Mo-V-Ti-N微合金钢的焊接脆化倾向及其抑制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为了研究低碳Mo-V-Ti-N微合金结构钢的焊接脆化倾向及其抑制方法,制备了典型增N(120ppm)、单独加B(12ppm)及N + B(210ppm+17ppm)复合添加等三种试验钢,并采用Gleeble3500热模拟机制备了各试验钢在不同t8/5(6~100s)下的模拟粗晶热影响区(CGHAZ)样品。针对各样品,观察了光学显微组织,统计了各组织形态参量;观察了马氏体-奥氏体(M-A)组元脆性相的透射(TEM)结构;测试了M-A及附近基体的纳米压痕硬度;测试了-20℃的V型缺口(CVN)试样的冲击功,观察了扫描(SEM)断口和二次裂纹形貌。
     结果表明,在Mo-V-Ti-N钢的各CGHAZ中均形成了含M-A的多相组织。其微观结构、硬度和断裂特征随t8/5增加的变化趋势是:贝氏体铁素体(BF)和针状铁素体(AF)的数量减少,先共析铁素体(PF)的数量增多;M-A的形态从条状向块状演化、尺寸增大、弥散度降低,其内部结构从板条马氏体+残余奥氏体向孪晶马氏体演化,与附近基体的硬度差增加;CVN冲击功降低,断口形貌从韧窝塑性断裂向准解理脆性断裂演化。另外,在Mo-V-Ti-N钢中添加微量的硼,在各t8/5下的CGHAZ中均可通过抑制PF的转变,促进针状铁素体和粒状贝氏体的形成,使M-A的含量降低、尺寸减小、弥散度提高,冲击韧性改善。因此,Mo-V-Ti-N钢的焊接脆化倾向取决于CGHAZ中含M-A组元的多相组织的微观结构和微观硬度特征,抑制方法是采用小线能量焊接或在钢中添加微量的硼。
In this work, to investigate the brittleness susceptibility and metallurgical methods to depress it in the welding-induced coarse grain heat-affected zone (CGHAZ) of a low carbon Mo-V-Ti-N microalloyed structural steel, three experimental steels representing typical addition of N (120ppm), single addition of B (12ppm) and dual addition of N and B (210ppm+17ppm), respectively were prepared, by which the relevant CGHAZ samples simulated under different t8/5(6-100s, referring to the time interval for cooling from 800oC to 500oC ) were made using a Gleeble simulator. Their microstructures were examined quantitatively and the substructure of martensite-austenite constituents (M-A) as a second brittle phase was emphasized by transmission electron microscope (TEM) observation. The role of micromechanical aspects of M-A and its neighboring matrix phase in controlling the brittleness was also evaluated by the nanoindentation hardness measurements. The Charpy-V-Notch (CVN) impacts were additionally performed on each simulated CGHAZ at -20℃, and the fracture mode was revealed by scanning electron microscope (SEM) observations of the morphology of fractured surfaces and secondary cracking in sections perpendicular to them.
     It is shown that the M-A contained multi-phases microstructure formed in all the CGHAZs but in different morphologies. With the increasing t8/5, the amount of proeutectoid ferrite (PF) increased significantly at an expense of bainitic ferrite (BF) and acicular ferrite (AF). As a result, the densely distributed flaky M-A was gradually replaced by the more isolated massive M-A, which is accompanied with an increase in size and a change in substructure of M-A from the lath to the twin. The difference of nanohardness between the M-A constituents and the neighboring matrix was also evidenced to increase markedly with the increasing t8/5. Moreover, an increase in t8/5 causes the CVN impact energy of simuated CGHAZ to decrease and the fracture mode to change from dimple plastic fracture to quasi-cleavage brittle rupture, On the other hand, it is indicated that a trace addition of boron into the Mo-V-Ti-N steel resulted in a decreased fraction and size as well as a denser distribution of M-A by suppressing the transformation of PF in the CGHAZ obtained at each t8/5. The CVN toughness of CGHAZ was therefore significantly improved. With all the above results considered, the brittleness susceptibility in the CGHAZs of the Mo-V-Ti-N steel can be attributed to their microstructural and micromechanical features and as a metallurgical method to depress it, a relatively low heat input for welding process or a trace addition of boron in the steel is recommended.
引文
1.曾小平.浅谈钢的微合金化.天津冶金, 2006, (3), 3-6
    2.齐俊杰,黄运华,张跃.微合金化钢.北京:冶金工业出版社, 2006: 61-63
    3.曹荫之,付俊岩.中国含钒低、微合金化钢的开发与前景.中信金属公司内部资料.
    4.杨才福,张永权.钒氮微合金化技术在HSLA钢中的应用.钢铁, 2002, 37(11): 42-47
    5.张文铖.焊接冶金学基本原理.天津大学:机械工业出版社, 1995: 195-202
    6. S. Zzjac, T. Siwecki, B. Hutchinson, etal. Weldability of highNitrogen Ti-V microalloyed eteel plates processed via thermomechanical controlled rolling. Swedish: Institute fuo Metals Research, Internal Report IM-2764, 1991
    7. S. Zzjac, T. Siwecki, and L. E. Svensson. The influence plate production processing routr, heat input and nitrogen on the toughness in Ti-V microalloyed steel, intern. symp. on low carbon steel ar material week 93,Pittsburgh,USA,Ed.by A. J. DeArdo, TSM,(1993),pp.511-523.
    8. A.Lambert, J. Drillet, A. F. Gourues, etal. Microstructure of M–A constituent in HAZ of HSLA steel welds in relation with toughness properties. Sci. Technol. Welding Joining, 2000, 5(2): 1-13
    9. M. Akselsen, Q. Grong, J. K. Solberg. Effects of M–A islands on intercritical HAZ of low carbon microalloyed steels. Scand. J. Metall, 1988, 17(194)
    10. N. Yurioka. Impact of welding research on steel composition development, in: Proceedings of the IIW Congress on Welding Research, 1984
    11.柴锋,杨才福,张永权等.焊接热循环对含铜时效钢HAZ组织与力学性能的影响.焊接学报, 2006, 27(10): 109-112
    12. M. P. Staiger, B. Jessop., P. D. Hodgson etal. Effect of nitrogen on formation of martensite-austenite constituent in low carbon steels. ISIJ International, 1999, 39(2): 183-190
    13.高惠临,董玉华,冯耀荣.油、气管线钢的焊接局部脆化及其预防.机械工程学报, 2001, 37(3): 14-19
    14.荆洪阳,霍立兴,张玉凤等.马氏体-奥氏体组元形态对高强钢焊接热影响区韧性的影响.机械工程学报, 1995, 31(6): 102-106.
    15. E. Bayraktar, D. Kaplan. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions. Materials Processing Technology, 2004, (153-154): 87-92
    16. E. Bonneviea, G. Ferrierea, A. Ikhlefa, etal. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels. Materials Science and Engineering, 2004, (385): 352-358
    17.张德勤.微合金钢焊缝金属中针状铁素体形成机理研究.学位论文,天津大学, 2000
    18.张文钺.焊接物理冶金.天津:天津人民出版社,1991
    19.方鸿生,白秉哲,郑秀华等.金属学报, 1986, 22(4): A283-288
    20.白秉哲,方鸿生.金属热处理学报, 1984, 5(2): 15-34
    21.方鸿生,白秉哲,邓海金等. .机械工程材料, 1981, 5(2): 5-11
    22.方鸿生,白秉哲,邓海金,赵如发,郑燕康.金属热处理学报.1982,3(2):76-90
    23. H. Ikawa, H. Oshige, T. Tanoue. Effect of Martensite-Austenite Constituent on HAZ Thoughness of a High Strength Steel. Transactions of the Japan Welding Society, 1980, 11(2): 3-12
    24.赵琳.新一代超低碳贝氏体钢激光焊接及其焊接性的研究.北京:清华大学, 2004, 68-77
    25. H Adrianet al , Material Science and Technology, 1991 , 7(2) : 176
    26. Y. Kasamatus, S. Takashima, T. Hosoya. Influence of martensite-austenite constituent on thoughness of heat-affectedzone of high-strength weldable structural steel. The Iron and Steel Institute of Japan, 1979, 8: 1222-1231
    27.赵琳,张旭东,陈武住.激光焊接800MPa级RPC钢接头组织特征.应用激光, 2004, 24(6): 371-374
    28. Y. W. Shi, Z. X. Han. Effect of weld thermal cycle on micostructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel. Journal of materials processing technology, 2008, (207):30-39
    29. E. Bonnevie, G. Ferriere, A. Ikhlef etal. Morphological aspects of martensite–austenite constituents in intercritical and coarse grain heat affected zones of structural steels. Materials Science and Engineering A, 2004, 385(1-2): 352-358
    30. Y. Komizo, Y. Fukada. CTOD properties and M-A constituent in the HAZ of C-Mn microalloyed steel. Japan Welding Society, 1988, 6(1): 41-46
    31. T. Kawanaka, Curr. Adv. Mater. Proc., ISIJ 8 (1995) 781.
    32. R. Taillard, P. Verrier, T. Maurickx, Suppl′ement du Journal du Physique III 6 1996, 245-254.
    33.荆洪阳,霍立兴,张玉凤.铌对高强钢焊接热影响区中马氏体-奥氏体组元形态的影响.焊接学报, 1997, 18(1): 37-42
    34.徐学利,辛希贤,石凯等.焊接热循环对X80管线岗粗晶热影响区韧性和组织的影响.焊接学报, 2005, 26(8): 69-72
    35.柴锋,杨才福,张永权等.粒状贝氏体超低碳含铜时效钢粗晶热影响区冲击韧性的影响.钢铁研究学报, 2005, 17(1):42-46
    36. S. Lee, B. C. Kim, D. Kwon. Fracture toughness analysis of heat-affected zones in high-strength low-alloyed steel welds . Metall Trans, 1993, 24A: 2803.
    37.李亚江,邹增大,吴会强等. HQ130钢热影响区的ICHAZ区组织性能.焊接学报, 2001, 22(2): 54-58
    38.荆洪阳.局部硬化区周围的应力应变特性对HAZ断裂行为的影响.材料研究学报, 1996,10(1): 7-12
    39. H. Jing, L. Huo etal. Effect of local hard zone on fracture initiation of weld HAZ. Transactions of Timajin uni. 1995, 1(1): 31-36
    40.荆洪阳,霍立兴,张玉风.铌对高强钢热影响区中M-A组元形态的影响.焊接学报, 1997, 18(1): 37-41
    41. Dewei Tian, L. P. Karjalainen, B. Qian etal.. Cleavage fracture model for granular bainite in simulated coarse-grained heat-affected zones of high-strength low-alloyed steels. JSME International Journal, Series A, 1997, 40(2): 179-188
    42.荆洪阳.非均质材料的应力应变特性及其在材料设计中的应用.天津:天津大学, 1993
    43.储武扬,断裂与环境断裂,科学出版社, 200:19-40
    44.渡边健彦等.溶接学会论文集, 1983, 1-1, 37-44
    45.艾宝瑞等.组织结构对Mn-Mo-Nb-B钢SR裂纹敏感性的影响,北京钢铁研究总院研究报, 1981, 10
    46. S. Aihara. Preprints International Conf. on the metallurgy welding and qualification of microalloyed (HSLA) steel weldments. Houston, Texas, USA, Nov, 1990, (6-8): 40l
    47. J. H. Chen, Y. Kikuta, T. Araki etal. Micr-fracture Behavior Induced b M-A Constituent in welding HAZ HT80 steel. Acta Metall, 1984, 32(6): 1779-1788
    48. Hrivak, F. Matsuda. Proceedings of the international Welding Conference, Kosice, Slovokia: Technical Uiversity of Kosice Press, 1996: 55
    49. E. Bayraktar, D. Kaplan. J Mate Proce Tech 153-154 (2004) 87-92
    50. Jang J, Ju JB, Lee BW, Kwon D, Kim WS, Mat Sci Eng 2003; A340: 68
    51.杨善武,王学敏,贺信莱.超低碳钢在铁素体生长过程中硼分布的变化.钢铁研究学报, 1999, 11(4): 39-43
    52.付俊岩,尚成嘉.如何用铌改善钢的性能.冶金工业出版社, 2007: 41-42
    53.袁辉,李永东,陈伟庆.低碳含硼钢的开发历史及发展现状.首钢科技, 2005, (6): 21-23
    54. R. M. Ale, J. M. A. Rebello and J. Charlier. A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel, Materials characterization, 1996, (37): 89-93
    55. W. C. Oliver., G. M, Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Mater. Res, 1992, (7):1564-1583
    56. Durst, , B. Backes, O. Franke etal. Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006, (54): 2547-2555
    57. M. F. Doerner, W. D. Nix. Amethod for interpreting the data fromdepth-sensing indentation instruments. Mater. Res, 1986, (1): 601–609
    58.程东,严志军,严立.原子尺度的纳米压痕模拟技术.武汉理工大学学报, 2005,29(3): 396-399
    59.张明星.粒状贝氏体和粒状组织强韧化机理的研究.兵器材料科学与工程, 1992, 15(6): 27-33
    60. H. Okada, K. Ikeuchi, Fukuhisa etal. Metallographic investigation of M-A constituent-toughness deterioration and its improvement of weld HAZ with high heat inputs in 780 and 980 MPa class HSLA steels (Report 2). Japan Welding Society, 1994, 12(2): 236-242
    61.李智超.先共析铁素体对粒状贝氏体性能的影响.热加工工艺, 1992, (2): 3-5
    62. M. R. Krishnadev, R. Ghosh. Low temperature mechanical behavior of an acicular ferrite in line pipe steel. Metall Trans A, 1979 , 10(12): 19412-1944
    63. T. TANAKA. Controlled rolling of steel. Int MetRev, 1981, 264 (4): 185-212
    64. P. Bandstra, D. A. Koss, A. Geltmacher etal. Everett, Mat. Sci. Eng. A, 2004, (366): 269-281
    65. J. Wen, Y. Huang, K. C. Hwang etal. Int.. Plast, 2005, (21): 381-395
    66. D. Broek, Eng. Fract. Mech. 5 (1973) 55-60
    67. G. Z. Wang, Y. L. Wang, F. Z. Xuan, etal. Int. J. Press. vessels and piping, 85 (2008) 720-727.
    68. G. Mendiratta, R. L. Goetz, D. M. Dimiduk. Metall. Mater. Trans. A 27A (1996) 3903-12
    69. G. Z. Wang, J. H. Chen, Int. J. Fract. 89 (1998) 269-84
    70. D. A. Curry, J. F. Knott, Mater Sci (1978) (11) 511-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700