100kg级高强煤机用钢TMCP工艺和组织特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,国外长期使用的100kg级高强钢板一般采用高合金化、淬火加高温回火调质热处理的工艺制造。为增加钢的淬透性,必须向钢中加入大量的Cr、Mo、Ni、Cu等贵重合金元素;同时调质高强钢的热处理工艺复杂,在成本、能耗等方面缺乏优势。本文采用TMCP技术开发100kg级高强钢板,不仅在合金成本、生产工艺上具有极大优势,而且符合当前冶金行业“节能降耗”的总体发展趋势。通过研究不同TMCP工艺下实验钢的微观组织、第二相粒子析出和位错强化等规律,优化最佳的生产工艺,为工业化大生产提供必要的指导。论文的主要工作如下:
     (1)采用单道次压缩实验,研究了冷却速度和驰豫对组织的影响。结果表明,冷却速度在0.5℃/s~20℃/s范围内都有贝氏体组织生成。当冷却速度小于10℃/s时,主要为粒状贝氏体组织;当冷却速度为20℃/s时,以下贝氏体组织为主,出现不规则形状的M/A岛和少量板条贝氏体。冷却速度为30℃/s时,为贝氏体和马氏体的混合组织,M/A组元细小且分散。
     (2)通过实验室热轧实验,研究了精轧温度、终轧温度、冷却速度以及热处理等工艺对实验钢组织和性能的影响。结果表明,100kg高强钢的控轧控冷最佳工艺参数为:(a)加热温度1200℃;(b)采用两阶段控轧,一阶段开轧温度1050~1100℃,二阶段开轧温度820~890℃;(c)轧后快冷,终冷温度在200~300℃,冷速30~50℃/s。
     (3)扫描、透射、复型等精细组织分析表明,变形后驰豫一定时间有利于微合金元素的析出。随着驰豫时间的延长,析出物逐渐增多,且弥散化程度提高。驰豫过程中析出物有两类,一类为尺寸在50~100nm之间的Nb、Ti析出物,呈方形;另一类为细小弥散分布尺寸小于10nm的Nb析出物,呈小椭圆形。大量的弥散析出物钉扎在晶粒内部的位错线上,有利于析出强化和冲击韧性的提高。
     (4)设计了不同温度的回火实验,研究了回火温度对实验钢组织和性能的影响。结果表明,轧态钢板组织为典型贝氏体和马氏体板条,板条内部含有高密度的位错,板条界面为残余奥氏体或薄膜状碳化物;回火温度较低时,与轧态组织相似;随着回火温度的升高,贝氏体板条逐渐合并,开始有碳化物析出;回火温度超过600℃时,碳化物在板条界内界外大量析出,板条界退化、消失,钢板强度大幅降低。
All of these days,100kg Grade high Strength Steel used beyond the seas have been produced under the conditions that high alloying and quenching and tempering.To improve hardenability,lots of alloying agent such as Cr,Mo,Ni,Cu were plunged into the steel;at the same time,Technology for Heating Processing of the quenched and tempered steel was complicated,so it was not superior at cost and Energy consumption.This paper exploits 100kg Grade high Strength Steel under TMCP conditions,not only having the dominant position at the alloyed cost and process,but also conforming to the tendency to save energy lower energy consumption and reduce pollutants discharge in Metallurgy industry.The paper study the microstructure,the second phase particle precipitating,dislocations strengthening in different TMCP conditions to optimize the technological condition for lager industrialized production.
     The main works involved as follows:
     (1) When single press test is taken,the influence of the colling rate and relaxation are researched,The results show that bainite is to take shape among 0.5℃/s~20℃/s.The microstructure is mainly granular bainite when the colling rate is less than 10℃/s;when the colling rate is 20℃/s,the microstructure is mainly acicular ferrite,granular bainite,and irregular M/A and fewer lath bainite.when 20℃/s,the microstructure is bainite and martensite,and the M/A is minute and dispersive.
     (2) The controlled rolling and controlled cooling test in experiment were carried out,the effect of finish rolling temperature,cooling rate and heat treatment process on the microstructure and mechanical properties of tested were studied.The results show that the recommended processing parameters for industrial production are:(1) the reheating temperature is 1200℃;(2) two stages controlled rolling is adopted,in which the first stage rolling started at 1050~1100℃and the second stage rolling started at 820~890℃;(3) rapid cooling after final rolling,finish cooling temperature is 200~300℃,cooling rate is 30~50℃/s.
     (3) The transmission electron microscope,scanning electron microscope and replica method were used to study the fine microstructure.The results show that relaxing for different time afte deformation was useful to the grain refining.With the time passed,the quantity of educts and level of dispersion were gradually increased.There were two kinds of educts,the one was square that was educt with Nb/Ti and the size was between 50nm and 100nm;the other was small ellipse that was educt with Nb and the size was less than 10nm.Lots of disperse educts anchored dislocation in grain,and they were not be different from the tradition in grain boundary.so precipitation strength were obvious.
     (4) Different temperature tempering test were carred out to study the tempering temperature on the microstructure and mechanical properties.The results show that the microstructure as rolled were typical lath bainite and martensite,and in the lath were high density dislocation,between the lath interface were residual austenite;After tempering the width of laths were gradually widened;with tempering temperature ascending,there were educts in/out the martensite lath;when the tempering temperature was above 600℃,the educts were abundantly precipitate and the laths were broken down,so the strength was reduced.
引文
[1]王祖滨,宋青.世纪之交看低合金高强度钢的发展[J].钢铁,2001,36(9):66
    [2]HE Xin-lai,SHANG Cheng-jia,HOU Hua-xin,etal.The Development of 600MPa~800MPa Grade High Strength Low Carbon Bainite Steel[A].The Chinese Society for Metals.HSLA Steels 2005[C].Sanya,China:The Chinese Society forMetals,2005.982104.
    [3]韩孝永.超低碳贝氏体钢生产概述[J].四川冶金,南京,宝钢集团梅钢技术中心,2006,12(28):6.
    [4]孙德勤,吴春京,谢建新.贝氏体钢的研究开发现状与发展前景探讨[J].机械工程材料,2003,27(6):4
    [5]赵捷,王志奇,李建平.低碳粒状贝氏体钢强韧化机理的探讨[J].天津理工学院学报,2000,16(1):11-15.
    [6]C.I.Gareia,A.K.Lis,S.M.Pytel.Ultra-low Carbon bainitie Platsteels:Proeessing,mierostructureand ProPerties.155 Transactions,1992(13):103-112
    [7]HaruyoshiSuzuki.Weld ability of modern structural steels.Weldingin the World,1982,20(7/8):121-47
    [8]W.C.Lesile,R.J.Sober,S.G.Babeoek,et.Plastie flow in binary Substitutional alloysof BCC iron-effeetsofstrainrate,temPeratureand alloyeontent.Trans,ASM,1969(62):690-710
    [9]H.Nakasugi,H.Matsuda,H.Tamahiro.DeveloPment of Ultra-Low-Carbon Bainitie Steel for Large-DiameterLinePIPe Proceedings-Alloys for the Eighties.ClimaxMolybdenum ComPany,Greenwich,1980.213-224
    [10]吴健鹏,王志明,姚海涛,控制轧制技术的新进展-低碳贝氏体钢[J],宽厚板,2006.6(6):5-11
    [11]贺信来,尚成嘉,杨善武等.高性能低碳贝氏体钢[M].冶金工业出版社,北京,2008.
    [12]李纪委,刘庆锁,超低碳贝氏体钢的研究现状[J].天津理工大学学报.2008.2(24):1
    [13]马成勇,田志凌,杜则峪等,超低碳贝氏体钢及其焊接特性[J],钢铁,2002,37(6):68-73
    [14]上田修三.结构钢的焊接-低合金钢的性能及冶金学[M].荆洪阳译.北京:冶金工业出版社,2004.
    [15]陈忠伟,张玉柱,杨林浩.低碳贝氏体钢的研究现状与发展前景[J].材料导报.2006,10(24):10
    [16]方鸿生,郑燕康,黄进峰.我国贝氏体钢的前景[J].金属热处理,1998,(7):11
    [17]Jahazi M,Egbali B.The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel[J].Journal of Materials Processing Technology,2000,103:276-279.
    [18]KogasuI.State of the Art in Microalloyed Plate Production[A].Iron and Steel Society.Microalloying'95[C].Pittsburgh:Iron and Steel Society,1995.35248.
    [19]张明星,康沫狂,周鹿宾.Si-Mn-Mo系低碳贝氏体钢的力学性能与化学成分的关系[J].钢铁,1992,27(12):46-51.
    [20]尚成嘉,杨善武,袁逸等,800MPa级超低碳微合金复合组织钢的工艺,性能及组织结构研究,新一代钢铁材料重大基础研究论文集(上册),北京,北京科技大学,2000,151-157
    [21]王占学.控制轧制与控制冷却[M].冶金工业出版社,1988.
    [22]王有铭,李曼云,韦光·钢材的控制轧制和控制冷却[M],北京:冶金工业出版社,1995.
    [23]许长金.钟成芬·厚板的控制轧制和控制冷却[J].鞍钢技术,1995,9:11-18
    [24]K.Inoue,N.Ishikawa,H.Ohtani and K.Ishida.Calculation of Phase Equilibria between Austenite and(Nb,Ti,V)(C,N) in Microalloyed Steels[J],2001,41:175-182.
    [25]石黑康英,村山尚志,千野淳等,Ti添加钢における析出物高精度分析[J],铁と钢,1997,83:298-304.
    [26](日)小指军夫著,李伏桃等译.控制轧制·控制冷却——改善材质的轧制[M],北京:冶金工业出版社,2002,6.
    [27]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].冶金工业出版社,1996.
    [28]田村今男.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1992.
    [29]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],东北大学博士学位论文,2003,38-58,81-104.
    [30]Pejavar,Aswath.Effect of accelerated cooling on the mechanical properties and microstructure of low carbon microalloyed steel.International Symposium on Low-Carbon Steels for the 90's[J],1993:265-271.
    [31]余汉松.CSP低碳奥氏体连续冷却转变及冷变形特征的研究[D],中国学位论文全文数据库,TG142.25,2007.5.
    [32]李承基.贝氏体相变理论[M],北京:机械工业出版社,1989,27
    [33]M.Keiichietal.Deformation-enhanced Magnetic Alignment of Microstructures in Steels[J],CAMP-ISIJ,2000,13:481.
    [34]杜林秀,刘东升,刘相华,王国栋.低碳钢应变诱导相变区变形行为的研究[C].新一代钢铁材料重大基础研究论文集(上册),2000,6:102-105.
    [35]陈铭谟.贝氏体的转变机制和高强贝氏体钢设计[M],北京:国防工业出版社,1989,62-63
    [36]齐俊杰,杨王玥,孙祖庆.低碳钢过冷奥氏体形变过程超细铁素体的形成[J].金属学报,2002,38(9):898-902.
    [37]杨王玥,胡安民,齐俊杰,孙祖庆.低碳钢多道次热变形中的应变强化相变及铁素体动态再结晶[J].金属学报,2000,36(11):1192-1196.
    [38]张红梅.低碳钢α→α相变形为及铁素体晶粒细化机制的研究[D].东北大学博士学位论文,2001.
    [39]A.Yoshitakaetal.Ferrite Grain Size Refinement by Heavy Deformation during Accelerated Cooling in Low Carbon Steel[J],铁と钢,1999,85:50-56.
    [40]A.Yoshitakaetal.Effect of Composition on Ultra-fine Grain Refinement by Heavy Deformation during Accelerated cooling[J],CAMP-ISIJ,1999,12:1123.
    [41]A.Yoshitakaetal.Creation of Ultra-fine Ferrite Grain Steels by Heavy Deformation after Rapid Cooling and Deformation Temperature-dependence of Deformation Structure in Austenite[J].1999,12(6):1123.
    [42]N.Tsuneaki etal.Effect of Composition on Ultra-fine Grain Refinement by Heaby Deformation during Accelerated Cooling[J].Camp-ISIJ,1999,12(3):1123.
    [43]C.Senuma,M.Kameda,M.Suehiro.Influence of Hot Rolling and Cooling Conditions on The Grain Refinement of Hot Rolled Extra-low Carbon Steel Bands[J].ISIJ International,1998,38(6):587-594.
    [44]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J],金属学报,2000,36(10):1050.
    [45]D.H.Shin,B.C.Kim,Y.S.Kim and K.T.Park.Microstructural Evolution in a Commercial low Carbon Steel by Equal Channel Angular Pressing[J],Acta mater,2000,48:2247-2255.
    [46]S.Torizuka,T.Inoue and K.Nagai.Uniform Formation of Fine Ferrite Structure through Multi-directional Deformation[J],Tetsu-to-Hagane,2000,86:17-22.
    [47]王学敏,尚成嘉,杨善武等.组织细化的控制相变技术机理研究[J].金属学报,2002,38(6):661-666.
    [48]尚成嘉,王学敏,杨善武,等.高强度低碳贝氏体钢的工艺与组织细化[J].金属学 报,2003,39(10):1019-1024.
    [49]王昭东,曲锦波,刘相华,王国栋.应用控轧控冷工艺开发低碳贝氏体高强钢板[J].宽厚板.轧制技术及连轧自动化国家重点实验室.1998,5:15-20.
    [50]王学敏,周桂峰,杨善武等,不同Cu含量超低碳钢的时效行为,金属学报,2000,36(2):113-119.
    [51]朱丽慧,赵欣新,顾海澄等,关于钢中铜合金化的再认识,钢铁,1999,34(3):71-75.
    [52]任慧平,毛卫民,铜单一元素合金化热轧钢板的组织与性能.北京科技大学学报,1999,10(2):548-551.
    [53]任慧平,王玉峰,李文学,铜在高纯净钢中析出过程的观察.包头钢铁学院学报,2002,21(2):147-149.
    [54]S.S.Ghasmi Banadkouki,D.Yu,D.P.Dunne.Age Hardening in a Cu-Bearing High Strength Low Alloy Steel.ISIJ International,1996,36(1):61-67.
    [55]雍岐龙,郑鲁.微合金化钢中NbC在铁素体中的沉淀和沉淀强化[J],金属学报,1984,20(1):12-14.
    [56]赵运堂,尚成嘉,贺信莱,等.低碳Mo-Cu-Nb-B系微合金钢的中温转变组织类型[J].金属学报,2006,42(1):54-58.
    [57]徐曼,孙新军.低碳含钒钢组织变化及V(C、N)析出规律[J],钢铁钒钛,2005,26(2):25-30.
    [57]H.Tohruetal.Formation of fine Ferrite Structure from a Martenistic Structure through the multi-pass Warm Deformation Direction Change and Annealing[J],CAMP-ISIJ,1998,11:566.
    [59]武会宾,尚成嘉,赵运堂等.回火对低碳贝氏体钢组织稳定性及力学性能的影响[J],2005,北京科技大学材料科学与工程学院,0449-749X(2005)03-0062-04.
    [60]李灿明,王建景,闫志华.国内工程机械用钢发展现状和市场预测[J].山东冶金.2008.10(30):5
    [61]杨才福,张永权.第三代TMCP技术在中厚板产品中的应用[A].中国金属学会低合金钢学术委员会.2003年全国中厚钢板技术交流会论文集[C].北京:中国金属学会低合金钢学术委员会,2003.32238.
    [62]翁宇庆等.超细晶钢-钢的组织细化理论与控制轧制技术[M].北京:冶金工业出版社,2003,557-593.
    [63]汪美蔷,贺信莱,Cu-B系超低碳贝氏体钢中贝氏体组织形态探讨,钢铁,1997,32(6):46-50
    [64]于蕾.高强度低碳贝氏体钢JG700的轧制工艺与组织性能研究[D].中国学位论文全 文数据库,TG335.1,TG142.2006.10
    [65]杨善武,尚成嘉,王学敏,等.组织超细化新工艺-驰豫析出控制相变技术,2001中国钢铁年会论文集,北京:冶金工业出版社,2001,887-890.
    [66]方鸿生,刘东雨,徐平光,等.贝氏体钢的强韧化途径[J].机械工程材料,2001,25(6):1-5.
    [67]王国栋,刘相华,李维娟等.超级Super-SS400钢的工业轧制实验[J].钢铁,2001,36(5):39-43.
    [68]赵琳,张旭东,陈武柱.800MPa级低合金钢焊接热影响区韧性的研究[J],2005,41(4):392-396.
    [69]柴锋,杨才福,张永权,等.粒状贝氏体对超低碳含铜时效钢粗晶热影响区冲击韧性的影响[J].钢铁研究学报,2005,17(1):42-46.
    [70]尹桂全,高甲生,洪永昌,等.低碳Ti-Nb系列钢焊后显微组织和性能[J].焊接学报,2001,22(2):71-74.
    [71]陈庆丰,关云,陈邦文,等.回火对超细贝氏体晶粒取向和尺寸的影响[J].特殊钢.武钢技术中心.2006,27(6):52-53.
    [72]《热处理手册》编委会.热处理手册第1卷[M].北京:机械工业出版社,2004.
    [73]杜林秀,刘相华,王国栋.低碳钢应变诱导相变中的淬火问题[J].金属学报,2002,38(2):196-202.
    [74]杨平,常守海等.Q235钢应变强化相变中铁素体的取向特征[J].材料研究学报,2002,16(3):251-258.
    [75]黄文长,冯继军.EBSD分析技术及其在材料科学研究中的应用[J],汽车工艺与材料,2004,18(14):19-20.
    [76]张小立,庄传晶.EBSD及其在钢铁研究领域的应用[J],材料导报,2006,20(11):72-79.
    [77]A.Oudin,P.D.Hodgson.EBSD analysis of a Ti IF steel subjected to hot torsionin the ferritic region[J],Materials Science and Engineering,2008,(486):72-79.
    [78]康永林,陈庆军,王克鲁,等.700MPa级低碳贝氏体钢的热处理工艺研究[J].材料热处理学报,2005,26(3):98-100.
    [79]Dhua S K,Amitava Ray,Sama D S.Effect of tempering temperatures on the mechanical properties and microstructure of HSLA-100 type copper baring steels[J].Materials Science and Engineering,2001,318A:197-210.
    [80]周桂峰,文慕冰,李平和,等.超低碳贝氏体钢ULCB600组织结构及性能的研究[J].钢铁,2000,35(2):47-49.
    [81]徐祖耀.相变原理[M].北京:科学出版社,2000:124.
    [82]康沫狂,朱明.关于贝氏体形核和台阶机制的讨论—与徐祖耀院士等商榷[J].材料热处理学报,2005,26(2):1.
    [83]蓝慧芳,W.J.Liu,刘相华.马氏体冷轧——回火制备超细晶钢及其热稳定性[J].材料研究学报,2008,22(3):279-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700