甘蓝型油菜隐性细胞核雄性不育基因的分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜隐性细胞核雄性不育系7-7365A的育性受两对隐性重叠不育基因(ms3ms3、ms4ms4)和一对隐性上位基因(rfrf)互作控制,两对不育基因隐性纯合时可导致雄性不育,而上位基因隐性纯合时则可抑制不育基因的表达,使育性恢复正常。该材料具有败育彻底,不育性稳定,无不良胞质效应,恢复源广泛,任何一个品系均能成为其恢复系,配组相当自由,极易获得强优势组合等特点。同时用该不育系配制杂交种可以免除人工拔除50%不育株的麻烦,因此在油菜育种中的应用将会越来越广泛。
     本研究以7-7365A衍生材料7-736512AB两型系为材料,围绕雄性不育育性恢复基因(BnMs4)及不育基因(Bnms4)开展了以下工作:
     1)利用不育材料7-736512A(Bnms3ms3ms4ms4RfRf)与可育材料7-736512B(Bnms3ms3Ms4ms4RfRf)构建Bulk池筛选768对AFLP引物,获得12个与BnMs4连锁的AFLP标记,将标记差异片段回收、克隆、测序并设计引物转化SCAR标记。获得2个SCAR标记(SM25,SM129),位于目标基因的同侧,遗传距离分为0.6cM、0.75cM。
     2)对获得的12个与BnMs4连锁的AFLP标记中8个标记通过PCR Walking技术进行侧翼序列分离,共计获得12kb的标记侧翼序列信息,依据得到的侧翼序列,设计引物转化SCAR标记。获得2个SCAR标记(SM98,SM113),同上述两个SCAR标记同侧,遗传距离分为0.85cM、1.2cM。
     3)利用不育材料7-736512A(Bnms3ms3ms4ms4RfRf)与纯合可育材料7-736512B(Bnms3ms3Ms4Ms4RfRf)构建Bulk池筛选512对AFLP引物,获得8个与Bnms4连锁的AFLP标记,将标记差异片段回收、克隆、测序设计引物转SCAR。结果获得2个SCAR标记(Sm163,Sm312)。
     4)将获得的SCAR标记用于育种实践,发现SM113与Sm163在多种类型的材料中有多态性,能够运用于新的隐性核不育系的转育和恢复系、临保系的筛选。
The Brassica napus oilseed rape line,7-7365AB,is a recessive epistatic genic male sterile(RGMS) two-type line.The sterility is controlled by two pairs of recessive duplicate genes(Bnms3 and Bnms4) and one pair of recessive epistatic inhibitor gene (Bnrf).Homozygosity at the Bnrf locus(Bnrfrf) inhibits the expression of the two recessive male sterile genes in homozygous Bnms3ms3ms4ms4 plants and produces male fertile pollens.This fertile plant pollinated to 7-7375A to generate a completely male sterile population which can be used to produe hybrid seeds.Studies by years showed that the RGMS line has complete and stable pollination control system as well as abroad restorers.Moreover,the production of F1 hybrid seeds doesn't require the removal of 50%of segregating mother plants in the sterile line.So,this line has a good potential for heterosis utilization.
     In this research,we used two-type line 7-736512AB derived from sterile line 7-7365A as materials and carried out some works about male sterile restorer gene(BnMs4) and male sterile gene(Bnms4) as follows:
     1) From a survey of 768 primer combinations,12 AFLP markers were identified linked to the BnMs4 gene in two-type line population 7-736512AB through AFLP technology combined with BSA.All the fragments obtained from AFLP markers were cloned and sequenced.Then we designed specific PCR primers based on the sequences. Results showed that M25 and M129 were successfully converted into SCAR markers.
     2) We separated the flanking sequences of eight markers by PCR Walking.Then M113 and M98 were successfully converted into SCAR markers.
     3) AFLP aasay combined with BSA was also used to analyze the 7-736512A (Bnms3ms3ms4ms4RfRf) and a homozygous line at BnMs4 lcous (Bnms3ms3Ms4Ms4RfRf) selfing from 7-736512B.Five hundred and twevel primer combinations were used to screen the two bulks and parents,and 8 AFLP markers were identified linked to the Bnms4 gene.All the AFLP markers was cloned and sequenced. Then two SCAR markers m163 and m312 were successfully obtained.
     4) Six SCAR markers were used for breeding of new male sterile lines and temporary maintaimer lines.Moreover,SCAR markers SM98 and Sm163,showed good polymorphism in many materials.
引文
1.陈锋,张洁夫,陈松,顾慧,戚存扣.甘蓝型油菜隐性核不育基因的SRAP标记.江苏农业学报,2007,23(4):283-288
    2.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    3.陈凤祥,胡宝成,李成,李强生,张曼琳.甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功.中国农业科学,1995,2:94-95
    4.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25(1):63-65
    5.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    6.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报,1993,2:20-25
    7.陈玉峰.甘蓝型油菜隐性细胞核雄性不育恢复基因的精细定位.[硕士学位论文].武汉:华中农业大学图书馆,2007
    8.崔德欣,邓锡兴.甘蓝型杂交油菜的研究利用.中国油料,1979,2:15-20
    9.范方军,樊叶杨,杜景红,庄杰云.水稻色素原基因C的精细定位.中国水稻科学,2007,21(5):454-458
    10.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    11.傅廷栋主编.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000
    12.傅廷栋主编.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    13.高健强,余显权,赵德刚.油菜细胞核雄性不育基因研究进展.广西农业科学,2008,393(3),279-283
    14.官春云,李构,王国槐,陈社员,袁晏松.化学杂交剂诱导油菜雄性不育机理的研究:1.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响.作物学报,1997,23(5):513-521
    15.官春云,李构,王国槐,陈社员,袁晏松.化学杂交诱导油菜雄性不育机理的研究:I1.KMs-1对甘蓝型油菜育性的影响.中国油料作物学报,1998,20(3):1-4
    16.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,2:7-10
    17.胡胜武,刘胜毅,于澄宇,郭学兰,赵惠贤,胡小加,路明,刘越英.甘蓝型油菜核不育材料Shaan-GMS不育基因的RAPD标记.中国油料作物学报,2003,25(3):5-7
    18.黄镇.分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系.[博士学位论文].武汉:华中农业大学图书馆,2008
    19.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22(2),1-4
    20.康俊根,王晓武,张国裕,张延国,娄平,方智远.利用cDNA-AFLP检测甘蓝雄性不育相关基因的时序性表达.园艺学报,2006,33(3):544-548
    21.康俊根,张国裕,张延国,娄平,王晓武,方智远.四种甘蓝雄性不育类型差异基因表达分析.农业生物技术学报,2006,14(4):551-554
    22.康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析.[博士学位论文].北京:中国农业科学院,2006.
    23.李德谋,侯磊,罗小英,裴炎,杨光伟.甘蓝型油菜隐性核不育两用系S45AB 中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,1:15.
    24.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,(1)26-29
    25.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    26.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    27.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    28.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    29.李文涛,曾瑞珍,张泽民,丁效华,张桂权.水稻F1花粉不育基因座S-b的精细定位.科学通报,2006,51(4):404-408
    30.李勇.甘蓝型油菜显性核不育雄配子发育相关基因Bnrad23的克隆及初步分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    31.李媛媛.利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势遗传基础.[博士论文].武汉:华中农业大学图书馆,2006
    32.梁国华,曹小迎,隨炯明,赵翔强,严长杰,裔传灯,顾铭洪.水稻半矮秆基因sd-g的精细定位.科学通报,2004,49(8):778-783
    33.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004,30:104-107
    34.陆光远.甘蓝型油菜显性核不育基因和抑制基因的图谱定位.[博士学位论文].武汉:华中农业大学图书馆,2003
    35.缪颖,陈林姣,陈德海,张祖滨.应用Bulked-DNA寻找白菜型油菜核雄性不育基因的RAPD标记.厦门大学学报(自然科学版),2000,5:682-685
    36.潘家驹.作物遗传育种总论.北京:中国农业出版社,1995:82-87
    37.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,3:5-8.
    38.石华娟,董云麟.川油15核不育三系制种技术的应用研究.西南农业学报,2004,17:12-15.
    39.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[博士学位论文].武汉:华中农业大学图书馆,2005
    40.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂交种“沪油杂2号”的选育.上海农业学报,2005,21:1-3
    41.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26(1):63-65
    42.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨.中国油料作物学报,2002,24:1-4
    43.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.隐性核不育油菜两型系20118AB 的遗传与利用.上海农业学报,2004,20(1):30-32
    44.孙逢吉.芸薹属之杂种优势.中华农学会会报,1943,175:35-38
    45.涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫茎基因与可育基因连锁的分子证据.作物学报,1999,25(6):669-673
    46.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料90-2441A的遗传及其等位性分析.华中农业大学学报,1997,16:255-258
    47.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16(2):112-117
    48.王彩霞,舒庆尧.水稻紫色种皮基因Pb的精细定位与候选基因分析.科学通报,2007,52(21):2517-2523
    49.王道杰,郭蔼光,李殿荣,田建华.油菜单显性核雄性不育基因的分子标记.植物生理与分子生物学学报,2006,32(5):513-518
    50.王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因分子标记的开发.华中农业大学,2007
    51.王军,张太平,魏忠芬,李德文.甘蓝型油菜隐性核不育材料ZWA的遗传利用研究.种子,2004,23:8-11.
    52.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD 标记.作物学报,2000,26(5):575-578
    53.王文明,周永力,江光怀,马伯军,陈学伟,章琦,朱立煌,翟文学.水稻抗白叶枯病基因Xa-4的精细定位及其共分离分子标记.科学通报,2000,45:1067-1071
    54.王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报,1992,(1):37-40
    55.吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    56.杨存义,陈忠正,庄楚雄,梅曼彤,刘耀光.水稻籼粳杂种不育基因座Sc的遗传图和物理图精细定位.科学通报,2004,49(13):1273-1277
    57.杨光圣,傅廷栋,Brownc G.甘蓝型油菜细胞质雄性不育的遗传分类研究.中国农业科学,1998,31:27-31
    58.杨光圣.甘蓝型油菜细胞质雄性不育研究.遗传,1988,10(5):8-11
    59.姚雪琴.拟南芥及芸薹属A、C基因组Ms候选基因区共线性比较.[硕士论文].武汉:华中农业大学图书馆,2007
    60.易斌.甘蓝型油菜隐性核不育基因Bnmsl的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    61.尹小燕,王庆华,杨继良,金德敏,王飞,王斌,张举仁.玉米大斑病抗性基 因Ht2的精细定位.科学通报,2002,47(23):1811-1814
    62.张鲁刚,王鸣,陈抗,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42:485-489
    63.周熙荣,李树林,周志强,庄静,顾龙弟.甘蓝型(Brassica napes L.)显性核不育双低油菜杂交新品种核杂3号的选育.上海交通大学学报(农业科学版),2003,21:304-308.
    64.周熙荣.甘蓝型油菜显性核不育三系杂交种“核杂7号”明.农业科技通讯,2005,33:62
    65.Albrecht C,Russinova E,Hecht V,Baaijens E,Vries S.The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis.Plant Cell,2005,17(12):3337-3349
    66.Anon.A PCR-based linkage map of broccoli[Brassica oleracea(L.) var.italica]and comparisons with existing Brassica maps.Hortscience,2005,40:1090-1090
    67.Ayele M,Haas B J,Kumar N,Wu H,Xiao YL,Van Aken S,Utterback T R,Wortman J R,White O R,Town C D.Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis.Genome Research,2005,15:487-495
    68.Babula D,Kaczmarek M,Barakat A,Delseny M,Quiros C F,Sadowski J.Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map.Mol Genet Genomics,2003,268:656-665
    69.Bai X,Peirson B N,Iong F,Xue C,Makaro C A.Isolation and characterization of SYN1,a RAD21-like gene essential for meiosis in Arabidopsis.Plant Ceil,1999,11:417-430
    70.Bannerot H,Boudidard L,Chupeau Y.Unexpected difficulties met with the radish cytoplasm in Brassica oleracea.Eucarpia Cruciferae Newsletter,1977,(2):16
    71.Bannerot H,Boulidard L,Cauderon Y,Tempe J Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica olerecea.In:Proc EUCARPIA Meeting,Dundee.Scotland,1974,52-54
    72.Bhatt A M,Lister C,Page T,Fransz P,Findlay K,Jones G H,Diekinson H G Dean C.The DIFI gene of Arabidopsis required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J, 1999, 19: 463^72.
    
    73. Cai X, Dong F, Edelmann R E, Makaroff C A. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci,2003,116:2999-3007
    
    74. Camargo L, Savides L, Jung G, Niehuis J, Osborn T C. Location of the selfincompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered,1997, 88: 57-59
    
    75. Canales C, Bhatt A M, Scott R, Dickinson H. EXS, a putative LRR receptor kinase,regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol., 2002,12: 1718-1727
    
    76. Cavell A C, Lydiate D J, Parkin I A P,Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome.Genome, 1998, 41: 62-69
    
    77. Chaudury A M. Nuclear genes controlling male fertility. Plant cell, 1993, 5:1277-1283.
    
    78. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor Appl Genet. 2007,115(6):849-858
    
    79. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theoretical and Applied Genetics, 2009, 118:1121-1131
    
    80. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao ZY, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theoretical and Applied Genetics , 2007,115: 777-792
    
    81. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera C E, Schroeder J I. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell, 2005, 17: 3350-3361
    
    82. David W.Meinke, et al, Arabidopsis thaliana: A Model Plant for Genome Analysis, Science 1998, 282: 662-6821
    
    83. Delourme R, Eber F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed {Brassica napus L.). Theor Appl Genet,1992,97: 129-134
    
    84. Delourme R, Horvais R, Renard M. Double low restored Fican be produced with the Ogu-INRA CMS in rapeseed. Proc 10~(th) Int Rapeseed Cong, 1999
    
    85. Deyoung B J, Bickle K L, Schrage K J, Muskett P, Patel K, Clark S E. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J., 2006,45(1): 1-16
    
    86. Fang G H, McVetty P B E. Inheritance of male fertility restoration for the Polima CMS system in Brassica napus L. Proc 7th Int Rapeseed Cong, 1987, Poznan, Poland.1:73-78
    
    87. Fourmann M, Barret P, Froger N, Baron C, Chariot F, Delourme R, Brunei D . From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet, 2002,105:1196-1206
    
    88. Fu T D. Production and research of rapeseed in the People's Republic of China.Eucarpia Cruciferae News, 1981,6: 6-7
    
    89. Gale md, Devos K. Plant Comparative Genetics after 10 years. Science-Washington,1998,282:655-659
    
    90. Gao M Q, Li G Y, Yang B, Qiu D, Farnham M, Quiros C . High-density Brassica oleracea linkage map: identification of useful new linkages. Theoretical and Applied Genetics, 2007,115:277-287
    
    91. Giancola S, Marhadour S, Desloire S, Clouet V, Falentin-Guyomarc'h H, Laloui W,Falentin C, Pelletier G, Renard M, Bendahmane A, Delourme R, Budar F .Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping.Theor Appl Genet,2003, 107: 1442-1451
    
    92. Gu Y, Zhao Q C, Sun D L, Song W Q. A genetic linkage map based on AFLP and NBS markers in cauliflower {Brassica oleracea var. botrytis). Botanical Studies,2008, 49: 93-99
    93. Haber J E. Partners and pathways repairing a double-strand break. Trends Genet,2000,16:259-264
    
    94. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang GS. Fine mapping of a recessive genie male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theoretical and Applied Genetics,2008,117:11-18
    
    95. Hong C P, Kwon S J, Kim J S, Yang T J, Park B S, Lim Y P. Progress in Understanding and Sequencing the Genome of Brassica rapa. Int J Plant Genomics,2008:582837
    
    96. Hong C P, Lee S J, Park J Y, Plaha P, Park Y S, Lee Y K, Choi J E, Kim KY, Lee J H, Lee J, Jin H, Choi S R, Lim Y P. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Molecular Genetics and Genomics, 2004, 271: 709-716
    
    97. Hong C P, Plaha P, Koo D H, Yang T J, Choi S R, Lee Y K, Uhm T, Bang J W,Edwards D, Bancroft I, Park B S, Lee J, Lim Y P. A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana.Mol Cells, 2006,22: 300-307
    
    98. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L). Euphytica, 2006, 151: 401-409
    
    99. Ma H. Molecular genetic analyses of microsporogenesis and micro grametogenesis in flowering plants. Annual Review of Plant Biology. 2005, 56: 393-434
    
    100.Hord C L, Chen C, Deyoung B J, Clark S E, Ma H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell,2006,18(7): 1667-1680
    
    101.Howell E C, Barker G C, Jones G H, Kearsey M J, King G J, Kop E P, Ryder C D,Teakle G R, Vicente J G, Armstrong S J. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics, 2002, 161: 1225-1234
    
    102.Hu J, Sadowski J, Osborn T C Landry B S, Quiros C F Lingkage group alignment from four independent Brassica oleracea RFLP maps. Genomes, 1998,41: 226-235
    
    103.Hu S W, Fan Y F, Zhao X, Guo X L, Yu C Y, Sun G L, Dong H C, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L). Theor Appl Genet, 2006, 113: 397-406
    104.Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theoretical and Applied Genetics, 2007, 115: 113-118
    105.Iniguez-Luy FL, Voort AV, Osborn TC. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype.Theor Appl Genet, 2008, 117: 977-985
    106.Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J L, Meyerowitz E M. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 2004,430: 356-360
    107.Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J M. Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156:833-838
    108.Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breeding, 2005,124: 367-370
    109.Ke L P, Sun Y Q, Liu P W, Yang G S . Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138:163-168
    110.Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S.Sablowski R, Armstrong S, Schweizer D, M ercier R et al. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci, 2006,119: 2486-496
    111 .Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map:linkage arangements among various populations and evolutionary implications.Theor Appl Genet, 1992, 84: 544-554
    112.Kim J S, Chung T Y, King G J, Jin M, Yang T J, Jin Y M, Kim H I, Park B S. A sequence-tagged linkage map of Brassica rapa. Genetics, 2006,174: 29-39
    113.Kowalski S, Lan T, Feldmann K, Paterson A. Comparative mapping of Arabidopsis thaliana and Brassica oleracea reveal islands of conserved organization. Genetics,1994, 138:499-510
    
    114.L'Homme Y, Brown G G. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucl Acids Res, 1993,21(8): 1903-1909
    
    115.Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research,1993,21: 1111-1115
    116.Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics, 1996,144: 1903-1909
    
    117.Lagercrantz, U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements.Genetics, 1998, 150: 1217-1228
    
    118.Lagercrantz, U, Putterill, J, Coupland, G, and Lydiate, D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9: 13-20
    
    119.Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J,Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res, 2000,10: 776-788
    
    120.Landry B S, Hubert N , Crete R, Chang M S, Lincoin S E, Etho T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance gene to race2 of Plasmodiophora hrassicae(Woronin).Genome, 1992,35:409-420
    
    121.Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences.Theor Appl Genet, 2007, 115: 643-651
    122.Li W. Yang X, Lin Z, Timefejeva L. Xiao R, Makaroff C A, Ma H. The AtRAD51C gene is required for norm al meiotic chromosome synapsis and double-stranded break repair in Arabidopsis. Plant Physiol, 2005, 138: 965-976
    123.Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica, 2006, 152:25-39
    124.Lim G, Jewell E G, Li X, Erwin T A, Love C, Batley J, Spangenberg G, Edwards D.A comparative map viewer integrating genetic maps for Brassica and Arabidopsis.BMC Plant Biology, 2007, 7(40): 1-10
    125.Liu J, Hong D F, Lu W, Liu P W, He Q B, Yang G S. Genetic Analysis and Molecular Mapping of Gene Associated with Dominant Genic Male Sterility in Rapeseed (Brassica napus L). Genes & Genomics, 2008, 30: 523-532
    126.Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim YP, Meng J. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,2007, 177: 2433-2444
    127.Lou P, Kang J G, Zhang G Y, Bonnema G, Fang Z Y, Wang X W. Transcript profiling of a dominant male sterile mutant (Ms-cdl) in cabbage during flower bud development. Plant Science, 2007,172: 111-119
    128.Lowe A, Jones A, Raybould A, Trick M, Moule C, Edwards K. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes, 2002,2:7-11
    129.Lowe A J, Moule C, Trick M, Edwards K J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
    130.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003,164: 359-372
    131.Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefevre F, Pelletier G,Horiow C. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Gene Dev, 2001, 15: 1859-1871.
    
    132.Motamayor J C, Vezon D, Bajon C, Sauvanet A, Glandjean O, Marchand M,Bechtold N, Pelletier G, Horlow C. Switch(swil), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Repod, 2000, 12: 209-218.
    
    133.Nelson M N, Phan H, Ellwood S R, Moolhuijzen P M, Hane J, Williams A, O'Lone C E, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiarkiewicz M, Wolko B, Barker S J, Oliver R P, Cowling W A. The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theoretical and Applied Genetics, 2006, 113: 225-238
    
    134.Ogura H. Studies of a new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ, 1968, 6: 39-78
    
    135.Panjabi P, Jagannath A, Bisht N C, Padmaja K L, Sharma S, Gupta V, Pradhan AK,Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008,9: 113
    
    136.Park J Y, Koo D H, Hong C P, Lee S J, Jeon J W, Lee S H, Yun P Y, Park B S, Kim H R, Bang J W, Plaha P, Bancroft I, Lim Y P. Physical mapping and microsynteny of Brassica rapa ssp pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Molecular Genetics and Genomics, 2005, 274: 579-588
    
    137.Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38:1122-1131
    
    138.Parkin I A, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome,2002,45:356-366
    
    139.Parkin I, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781
    
    140.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theoretical and Applied Genetics, 2005,111:1514-1523
    141.Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D . A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet, 2003, 106: 607-614
    142.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E,Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S,Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content.Theoretical and Applied Genetics, 2006, 114: 67-80
    143.Ramsay L D Jennings D E ,BohuonE J R .Arthur A E ,Lydiate D J ,Kearsey M J,Marshall D F. The con struction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative loci. Genome,1996,39:558-567
    144.Reddy T V, Kaur J, Agashe B, Sundaresan V, Siddiqi I. The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development, 2003, 130: 5975-5987.
    145.R6bbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada), 1991, 1: 2-5
    146.Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G,Manzanares-Dauleux M J. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theoretical and Applied Genetics, 2004,108: 1555-1563
    147.Ryder C D, Smith L B, Teakle G R, King G J. Contrasting genome organisation: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome, 2001,44(5): 808-17
    148.Sanders P M, Bui A Q, Weterings K, Mclntire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana malesterile mutants. Sex Plant Reproduction, 1999, 11: 297-322
    149.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl.Acad. Sci. USA, 1999, 96: 11664-11669
    
    150.Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A and Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res,1995,23:1087-1088
    
    151.Singh M, Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region. Plant Cell, 1991, 3: 1349-1362
    
    152.Singh M, Hamel N. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics,1996,143:505-516
    
    153.Slocum M K, Figdore S S, Kennard W C, Suzuki J Y, Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea.Theor Appl Genet, 1990, 80: 57-64
    
    154.Song K M, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica raps (syn. Campestris). Theor Appl Genet, 1995,90: 1-10
    
    155.Song K, SuzukiJ Y,Slocu M K,Williams P H ,OsbornT C .A 1 inkagemap of Brassica rapa (syn. Campestris) based on restriction length polymorphism loci. Theor Appl Genet, 1991,82:296-304
    
    156.Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113:55-62
    
    157.Sun Z D, Wang Z N, Tu J X, Zhang J F, Yu FQ, McVetty P, Li G Y. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers.Theoretical and Applied Genetics, 2007,114: 1305-1317
    158.Suwabe K, Iketani H, Nunome T, Kage T, Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet, 2002, 104: 1092-1098
    159.Suwabe K, Iketani H, Nunome T, Ohyama A, Hirai M, Fukuoka H. Characteristics of Microsatellites in Brassica rapa genome and their potential utilization for comparative genomics in Cruciferae. Breeding Science, 2004, 54: 85-90
    160.Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics, 2006,173: 309-319
    161.Teutonico,R.A., T.C.Osborn. Mapping of RFLP and qualitative trait loci in Brassica rapa and Arabidopsis lhaliana and comparison to the linkage maps of B.napus,B.oleracea. Theor.Appl, 1994, 89: 885-894
    162.Tian A M, Cao J S, Huang L, Yu X L, Ye W. Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp.Chinensis. Mol Biol Rep, 2009,36:307-314
    163.Udall JA, Quijada PA, Osborn TC. Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics, 2005, 169: 967-979
    164.Wang Y F, Ma S M, Wang M, Zheng X Q, Gu M, Hu S W. Sequence analysis of the gene correlated with cytoplasmic male sterility (CMS) in rapeseed (Brassica napus) Polima and Shaan 2A. Chinese Science Bulletin, 2002,47: 122-126
    165.Wijeratne A J, Zhang W, Sun Y J, Liu W L, Albert R, Zheng ZQ, Oppenheimer DG,Zhao DZ, Ma H. Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant Journal, 2007, 52: 14-29
    166. Witt U, Hansen S, Albaum M. Molecular analysis of the CMS-inducing 'Polima' cytoplasm in Brassica napus L. Curr Genet, 1991, 19: 323-327
    167.Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L., Euphytica, 2008, 164: 377-384
    168.Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 73
    169.Yang S L, Jiang L X, Puah C S, et al. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with excess MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS.Plant Physiol,2005,139:186-191
    170.Yang S L,Xie L F,Mao H Z,Puah C S,Yang W C,Jiang L,Sundaresan V,Ye D.TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther.Plant Cell,2003,15:2792-2804
    171.Yang T J,Kim J S,Lim K B,Kwon S J,Kim J A,Jin M,Park J Y,Lim M H,Kim H I,Kim S H,Lim Y P,Park B S.The Korea Brassica Genome Project:A glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis.Comparative and Functional Genomics,2005,6:138-146
    172.YANG W C,Y E D,X U J,et al.The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein.Genes Dev,1999,13:2108-2117
    173.Yi B,Chen Y,Lei S,Tu J,Fu T.Fine mapping of the recessive genic male-sterile gene(Bnmsl) in Brassica napus L.Theor Appl Genet.2006,113:643-650
    174.Zhao D Z,Wang G F,Speal B,Ma H.The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther.Genes Dev.,2002,16:2021-2031
    175.Ziolkowski P A,Kaczmarek M,Babula D,Sadowski J.Genome evolution in Arabidopsis/Brassica:conservation and divergence of ancient rearranged segments and their breakpoints.Plant Journal,2006,47:63-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700