T C. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered, 1997, 88: 57-59
    102. Chen L O, Kuo H, Chen M, Lai K and Chert S G. Reproducibility of the amplification between leaf and root DNAs in soybean revealed by RAPD markers. Theor Appl Genet, 1997, 95: 1033-1043
    103. Chen S, Xu C G, Lin X H and Zhang Q. Improving bacterial blight resistance of 6078, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant breed, 2001, 120: 133-137
    104. Cheung W Y, Friensen L, Rakow G F W, Seguin-Swartz G and Landry B S. A RFLP-based linkage map of mustard (Brassica juncea (L.) Czern and Coss). Theor Appl Genet, 1997, 94: 841-851
    105. Chevre A M, Barret P, Eber F and Dupuy E Selection of stable Brassica napus-B, juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). Ⅰ. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet, 1997, 95: 1104-1111
    106. Cloutier S, Cappadocia M and Landry B S. Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet, 1997, 95: 83-91
    107. Coe E H and Polacco M. Gene list and working maps. Maize Genet Coop Newslett, 1995, 694: 157-191
    108. Cottage A, Yang A P, Maunders H, De Lacy R C and Ramsay N A. Identification of DNA sequences flanking T-DNA insertions by PCR-Walking. Plant Mol Biol Rep, 2001, 19: 321-327
    109. Davis G L, McMullen M D, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S and Coe E H. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-1ocus map. Genetics, 1999, 152: 1137-1172
    110. Dax E, Livneh O, Aliskevicius E, Edelbaum O, Kedar N, Gavish N, Milo J, Geffen F, Blumenthal A, Rabinowich H D and Sela I. A SCAR marker linked to the TOMV resistance gene, TmZ~2, in tomato. Euphytica, 1998, 101: 73-77
    111. Delourme R and Eber F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1992, 97: 129-134
    
    
    112. Delourme R, Bouchereau A, Hubert A, Renard M and Landry B S. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). The or Appl Genet, 1994, 88: 741-748
    113. Delourme R, Eber F and Renard M. Breeding double low restorer lines in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). In: Proc 9th Int Rapeseed Cong, 1995, Cambridge, UK. 1: 6-8
    114. Delourme R, Horvais R and Renard M. Double low restored F_1 can be produced with the Ogu-INRA CMS in rapeseed. Proc 10~(th) Int Rapeseed Cong, 1999. (Disk).
    115. Deng Z N, Huang S, Xiao S Y and Gmitter F G. Development and characterization of SCAR markers linked to the citrus Thristeza virus resistance gene from Poncirus trifoliata. Genome, 1997, 40: 697-704
    116. Devic M, Albert S, Delseny M and Roscoe T J. Efficient PCR walking on plant genomic DNA. Plant Physiol Biochem, 1997, 35: 331-339.
    117. Devos K M and Gale M D. The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet, 1992, 84: 567-572
    118. Dion Y, Gugel R K, Rakow G F W, Seguin-Swartz G and Landry B S. RFLP mapping of resistance to the blackleg disease in canola (Brassica napus L.). Theor Appl Genet, 1995, 91: 1190-1194
    119. Ecke W, Uzunova M and Weibleder K. Mapping the genome of repaseed (Brassica napus) Ⅱ: localization of genes conrrolling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995, 91: 972-977
    120. Engqvist G and Becker H C. Heterosis and epistasis in rapeseed estimated from generation means. Euphytica, 1991, 58: 31-35
    121. Fan Z, Stefansson B R and Sernyk J L. Maintainers and restorers for three male sterility inducing cytoplasm in rape (Brassica napus L.). Can J Plant Sci, 1986, 66: 229-234
    122. Fang G H and McVetty P B E. Inheritance of male fertility restoration for the Polima CMS system in Brassica napus L. Proc 7~(th) Int Rapeseed Cong, 1987, Poznan, Poland. 1: 73-78
    123. Ferreira M E, Williams P H and Osborn T C. Mapping of a locus controlling resistance to Alvugo candida in Brassica napus using molecular markers. Phytopathology, 1995, 85: 218-220
    124. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994, 89: 615-621
    125. Foisset N, Delourme R, Barret P and Renard M. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet, 1995, 91: 756-761
    126. Foisset N, Delourme R, Barret P, Hubert N, Landry B S and Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996, 93: 1017-1025
    127. Frary A T, Nesbitt C and Frary A. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
    128. Fu T, Yah G, Tu J and Ma C. The persent and future of rapeseed production in China. In: Liu Houli, Fu Tingdong. Proc IntSym Rapeseed Sci. New York: Science Press, 2001. 3-5
    129. FU T-D, YANG G-S and YANG X-N. Some investigation Polima cytoplasmic male sterility in B. napus. Cruciferae Newsl, 1987, 12: 46-47
    130. Fu T-D. Production and research of rapeseed in the People' s Republic of China. Eucarpia Cruciferae Newsl, 1981, (6): 6-7
    131. Girke A, Heiko C B and Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999. 90
    132. Glover J, Grelon M, Craig S, Chaudhury A and Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J, 1998, 15(3): 345-356
    
    
    133. Goivannoni I L, Wing R A and Canaland M W. Isolation of molulars from specific chromosomal interval using DNA pools from existing mapping populations. Nucl Acid Res, 1991, 19: 6553-6555
    134. Grant I and Beversdorf W D. Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Can J Genet Cytol, 1985, 27: 472-478
    135. Guimares C. Comparative mapping of sugarcane, maize and sorghum. Plant Genome Ⅳ, San Diego, USA, 1996, 66-71
    136. Hansen M, Hallden C, Nilsson N O and Sail T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed, 1997, 3: 449-456
    137. Hartley R W. Barnase and Barstar: two small proteins to fold and fit together. Trends Biochem Sci, 1989, 14: 450-454
    138. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G and Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genetics, 1998, 148: 479-494
    139. Hittalmani S, Parco A, Mew T V, Zeigler R S and Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100: 1121-1128
    140. Hodge R, Paul W and Draper J. Cold plaque screening: a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J, 1997, 2: 257-260
    141. Hosaka K, Kianian S F, Mcgrath J M and Quiros C F. Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and diploid species. Genome, 1990, 33: 131-142
    142. Hu J, Sadowski J, Osborn T C Landry B S and Quiros C E Lingkage group alignment from four independent Brassica oleracea RFLP maps. Genomes, 1998, 41: 226-235
    143. Huia E K W, Wangb P C and Loa S J. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. CellMolLife Sci, 1998, 54: 1403-1411
    144. Jean M, Brown G G and Landry B S. Genetic mapping of nuclear fertility restorer genes for 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor Appl Genet, 1997, 95: 321-328
    145. Jean M, Brown G G and Landry B S. Targeted mapping approaches to identify DNA markers linked to the Rfpl restorer gene for the 'Polima' CMS of canola (Brassica napus L.). Theor Appl Genet, 1998, 97: 431-438
    146. Kaul M L H. Male sterility in higher plants. Spring Verlag, Berlin Heidelberg, 1988.78-96
    147. Kerarsey M J. Higher recombination frequencies in female compared to male meiosis in Brassica oleracea. Theor Appl Genet, 1996, 92: 363-367
    148. Kianian S F and Quiros C E Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet, 1992, 84: 544-554
    149. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1991, 8: 2-37
    150. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1993, 10: 7-39
    151. Knox M R and Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics, 2002, 162: 861-873
    152. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12:
    
    172-175
    153. Krishnasamy S and Makaroff C A. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male sterile radish. Plant Mol Biol, 1994, 26: 935-946.
    154. L' Homme Y and Brown G G. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucl Acids Res, 1993, 21(8): 1903-1909
    155. L' Homme Y and Stahl R J. Brassica napus cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the Pol CMS-associated orf224 gene. Curr Genet, 1997, 31: 325-335
    156. Lagercrantz U and Lydiate D J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis. Genome, 1995, 38: 255-264
    157. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150: 1217-1228
    158. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E and Newburgl. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
    159. Landry B S and Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552
    160. Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E and Etho T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 ofPlasmodiophora brassicae (Woronin). Genome, 1992, 35: 409-420
    161. Lecacrants U, Ellecren H, Andersson L. The abundance of various polymorphic motifs differ between plants and vertebrate. NuclAcids Res, 1993, 21: 1111-1115
    162. Li G and Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461
    163. Li S L, Qian Y X and Wu Z H. Genetic male sterility in rape (Brassica napus L.) conditioned by interaction of genes at two loci. Can JPlant Sci, 1988, 68: 1115-1118
    164. Li X Q, Jean M, Landry B S and Brown G G. Restorer genes for different forms of Brassica cytoplamic male sterility map to a single nuclear locus that modifies transcripts to several mitochondriai genes. Proc Nant Acad Sci USA, 1998, 95: 10032-10037
    165. Lincoln S, Daly M and Lander E. Constructing genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    166. Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R and Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassicajuncea). Genome, 2002, 45(6): 1203-1215
    167. Lombard V and Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103: 491-507
    168. Lu H, Romero-Severson J and Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105: 622-628
    169. Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25: 511-557
    170. Ma Z Q, Roeder M and Sorrells M. E. Frequencies and sequence characteristics of di-, tri- and tetri-nucleocide in microsatellites in wheat. Genome, 1996, 39: 123-130
    171. Macphersom J M, Echstein P E, Ssoles G J and Gajadhar A A. Variation of the random amplified polymorphic DNA assay among thermal cyclers and effects of primer and DNA concentration.
    
    Mol Cell Probes, 1993, 7: 293-299.
    172. Maheswaran M, Subudhi P K and Nandi S. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet, 1997, 94:39-45
    173. Manzanares-Dauleux M J, Delourme E and Baron E Mapping of one major gene and of QTLs involved in resistacne to clubroot in Brassica napus. Theor Appl Genet, 2000, 101:885-891
    174. Mariani C, Beckeleer M D, Truettner J, Leemans J and Goldberg R B. Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature, 1990, 347:737-741
    175. Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg M, De Greef R and Leemans J. A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature, 1992, 357: 384-387
    176. Mathias R. A new dominant gene for male sterility in rapeseed (Brassica Napus L.). Z Pflanzenz(?)chtg, 1985, 94:170-173
    177. Matsumoto E, Yasui C, Ohi M and Tsukada M. Linkage analysis of RFLP markers for clubfoot resistance and pimentation in Chinese cabbage (Brassica rapa ssp. Pekinensis). Euphytica, 1998, 104:79-86
    178. Mohring S, Esch E and Wricke G. Breeding hybrid varitiles in winter rapeseed using recessivly inherited self-incompatibility. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 72
    179. Morgante M, Oliveri A M. PCR amplified microsatellite as markers in plant genetics. Plant J, 1993, 3:175-182
    180. Murayama S, Habuchi T, Yamagishi H and Terachi T. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica, 2003, 129 (1): 61-68
    181. Negi M S, Devic M, Delseny M and Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2002, 101:146-152
    182. Nozaki T, Kumzaaki A and Koba T. Linkage analysis among loci for RAPD, isozymes and some agronomic traits in Brassica campestris. Eupugtica, 1997, 95:115-123
    183. Ogura H. Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Men Fac Agric Kagoshima Univ, 1968, 6(2): 39-78
    184. Olsson G. Self-incompatibility and outcrossing in rape and white mustard. Hereditas, 1960, 46: 241-252
    185. Osborn T C, Kole C, Parkin I A, Sharpe A G, Kuiper M, Lydiate D J and Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146(3): 1123-1129
    186. Panaud O, Chen X and Mccouch S R. Frequency of microsatellite sequences in rice (Oryza Sativa). Genome. 1995, 38:1170-1175
    187. Paran I and Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85:985-993
    188. Parkin I A P, Sharpe A G, Keith D J and Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38:1122-1131
    189. Pelletier G, Primard C and Vedel E Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Curr Genet, 1983, 191:244-250
    190. Penner G A, Bush A, Wise R and Kim W. Reproducibility of random amplified polymorphic DNA(RAPD) analysis among laboratories. PCR Method Applic, 1993, 2:341-345
    191. Pilet M L, Delourme R, Foisset N and Renard M. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998, 97:398-406
    
    
    192. Powell W, Machray G C and Provan J. Polymorphism revealed by simple sequence repeats. Trend plant sci, 1996, 1: 215-222
    193. Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S and Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet, 2003, 106:607-614
    194. Rajcan I, Kasha K J, Kott LS and Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
    195. Ramsay L D. The construction of substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative loci. Genome, 1996, 39:558-567
    196. R(?)bbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada), 1991. 1:2-5
    197. Rousselle P. Study of a cytoplasmic male sterility after interspecific crosses between Brassica napus and Raphanus sativus. Proceedings of a Eucarpia-conference on Breeding of Cruciferous Crops (Wageningen), 1979. 100-101
    198. Rychilk W and Rhoads R E. A computer program for choosing optimal oligo nucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl Acids Res, 1989, 17: 8543-8551
    199. Sanders P M, Bui AQ, Weterings K, Mclintire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P and Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11, 297-322
    200. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E and Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 11664-11669
    201. Schierholt A, Becker H C and Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L). Theor Appl Genet, 2002, 101: 897-901
    202. Schneider K A, Brothers M E and Kelly J D. Marker-assisted selection to improve drought resistance in common bean. Crop Sci, 1997, 37:51-60
    203. Sernyk R L and Stefansson B R. Heterosis in summer rape (Brassica napus L.). Can Jplant Sci, 1983, 63:407-413
    204. Sharpe A G, Parkin I A P, Keith D J and Lydiate D J. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome, 1995, 38:1112-1121
    205. Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A and Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995, 23:1087-1088
    206. Singh M and Brown G G. Characterization of expression of a mitochondriai gene region associated with the Brassica 'Polima' CMS: developmental influences. Curr Genet, 1993, 24: 316-322
    207. Singh M and Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region. Plant Cell, 1991, 3: 1349-1362
    208. Singh M and Hamel N. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics, 1996, 143: 505-516
    209. Singh S, Sidhu J S and Huang N. Pyramiding three bacterial blight resistance genes (xα5, xα13, Xα21) using marker-assisted selection. Theor Appl Genet, 2001, 102:1011-1015
    210. Slocum M K, Figdore S S, Kennard W C, Suzuki J Y and Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet, 1990, 80: 57-64
    
    
    211. Somers D, Rakow G and Rimmer S. Brassica napus DNA markers linked to white rust resistance in Brassicajuneea. Theor Appl Genet, 2002, 104:1121-1124
    212. Song K M, Slocum M K and Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. Campestris). Theor Appl Genet, 1995, 90:1-10
    213. Song K M, Suzuki J Y, Slocum M K, Williams P H and Osborn T C. A linkage map of Brassica rapa (syn. Campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet, 1991, 82:296-304
    214. Stuber C. Mapping and manipulating quantitative trait in maize. Trend genet, 1995,11:477-481
    215. Szewc M A K, Kresovich S and Bliek S M. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet, 1996, 93:534-538
    216. Tanhuanpana P and Vilkki J. Marker-assisted selections for oleic acid content in spring turnip rape. Plant breed, 1999, 118:543-550
    217. Tanksley S D, Bernatzky R, Lapitan N L and Prince J P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA, 1988, 85:6419-6423
    218. Tanksley S D, Young N D, Paterson A H and Bonierbale M W. RFLP mapping in plant breeding: new tools for an old science. Biotechnology, 1989, 7:257-264
    219. Taramino G and Tinger S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39: 277-287
    220. Tautz D. Hyper variability of simple sequences as a general source for polymorphic DNA marker. Nucl Acid Res, 1989, 17:6463-6467
    221. Thomas C M. Identification of amplified restriction fragment polymorphism markers tightly linked to the tomato Cf-9 gene for resistance to the Cladosporlum Fulvum. Plant J, 1995, 8(5): 785-794
    222. Thompson K F. Heterosis for yield in winter rape. Plant breeding Institute Annual Report, 1972, 95-96
    223. Toroser D, Thormann C E and Osborn T C. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed tape (Brassica napus L.). Theor Appl Genet, 1995, 91: 802-808
    224. Truco M J and Quiros C F. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor Appl Genet, 1994, 89:590-598
    225. Uzunova M I and Ecke W. Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (B. napus L.). Plant breed, 1999, 118:323-326
    226. Uzunova M, Ecke W, Weissleder K and R(?)bbelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90:194-204
    227. Van de Meer I M and Stam M E. Antisense inhibition of fiavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 1992, 4:253-262
    228. Van Deynze A E, Landry B S and Pauls K P. The identification of RFLP linked to seed colour genes in Brassica napus. Genome, 1995, 38:534-542
    229. Venkateswari J, Kanrar S, Kirti P B, Malathi V G and Chopra V L. Molecular cloning and characterization of FATTY ACID ELONGATION1 (BjFAE1) gene of Brassica juncea. J Plant Biochem Biotechnol, 1999, 8(1): 53-55
    230. Voorips R E, Jongerius M C and Kanne H J. Mapping of two genes for resistance to Clubroot (Plasmodphora brassicea) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet, 1997, 94:75-82
    231. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Freijters A, Pot J, Peleman J, Kuiper M and Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995,
    
    23(21): 4407-4414
    232. Wang H M. Genetic correlation of the orf224/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol Biol, 1995, 27:801-807
    233. Wang Z, Weber J T and Zhong G. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88:1-6
    234. Wilson Z A, Morroll S M, Dawson J, Swarup R and Tighe P J. The Arabidopsis MALE STERILITYI(MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 2001, 28(1): 27-39
    235. Witt U, Hansen S and Albaum M. Molecular analysis of the CMS-inducing 'Polima' cytoplasm in Brassica napus L. Curt Genet, 1991, 19:323-327
    236. Worrall D and Hird D L. Premature dissolution of the microsporocytecallose wall causes male sterility in transgenic tobacco. Plant Cell, 1992, 4:759-771
    237. Wu K S and Tanksley S D. Abundance, Polymorphism and genetic mapping of microsatellite in rice. Mol Gen Genet, 1993, 241:225-235
    238. Xie D X, Feys B F, James S, Nieto-Rostro M and Turner J G. Coll: AnArabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280:1091-1094
    239. Xu F S, Wang Y H and Meng J. Mapping boron efficiency gene(s) in Brassic napus using RFLP and AFLP markers. Plant breed, 2001, 120:319-324
    240. Xu Y, Zhu L, Xiao J, Huang N and McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F_2, backcross, doubled-haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet, 1997, 253:535-545
    241. Yang G S, Duan Z H, Fu T D and Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 73
    242. Yang M, Hu Y, Lodhi M, McCombie W R and Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA, 1999, 96, 11416-11421
    243. Yoshimura S, Yoshimura A, lwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W and Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed, 1995, 1:375-387
    244. Zhao J and Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant breed, 2003, 106:759-764
    245. Zhao J and Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia clerotioram in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106:759-764
    246. Zhou P, Tan Y, He Y and Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106:326-331
    247. Zhu Q, Briceno G and Dovel R. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet, 2002, 105(2): 440-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700