甘蓝型油菜显性核不育纯合两用系的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜显性细胞核雄性不育具有败育彻底,不育性稳定,无微量花粉,育性不受温度和环境影响,容易回交转育,无不良胞质效应等优点,因而在杂种优势利用和群体轮回选择中具有重要的应用价值。1985年李树林等首先在甘蓝型油菜上创建了双显性基因上位互作控制的遗传理论,成功地解决了显性核不育应用中的难题,使核不育制种时必须拔掉50%左右可育株的问题得以解决,从而拓宽了显性核不育的应用范围。
     本研究首先通过对4个甘蓝型油菜显性核不育两用系材料育性基因的遗传规律进行分析,推测不同来源显性核不育两用系育性基因的等位性;其次用这4个不育系和7个恢复系进行不完全双列杂交,分析不完全双列杂交亲本和组合的农艺性状和品质性状数据,估算出亲本的配合力,同时分析组合的杂种优势。主要结果如下:
     1.不同来源材料育性基因等位性分析
     本部分试验采用经典遗传学方法,分析来源不同的4个甘蓝型油菜显性核不育两用系育性基因的等位性,4个材料的名称分别为Gd1AB、G8AB、D3AB、G588AB。试验结果表明:4种显性纯合两用系在育性遗传上属于同一类型;4种材料的不育恢复基因与波里马胞质不育恢复基因不等位,两者分属于不同的育性恢复系统。
     2.农艺性状的配合力分析
     4个不育系农艺性状一般配合力综合评价得分最高者为G8AB,其次为D3AB、G588AB、Gd1AB,因此在农艺性状的一般配合力上,不育系的优劣顺序为G8AB>D3AB>G588AB>Gd1AB,在所有10个农艺性状中,G8AB在株高、主花序长、主花序有效长、全株有效果数和每果粒数共5个性状的一般配合力表现最优,G8AB在单株产量性状的一般配合力表现上仅次于D3AB;7个恢复系的优劣顺序为56R>7R>D21R>D1R>91R>16R>SR1,56R在主花序长、主花序有效长、全株有效果数、主序有效果数和单株产量共5个性状的一般配合力表现最优。
     比较28个杂交组合的特殊配合力相对效应值,株高特殊配合力最高的是G588A×16R;主花序长特殊配合力最高的是Gd1A×7R;主花序有效长特殊配合力最高的是Gd1A×7R;全株有效果数特殊配合力最高的是G588A×7R;主序有效果数特殊配合力最高的是D3A×91R;角果长度特殊配合力最高的是G8A×7R;千粒重特殊配合力最高的是Gd1A×16R;单株产量特殊配合力最高的是Gd1A×D21R,其次是G8A×16R,位于第三位的是D3A×7R。
     综上所述,亲本农艺性状一般配合力最高的是G8AB和56R。农艺性状特殊配合力前5的组合分别是:D3A×56R、Gd1A×D21R、G8A×56R、D3A×7R、G588A×56R。
     3.品质性状配合力分析
     对品质性状的一般配合力相对效应值作估算,并根据一般配合力相对效应值大小分别对父母本进行综合分析,结果表明:在品质性状一般配合力上,不育系的优劣顺序为G588AB>D3AB>Gd1AB>G8AB;7个恢复系的优劣顺序为7R>91R>56R>D1R>D21R>16R>SR1。
     品质性状特殊配合力表现较好的组合是G588A×16R、D3A×56R和G8A×D1R。优质食用油菜品质的要求是低芥酸含量、低硫苷含量、高含油量,在油菜品质改良中,经常采用定向回交的方法选育新的品系。在本研究所涉及的11个亲本中,显性核不育两用系D3AB为双低材料,恢复系品系中D1R、91R、56R、D21R为无芥酸材料。结合理论分析和实际生产上的要求,本研究筛选出品质性状配合力表现最好的组合是D3A×56R。
     4.农艺性状的杂种优势比较
     对8个重要的农艺性状的中亲优势进行分析,结果表明:株高正向优势最大的组合是G8A×56R;主花序长正向优势最大的组合是G8A×56R;全株有效果数正向优势最大的组合是G588A×56R;主序有效果数正向优势最大的组合是Gd1A×91R;角果长度正向优势最大的组合是D3A×7R;每果粒数正向优势最大的组合是Gd1A×D1R;千粒重正向优势最大的组合是G8A×56R;单株粒重正向优势最大的组合是D3A×7R。从构成产量的千粒重、每果粒数和全株有效果数三个因素的正向中亲优势最大的组合依次为G8A×56R、Gd1A×D1R和G588A×56R。
     对8个重要的农艺性状的超亲优势进行分析,结果表明:株高正向优势最大的组合是G8A×7R;主花序长正向优势最大的组合是G8A×56R;全株有效果数正向优势最大的组合是G588A×56R;主序有效果数正向优势最大的组合是G8A×56R;角果长度正向优势最大的组合是G588A×D1R;每果粒数正向优势最大的组合是D3A×56R;千粒重正向优势最大的组合是Gd1A×16R;单株粒重正向优势最大的组合是D3A×7R。从构成产量的千粒重、每果粒数和全株有效果数三个因素的正向超亲优势最大的组合依次为Gd1A×16R、D3A×56R和G588A×56R。其中全株有效果数的最大正向超亲优势达到178.3%,单株粒重的最大正向超亲优势达到167.3%。
     5.品质性状的杂种优势比较
     对4个重要的品质性状进行杂种优势分析,结果表明:含油量正向中亲优势和正向超亲优势最大的组合都是Gd1A×91R;油酸含量正向中亲优势和正向超亲优势最大的组合都是G8A×16R;亚油酸含量正向中亲优势和正向超亲优势最大的组合分别是Gd1A×D1R和D3A×16R;总硫苷含量正向中亲优势和正向超亲优势最大的组合分别是D3A×91R和G588A×D21R。
     本研究所选取的母本和父本中分别有一个低硫苷含量材料,它们分别是D3A和D21R。两个低硫苷含量亲本的存在是造成总硫苷含量正向中亲优势和正向超亲优势最大的组合的值很大的原因,D3A×91R的正向中亲优势达到23.6%,G588A×D21R的正向超亲优势达到310.0%。
     在实际生产上,我们期望得到低硫苷含量的组合,本研究所配组合中总硫苷含量最理想的组合应该是D3A×D21R,实际测定结果也证实D3A×D21R的总硫苷含量仅为17.0μmol/g,而该组合杂种优势并不明显,这一结果充分说明:品质性状的杂种优势理论怎样与实际生产相结合还需作进一步的研究。
The dominant genic male sterility in Brassica napus L. plays an important value in heterosis application and recurrent selection of population, for it has many advantages, such as completely and stable sterility, no trace pollen, fertility isn't affected by temperature and environment, no bad cytoplasmic effects, backcross breeding is easy and so on. In 1985 Li et al. first created the genetic theory of double dominant gene epistasis interaction control. The production of seeds requires removal of 50% fertile plants in genic male sterility, and Li et al .successfully resolved the problem, thus broaden the scope of dominant genic male sterility application.
     In the study, First predicted the allelism of dominant genic male sterile two-type lines fertility genes from different sources according to the genetic regularity analysis of four dominant genic male sterile two-type lines fertility genes in Brassica napus L.; And then made an incomplete diallel cross by using four sterile lines and seven restorable lines, analyzed the data of main agronomic and quality characters of parents and combinations, estimated the combining ability of parents, analyzed the heterosis of combinations. The main results were as follows:
     1. Allelism analysis of fertility genes from different sources
     In this research,variance analysis was carried out for the allelism of fertility genes related to four materials of dominant genic male sterile two-type lines in Brassica napus L. from different sources by using classical genetics method including Gd1AB, G8AB, D3AB and G588AB. The experiment results revealed: the four kinds of dominant homozygous two-type lines belonged to the same type in fertility heredity, the sterile restorer gene of the four materials was the non-allelic gene compared with the restorer gene of Polima cytoplasmic male-sterility, they were classified to different fertility restorer system respectively.
     2. Combining ability analysis of agronomic characters
     The general combining ability (GCA) of agronomic characters in four sterile lines was synthetically evaluated, G8AB obtained the highest scores, followed by D3AB, G588AB and Gd1AB. As a result, the order of the GCA of agronomic characters was as followed: G8AB>D3AB>G588AB>Gd1AB. In all 10 agronomic characters, the GCA of plant height, length of main inflorescence, effective length of main inflorescence, the number of pods per plant ,and per-fruit grain number in G8AB was the best, the GCA of the yield per-plant in G8AB was just inferior to D3AB; the order of seven restorers was as followed: 56R>7R>D21R>D1R>91R>16R>SR1. The GCA of length of main inflorescence, effective length of main inflorescence, number of pods per plant, main stem effective fruit number and yield per plant in 56R was the best.
     Compared the relative effects of specific combining ability in twenty-eight hybridized combinations. The combination of the highest specific combining ability in plant height was G588A×16R, in length of main inflorescence was Gd1A×7R, in effective length of main inflorescence was Gd1A×7R, in the number of pods per plant was G588A×7R, in main stem effective fruit number was D3A×91R, in per-fruit length was G8A×7R and in 1000-grain weight was Gd1A×16R; The highest specific combining ability of yield per plant was the combination Gd1A×D21R, followed by G8A×16R, the third was D3A×7R.
     In summary, the parents G8AB and 56R showed the highest general combining ability of agronomic characters. With the specific combining ability of agronomic characters, the former five combinations were D3A×56R, Gd1A×D21R, G8A×56R, D3A×7R and G588A×56R.
     3. Combining ability analysis of quality characters
     In this research, the relative effective value of general combining ability in quality characters was estimated, and the synthetically analysis of the parents was according to the data of relative effective value of GCA. The results showed: about the general combining ability of quality characters, the order of sterilities were as follows: G588AB>D3AB>Gd1AB>G8AB; the order of seven restorable lines were as follows: 7R>91R>56R>D1R>D21R>16R>SR1.
     G588A×16R, D3A×56R and G8A×D1R were the better combinations in specific combining ability of quality characters. The quality edible oil demands low erucic acid, low glucosinolate content and high oil content. The method of directional backcross breeding is frequently used to select new strains in improving the quality of rapeseed. Within the eleven parents involving in this study, the material of dominant genic male sterile two-type lines named D3AB showed low erucic acid and low glucosinolate.The materials of D1R, 91R, 56R, and D21R in restorer lines showed low erucic acid. In conjunction with theoretical analysis and actual production requirements, the best combination of quality characters selected in this study was D3A×56R.
     4. Heterosis comparison of agronomic characters
     The mid-parent heterosis of eight important agronomic characters was analyzed, the results showed: the biggest combination with positive heterosis in plant height was G8A×56R, in length of main inflorescence was G8A×56R, in the number of pods per plant was G588A×56R, in main stem effective fruit number was Gd1A×91R, in per-fruit length was D3A×7R, in per-fruit grain number was Gd1A×D1R, in 1000-grain weight was G8A×56R, in seeds weight of per plant was D3A×7R. Considering the plus mid-parent heterosis of the three yield components factors, including 1000-grain weight, per-fruit grain number and the number of pods per plant, the combination of the highest value was G8A×56R, followed by Gd1A×D1R, the third was G588A×56R.
     The over-parent heterosis of eight important agronomic characters was analyzed, the results exhibited: the biggest advantage of the combination with positive heterosis in plant height was G8A×7R, in length of main inflorescence was G8A×56R, in the number of pods per plant was G588A×56R, in main stem effective fruit number was G8A×56R, in per-fruit length was G588A×D1R, in per-fruit grain number was D3A×56R, in 1000-grain weight was Gd1A×16R, in seeds weight of per plant was D3A×7R. Considering the plus over-parent heterosis of the three yield components factors, including 1000-grain weight, per-fruit grain number and the number of pods per plant, the combination of Gd1A×16R showed the highest value, followed by D3A×56R, the third was G588A×56R. And the largest plus over-parent heterosis in the number of pods per plant was up to 178.3%, in seeds weight of per plant was 167.3%.
     5. Heterosis comparison of quality characters
     Meterosis of the four important quality characters was analyzed. The result were as follows: about the plus mid-parent heterosis and plus over-parent heterosis, both of whose best combination in oil content was GdlA×91R, in oleic acid content was G8A×16R; In regard of the linoleic acid content, the combination about the highest value of plus mid-parent heterosis and the plus over-parent heterosis was Gd1A×DIR and D3A×16R respectively; Also as to the total of glucosinolate content, the best combination was averagely D3A×91R and G588A×D21R.
     The female parents and male parents selected in the research contained a material with low glucosinolate content respectively, named D3A and D21R. The existing of the two parents with low glucosinolate content, was the major reason about the high plus mid-parent heterosis and the plus over-parent heterosis of the combinations in total glucosinolate content.The plus mid-parent heterosis of combination D3A×91R was up to 23.6%, and the plus over-parent heterosis of the combination G588A×D21R reached 310.0%.
     In practice, the combination of low glucosinolate content is expected. The best ideal combination about total of glucosinolate content should be D3A×D21R, which was consisted with the result. The total of glucosinolate content in D3A×D21R was just 17.0μmol/g, but the heterosis of this combination was not distinct. This result demonstrated that it is necessary to do a further research about how to combine the heterosis theory and the practice.
引文
[1] Davenport C B. Degeneration albinism and inbreeding. Science. 1908, 28:454-455
    [2] Bruce A B.The Mendelian theory of heredity and augmentation of vigor. Science. 1910, 32: 627-628
    [3] Jones D E Dominance of linked factors as a means of accounting for heterosis. Proc.Natl.Acid.Sci. USA. 1917,3:310-312
    [4] 裴新澍.数理遗传与育种.上海,上海科学技术出版社,1987,244-267
    [5] Xiao J, Li J, Yuan L Dominance is the major genetics basis in rice as revealed by QTL analysis molecular markers. Genetics.1995, 140: 745-754
    [6] Shull G H. The composition of a field of maize.Am. Breed. Assoc. Rep..1908, 4:296-301
    [7] East E M. Heterosis. Genetics.1936, 21:375-397
    [8] East E M. Inbreeding in corn. Reports of the Connecticut Agricultural Experiment Station far Years 1907-1908.1908,419-428
    [9] Stuber C W. Biochemical and molecular markers in Plant breeding. Plant Breeding Rev.1992,9: 37-61
    [10] Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics.1992, 132:823-839
    [11] 孙其信,倪中福,陈希男,等.冬小麦部分基因杂合性与杂种优势表达.中国农业大学学报.1997,2(1):64,116
    [12] 庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用.中国科学(C辑).2001,31(2):106—113
    [13] Mitchell-Olds T. Interval mappingof viability loci causing heterosis in Arabidoposis.Genetics. 1995,140:1105-1109
    [14] Li,B,Wu R. Genetic causes of heterosis in juvenile aspen:a quantitative comparison across intra-and inter-specific hybfids.Theor.Appl.Genet. 1996,93:380-391
    [15] Power L. An expansion of Jone's theory for explanation of heterosis. Amer Nat, 1944,78: 275-280
    [16] Yu S B,Li J X,Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc.Natl. Acad.Sci.USA. 1997,94:9226-9231
    [17] 余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础.中国科学(C辑).1998,28(4):333-342
    [18] Li Z K, Pinson S R M,Park W D. Epistasis for three grain yield component in rice (Oryza sativaL). Genetics.1997,145:453-465
    [19] Eta-Ndu and Openshaw S J. Epistasis for grain yield in two F2 populations of maize. Crop Sci.. 1999,39:346-352
    [20] Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in dee using advanced backcross progeny. Genetics.2000, 154:885-891
    [21] 华金平.汕优63“永久F2”群体构建及其杂种优势的遗传研究:[博士学位论文].华中农业大学,武汉,2001
    [22] 熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究:[博士学位论文].武汉:华中农业大学,1999
    [23] 鲍文奎.机会与风险—40年育种研究的思考.植物杂志,1990,4:4—5
    [24] Turbin N Y. Genetic principles of plant breeding. (in Russian). Nauka. 1971,112-155
    [25] Turbin N Y. Sbomik "Aktualnie voprisi sovremennoy genetiki". Mosk Univ. 1966, 434-466
    [26] Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast,and nucleus.In:FrankelR(ed),heterosis, reappraisal of theory and practice.Springer Berlin Heidelberg. New York, 1983, 260-286
    [27] 刘泽,赵小庆,汪建来,等.安徽农业科学.2000,28(4):428—429,433
    [28] Thompson K F. Cytoplasmic male sterility in oilseed rapeJ-Ieredity.1972,29:253 -257
    [29] A. Riazl, G. Li, Z. Quresh, M. S. Swati&C. F. Quiros Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding .2001,120:411-416
    [30] Sernyk J L and BR. Stefansson. Heterosis in summer rape (Brassica napus L). Can. J. plant Sci..1983,63:407-413
    [31] 李树林,钱玉秀,尹继春,等.甘蓝型油菜雄性不育两系法杂种优势利用研究.上海农业科学.1984,(5):8—11
    [32] Brandle,J E and P B E McVetty. Geographical diversity and parental selection and heterosis in oilseed rape. Canadian Journal of Plant Sciences.1990,70:935 -940
    [33] Grant I and W. D Beversdorf. Heterosis and combining ability estimates in spring rape(Brasica napus L.). Can. J. Genet. CytoL..1985,27:472-478
    [34] 戚存扣,浦惠明,张洁夫,等.甘蓝型油菜品种间籽粒产量及产量性状杂种优势分析.江苏农业学报.2003,19(3):145—150
    [35] Lefort-Buson and Y Dattee. Genetic study of some agronomic characters in winter oilseed rape (Brassica napus L.)-Ⅰ. Heterosis, Agronomy.1982,2 (4): 315-321
    [36] Lefort-Buson and Y Dattee. Genetic study of some agronomic characters in winter oilseed rape (Brassica napus L.)-Ⅱ.Genetic parameters, Agronomy.1982,2(4):323-332
    [37] 沈金雄,傅廷栋,杨光圣,等.甘蓝型油菜杂种优势及产量性状的遗传改良.中国油料作物学报.2005,7(1):5—9
    [38] 傅廷栋.杂交油菜育种与利用.武汉:湖北科学技术出版社,1994
    [39] 林宝刚,张明龙,张龙.甘蓝型油菜杂种优势和过氧化物酶的关系分析.华北农学报.2005,20(4):36—39
    [40] 张书芬,马朝芝,朱家成,等.油菜杂种后代硫苷和蛋白质含量的表现及其杂种优势分析.华北农学报.2005,20(5):30-33
    [41] 张书芬,傅廷栋,宋文光.甘蓝型油菜单、双低雄性不育杂种的抗逆性研究.华北农学报.1993,(10):15—17
    [42] 杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径-细胞核+细胞质雄性不育.华中农业在学学报.1993,12(4):307-316
    [43] 李加纳,谌利,唐章林,等.油菜细胞核+细胞质雄性不育系选育初报.西南农业大学学报.1994,16(4):403—405
    [44] 刘后利.油菜的遗传与育种.上海:上海科学技术出版社,1985
    [45] 官春云,李恂,王国槐,等.化学杂交剂诱导油菜雄性不育机理的研究Ⅰ.杀雄剂1号对甘蓝型油菜育性的影响.作物学报 1997,23(5):513—521
    [46] 官春云,李恂,王国槐,等.化学杂交剂诱导油菜雄性不育机理的研究Ⅱ.KMS-1对甘蓝型油菜育性的影响.中国油料作物学报.1998,20(3):1-4
    [47] 胡胜武.甘蓝型油菜Brassica napus新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究:[博士学位论文].陕西:西北农林科技大学,2003.10
    [48] 王华,汤小华,赵继献.甘蓝型油菜细胞核雄性不育材料H90s的遗传研究.中国油料作物学报.2001,23(4):11—15
    [49] Methias Regine,A new dominant gene for male sterility in rapeseed Brassica napus L. Z. Pflanzenzichitg. 1985, 94(2) :170-173
    [50] 方智远,孙培田,刘玉梅,等.甘蓝显性雄性不育系的选育及利用.园艺学报.1997,24(3):249-254
    [51] 宋来强,傅廷栋,杨光圣,等.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证.作物学报.2005,31(7):869—875
    [52] 宋来强,傅廷栋,杨光圣,等.甘蓝型油菜显性核不育基因及与恢复基因的等位性分析.中国农业科学.2006,39(3):456—462
    [53] Li S, Y Qian,Z Wu and BR Stefanson.genetic male sterility in rape (Brasssica napus L.) conditioned by interaction of genes at two loci. Can JPlant Sci.. 1988, 68:1115-1118
    [54] 李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海 农业学报.1985,1(2):1-12
    [55] 李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报.1986,2(2):1-8
    [56] 李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报.1987,3(2):1-8
    [57] 李树林,周熙荣,周志强.显性核不育油菜的遗传与利用.作物研究.1990,4(3):27—32
    [58] Wang Tongqiang,Huang Zesu,Tian Zhuping,et al,Genetic analysis of stefifity of Brassica napus cv.Qianyou 2AB, Edited by LiuHouli and FuTingdong,Proceedings of international symposium on rapeseed science.Science Press, New York,2001:117-121
    [59] 黄泽素,王通强,魏忠芬,等.甘蓝型双低油菜细胞核雄性不育系黔油2AB育性遗传研究.种子.2000,(1):15-17
    [60] 田筑萍,王通强,黄泽素,等.甘蓝型双低油菜新不育系黔油2AB特征特性研究.种子.1999 (增刊):63—64
    [61] 王通强,田筑萍,黄泽素,等.甘蓝型双低油菜细胞核显性雄性不育系黔油2AB的选育.贵州农业科学.1999,27(5):14—18
    [62] Hu Shengwu, Yu Chengyu, Zhao Huixian.The discovery of a new kind of male sterility accession in Brassica napus Land a primary study. Acta Agriculturae Boreali-Occidentalis Sinica. 2000,9 (3):90-94
    [63] Hu Shengwu,Yu Chengyu, Zhao Huixian ,et al, The Discovery of a new kind of male sterility accession "Shaan-GMS"in Brassica napus Land genetic study.Edited by Liu Houli and Fu Tingdong, Proceedings of international symposium on rapeseed science. Science Press, New York,2001:11-116
    [64] 胡胜武,于澄宇,赵会贤,等.甘蓝型油菜新型不育材料Shaan-GMS的遗传研究.西北植物学报.1999,19(6):63—67
    [65] 王瑞,李加纳,唐章林,等.显性核不育油菜圆叶纯合两型系Gd1AB的选育.中国农业通报.2005,21(11):174—175
    [66] 刘定富.植物显性核不育遗传的理论探讨,遗传 1992,14(6):31-36
    [67] 董振生,刘创社,景军胜,等.白菜型油菜双显性核不育896AB恢复系基因型的鉴定.作物学报.1999,25(2):193—198
    [68] 方智远,孙培田,刘玉梅,等.甘蓝显性雄性不育系的选育及利用.园艺学报.1997,24(3):249-254
    [69] 王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报.1992,1(1):37—40
    [70] 张书芳,宋兆华,赵雪云.大白菜核基因互作雄性不育系选育及应用模式.园艺学报.1990,17(2):117—125
    [71] 张书芳;赵雪云,周帮福.大白菜核基因互作雄性不育系91-5A遗传机制初探.园艺学报.1994,24(3):249-254
    [72] 罗鸿源.杂交油菜选育研究Ⅰ.S445A核不育两用系的选育,贵州农业科学.1992,(5):1-3
    [73] Chowdhury JB and Das K. Male sterility in Brown sarson, Indian J Genet Plant Breed. 1967,27:284-288
    [74] Das K and Pandey PD. Male sterility in brown sarson, Indian J Plant Breed. 1961,21:185-190
    [75] Takagi Y. Monogenic recessive male sterility in rapeseed (Brassica napes L.) induced by gamma irradiation. Z Pflanzenzuchtg. 1970,64:242-247
    [76] Zubed MI and Zuberi S. Inheritance of male sterility in Brassica campestris var. toria. Indian J Genet Plant Breed. 1983.43:438-440
    [77] 潘涛,曾凡亚,吴书惑,等.低芥酸油菜雄性不育两用系的选育与利用研究.中国油料.1988,(3):5-8
    [78] 侯国佐,王华,张瑞茂,等.甘蓝型油菜细胞孩不育材料117AB的遗传研究.中国油料 1990,(2):7-10
    [79] 孙超才,方光华,赵华,等.甘蓝型油菜(Brassica napus L.)隐性核不育两型系22118AB的基因型分析及利用途径探讨.上海农业学报.1997,13(1):11-15
    [80] 陈凤祥,胡宝成,李强生,等.细胞核不育材料9012A的发现与初步遗传,见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊).1993:20-25
    [81] 陈凤祥,胡宝成,李成,等.甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功.中国农业科学.1995,28(5):94-95
    [82] 陈凤祥,胡宝成,李成,等,甘蓝型油菜细胞核雄性不育的遗传研究.Ⅰ.隐性核不育系9012A的遗传,作物学报.1998,24(4):431-438
    [83] 孙超才,赵华,王伟荣,等.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨.中国油料作物学报.2002,24(4):1-4
    [84] 张辉,丁维.显性核不育亚麻在育种上的应用研究初报.华北农学报.1996,11(2):38-42
    [85] 胡胜武.甘蓝型油菜Brassica napus新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究:[博士学位论文].陕西:西北农林科技大学,2003.7
    [86] 龚仁才.甘蓝型油菜(Brassica napus L)细胞核雄性不育杂种中杂3号的选育和分析.作物研究.1990,4(3):5-8
    [87] 董云麟,石华鹃,杜禾.甘蓝型油菜核不育杂交油菜川油15的选育.中国作物学会油料作物专业委员会编,迎接21世纪的中国油料科技.北京:中国农业科学技术出版社,2002:228—230
    [88] Sorrells ME,Fritz SE.Application of a dominant male—sterility allele to the improvement of self-pollinated crops. Crop Sci..1982, 22:1033-1035
    [89] 周永明,吴江生.甘蓝型油菜轮回选择研究,Ⅱ.基础群体的合成和选择效果的初步评价.华中农业大学学报.1995,14(1):26-32
    [90] 周永明,吴江生,魏泽兰等.甘蓝型油菜轮回选择研究,Ⅲ.S,家系及后代选系的产孟和抗性鉴定.华中农业大学学报.1996,15(4):322-327
    [91] 周永明.甘蓝型油菜轮回选择研究,Ⅰ.向不同细胞质来源的基因型中导入显性核不育基因.作物学报.1993,19(1):70-76
    [92] Yang Guangsheng, Fu Tingdong, Ma Chaozhi, Yang Xiaoniu. Establishment of a random mating population of polima cytoplasmic male sterility restorers in Brassica napus. Plant Breeding. 1996, 116:184-192
    [93] 杨光圣,傅廷栋,马朝芝,等.甘蓝型油菜波里马细胞质雄性不育恢复系轮回选择群体的建立.华中农业大学学报.1996,15(4):316-321
    [94] 盛志廉,陈瑶生.数量遗传学.北京,科学出版社,1999,324
    [95] 黄泽素,杨晓容,王通强,等.甘蓝型杂交油菜亲本配合力和遗传力分析.种子.2004,23(12):12-15
    [96] 胡胜武,赵惠贤.甘蓝型油菜显性核不育材料Shan-Gms纯合两用型系803AB的选育.西北植物学报.2002,11(4):25-27
    [97] 王道杰,田建华.油菜单显性核不育及其不育基因的RAPD标记.西北植物学报.2003,23(9):1556-1560
    [98] 王伟荣,刘洪军,方光华,等.五个甘蓝型油菜品种(系)的杂种优势和配合力分析.上海农业学报.1999,15(2):45—50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700