常染色体隐性遗传性多囊肾相关新基因的克隆及其特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:常染色体隐性遗传性多囊肾(Autosomal recessive polycystic kidney disease,ARPKD)是婴幼儿和儿童的一种以肾脏囊性改变为特征常见遗传性疾病,据估计其发病率在新生儿中占1/6,000-55,000,死亡率约占1/20,000。每70个成人中可能就有一个带有ARPKD的突变等位基因。通过遗传连锁分析得知,该病的致病基因位于6号染色体上6P~(21.1-12),又叫做多囊肾/多囊肝病变1基因(polycystic kidney and hepatic disease 1,PKHD_1)。接着又将该基因可能出现的范围进一步限定到1-cM,最近又将该基因限定在~840Kb的基因组序列中。其两端的界线标志分别是端粒侧的D6S1714/D6S243和着丝粒侧的D6S1024。而PKHD_1基因可能位于端粒侧一边。根据Celera数据库中的预测,PKHD_1基因可能有两个,分别是hcG1642636和hcG1646861。根据上述资料,我们着手克隆该基因。
     方法与结果:我们从近端粒侧的hcG1646861开始,根据其核苷酸序列设计PCR引物,用RT-PCR的方法扩增出一段cDNA,再以此cDNA为探针,筛选人胚胎肾脏cDNA基因文库,得到PKHD_1基因的3′末端。接着用genescan软件,预测其5′端可能存在的外显子,从其中较大的外显子中设计正向引物,在已知的cDNA序列中设计反向引物,用RT-PCR的方法克隆出该基因的中间部分。最后用5′RACE克隆到该基因的5′端部分。从而得到该基因的全部序列。我们称其为PKHD1-Tentative(PKHD1-T)基因。该基因
    
     助失大学医乡贤鹰士学夕磐文
     一
     全长 11.6kb,跨过~365kb基因组序列,靠近D6S1714这个端粒侧
     标志。它包括61个外显子,第一个外显子为非翻译区,启始密码
     子 ATG位于第二号外显子。终止密码子 TAG位于第 61号外显子。
     3’端非翻译区有 1.Ikb长,并有 pOly A的信号序列和 poly A尾。
    ;‘该基因编码区序列长10188hp,编码一个含3396个氨基酸残
     基的蛋白质,与目前的己知蛋白相比没有明显的同源性。该基因的
     编码蛋自含有多个TIG功能区,这是在兔疫球蛋白家族中常见的
     一种功能结构区域。分析其氨基酸序列,提示 PKHD IT蛋白可能
     是一个分泌型的蛋白,而不是一个膜蛋白。
     用NCBI和Celera数据库分析和我们用 Southern blot分析均
     末见有重复区域,表明该基因可能是一个单考贝基因。
     Northern分析显示,该基因有分子量不同的转录产物,其中最
     主要的在~11 kb 处,与我们克隆的基因大小一致。在成人和人胚
     胎的肾脏有很强的表达,肝脏则有较弱的表达。这种表达类型与
     ARPKD 所累及的脏器是相吻合的,原位分子杂交分析表明
     PKHDJ 基因主要在肾脏的集合管上皮细胞中表达,而这正是
     ARPKD 病变时肾脏出现囊性变化的部位。上述这些均强烈表明
     PKHD1基因是 ARPKD的致病基因。
     为进一步研究 PKHD-T基因的功能。我们又用 CDNA文库筛
     选、RT-PCR和 5’RACE的方法克隆了小鼠的 pkhd基因的全部编
     码区序列。并用FISh方祛将该序列定位于小鼠第1号染色体A带
     上,与我们从 GenBank搜索到的 pkhd基因位置一致。pkhd基因
     全长12225hp,跨越~500Kb基因组DNA长度,含有67个外显子,
     比人的PKHDIT基因长,与Ward等所克隆人的PKHDI—F(PKHDI
     基因的另一种转录产物)相同。编码区序列长为 11 994hp,编码一
     个含有 3 998个氨基酸残基的蛋白质。与人的 PKHD相比,其核
     昔酸序列的同源性达76%,氨基酸序列的相似性达88%。
     在我们的文章等持发表的同时,Ward 等也克隆出了 PKHD
     基因的另一种转录产物一 PKHD IF。这两种 PKHD不同转录产物
     3
    
     渺兴大学磨学虏尊士学哎衫文
    一
    其第 1.60号外显子基本上是相同的,只是 PKHD IF第一个外显子
    5’末端比PKHDI—T基因多16个碱基,两者在基因组DNA中的
    位置也完全相同。但PKHD-F有67个外显子,而PKHDI-T只有
    61个外显子,第 61号外显子后的 DNA序列则完全不同。
     另外,PKHD—T和 PKHD—F 两 cDNA前 60个外显子中,
    还有7个单核昔酸呈多态性,其中6个单核苦酸的差异不引起编码
    的氨基酸改变。只有一个单核昔酸的变化引起了氨基酸的改变Y
    11 24 C,但这两个氨基酸是性质相似的氨基酸,不引起蛋白质的功
    能变化,属于无意义突变
Department: Forensic Department, Medical College, Shantou University
    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. The estimated incidence of ARPKD is widely variable, ranging from 1 in 6,000 to 1 in 55,000 live births. A morbidity of 1 in 20,000 was estimated by clinical geneticists. Approximately 1 out of 70 individuals is a carrier of an ARPKD mutant allele. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. Recently, the disease interval was refined even further, to an ~840-kb genomic region. According to Celera database, there are two predicted genes, hCGl642636 and hCGl646861. Because a previous report demonstrated that the candidate gene for ARPKD may reside closer to the telomeric flanking marker (D6S1714) we focused our attention on hCG1646861.
    A fragment of RT-PCR product was amplified from primers based on the predicted hCG1646861 cDNA sequence, and used as a
    
    
    
    
    A Novel Gene is a Positional Candidate for Autosomal Recessive Polycystic Kidney Disease (ARPKD)
    Ph.D student: Huaqi Xiong
    Mentor : Prof. Xiaohu Xu
    Prof. Guanqing Wu
    Department: Forensic Department, Medical College, Shantou University
    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. The estimated incidence of ARPKD is widely variable, ranging from 1 in 6,000 to 1 in 55,000 live births. A morbidity of 1 in 20,000 was estimated by clinical geneticists. Approximately 1 out of 70 individuals is a carrier of an ARPKD mutant allele. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. Recently, the disease interval was refined even further, to an ~840-kb genomic region. According to Celera database, there are two predicted genes, hCGl642636 and hCGl646861. Because a previous report demonstrated that the candidate gene for ARPKD may reside closer to the telomeric flanking marker (D6S1714) we focused our attention on hCG1646861.
    A fragment of RT-PCR product was amplified from primers based on the predicted hCG1646861 cDNA sequence, and used as a
    
    
    Northern analyses demonstrated that the gene has discrete bands with one peak signals at -11-kb indicating PKHD1-T is likely to have multiple alternative transcripts, and PKHD1-T is highly expressed in adult and infant kidneys and weakly in the liver. This expression pattern parallels the tissue involvement observed in ARPKD. In-situ hybridization analysis further revealed that the expression of PKHD1-T in the kidney is mainly localized to the epithelial cells of collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features make it a strong positional candidate gene for ARPKD.
    For more understanding the function of PKHD1-T, we identified the homology gene in mice, called pkhdl, using RT-PCR and 5'RACE. The sequence is on chromosome 1, band A2-5 by FISH method same as we find on gene bank. The pkhdl encodes a 12225 bp transcript and is composed of 67 exons spanning an ~500-kb genomic region which longer than PKHD1-T and same as PKHD1-F. The ORF of PKHD1-T is 11994 bp long and is predicted to encode a 3398-amino-acid protein. The nucleotide of pkhdl is 76% identical and amino-acid is about 88% similar to human PKHDl.
    During the preparation of this publication, the gene responsible for ARPKD, PKHDl has been identified by other group, named as PKHDl-F. In comparison with their findings, we found that PKHDl-T is essentially identical to PKHDl. However, PKH
引文
1. Alvarez V., Malaga S., Navarro M., Espinosa L., Hidalgo E., Badia J., Alvarez R., and Coto E. (2000) . Analysis of chromosome 6p in Spanish families with recessive polycystic kidney disease. Pediatr Nephrol 14: 205-7.
    2. Babitch J (1990) . Channel hands. Nature 346: 321-322.
    3. Blyth H, Ockenden BG (1971) . Polycystic kidneys and liver presenting in childhood. J Med Genet 8.
    4. Bosniak MA, Ambos MA (1975) . Polycystic kidney disease. Semin Roentgenol 10: 133-143.
    5. Cole BR, Conley SB, Stapleton FB (1987) . Polycystic kidney disease in first year of life. J Pediatr 111: 693-699.
    6. Collesi C, Santoro MM, Gaudino G, Comoglio PM. (1996) . A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol 16: 5518-5526.
    7. Fonck C., Chauveau D., Gagnadoux M. F., Pirson Y., and Grunfeld J. P. (2001) . Autosomal recessive polycystic kidney disease in adulthood. Nephrol Dial Transplant 16: 1648-52.
    8. Fry JL Jr, Koch WE, Jennette JC, McFarland E, Fried FA, Mandell J. (1985) . A genetically determined murine model of infantile polycystic kidney disease. J Urol 134: 828-833.
    
    
    9. Gagnadoux MF, Habib R, Levy M, Brunelle F, Broyer M. (1989) . Cystic renal diseases in children. Adv Nephrol Necker Hosp 18: 33-57.
    10. Guay-Woodford L. M. (1996) . Autosomal recessive disease: clinical and genetic profiles. In "Polysystic kidney disease" (Torres V, Watson M, Ed.), pp. 237-267, Oxford University Press, Oxford.
    11. Guay-Woodford L. M., Muecher G., Hopkins S. D., Avner E. D., Germino G. G., Guillot A. P., Herrin J., Holleman R., Irons D. A., Primack W., and et al. (1995) . The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6p21. 1-p12: implications for genetic counseling. Am J Hum Genet 56: 1101-7.
    12. Heizmann CW, Hunziker W. (1991) . Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci 16: 98-103.
    13. Hofmann K, Stoffel W (1993) . TMbase-A database of membrane spanning proteins segments. Biol Chem 374: 166.
    14. Hofmann Y., Becker J., Wright F., Avner E. D., Mrug M., Guay-Woodford L. M., Somlo S., Zerres K., Germino G. G., and Onuchic L. F. (2000) . Genomic structure of the gene for the human P1 protein (MCM3) and its exclusion as a candidate for autosomal recessive polycystic kidney disease. Eur J Hum Genet 8: 163-6.
    
    
    15. Lager D. J., Qian Q., Bengal R. J., Ishibashi M., and Torres V. E. (2001) . The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 59: 126-36.
    16. Lens X. M., Onuchic L. F., Wu G., Hayashi T., Daoust M., Mochizuki T., Santarina L. B., Stockwin J. M., Mucher G., Becker J., Sweeny W. E., Jr., Avner E. D., Guay-Woodford L., Zerres K., Somlo S., and Germino G. G. (1997) . An integrated genetic and physical map of the autosomal recessive polycystic kidney disease region. Genomics 41: 463-6.
    17. Lonergan G. J., Rice R. R., and Suarez E. S. (2000) . Autosomal recessive polycystic kidney disease: radiologic-pathologic correlation. Radiographics 20: 837-55.
    18. Lu W., Peissel B., Babakhanlou H., Pavlova A., Geng L., Fan X., Larson C., Brent G., and Zhou J. (1997) . Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkdl mutation. Nat Genet 17: 179-81.
    19. Mochizuki T., Wu G., Hayashi T., Xenophontos S. L., Veldhuisen B., Saris J. J., Reynolds D. M., Cai Y., Gabow P. A., Pierides A., Kimberling W. J., Breuning M. H., Deltas C. C., Peters D. J., and Somlo S. (1996) . PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339-42.
    
    
    20. Mover J. H., Lee-Tischler M. J., Kwon H. Y., Schrick J. J., Avner E. D., Sweeney W. E., Godfrey V. L., Cacheiro N. L., Wilkinson J. E., and Woychik R. P. (1994) . Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264: 1329-33.
    21. Mucher G., Becker J., Knapp M., Buttner R., Moser M., Rudnik-Schoneborn S., Somlo S., Germino G., Onuchic L., Avner E., Guay-Woodford L., and Zerres K. (1998) . Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1-T) and the genes MUT, RDS, CSNK2 beta, and GSTA1 at 6p21. 1-p12. Genomics 48: 40-5.
    22. Mucher G., Wirth B., and Zerres K. (1994) . Refining the map and defining flanking markers of the gene for autosomal recessive polycystic kidney disease on chromosome 6p21. 1-p12. Am J Hum Genet 55: 1281-4.
    23. Neumann H. P., Krumme B., van Velthoven V., Orszagh M., and Zerres K. (1999) . Multiple intracranial aneurysms in a patient with autosomal recessive polycystic kidney disease. Nephrol Dial Transplant 14: 936-9.
    24. Onuchic L., Furu L, Nagasawa Y, Mrug M, Eggermann T, Bergmann C, Sweeney W, Avner E, Zerres K, Guay-Woodford LM, Somlo S. Germino GG. (2001) . Refinement of the PKHD1-T
    
    interval and analysis of candidate expressed sequence. J Am Soc Nephrol 12: 543A.
    25. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG. (2002) . PKHD1-T, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription-Factor Domains and Parallel Beta-Helix 1 Repeats. Am J Hum Genet 70: [epub ahead of print].
    26. Onuchic L. F., Mrug M., Lakings A. L., Muecher G., Becker J., Zerres K., Avner E. D., Dixit M., Somlo S., Germino G. G., and Guay-Woodford L. M. (1999) . Genomic organization of the KIAA0057 gene that encodes a TRAM-like protein and its exclusion as a polycystic kidney and hepatic disease 1 (PKHDl-T) candidate gene. Mamm Genome 10: 1175-8.
    27. Park J. H., Dixit M. P., Onuchic L. F., Wu G., Goncharuk A. N., Kneitz S., Santarina L. B., Hayashi T., Avner E. D., Guay-Woodford L., Zerres K., Germino G. G., and Somlo S. (1999) . A 1-Mb BAC/PAC-based physical map of the autosomal recessive polycystic kidney disease gene (PKHDl-T) region on chromosome 6. Genomics 57: 249-55.
    
    
    28. Potter EL (1972) . "Normal and abnormal development of the kidney," Year Book, Chicago.
    29. Rossetti S.et al(2002) .A complete mutation screen of the ADPKD genes by DHPLC.Kidney Int.(in press).
    30. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. (1993) . CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150: 5445-5456.
    31. Roy S., Dillon M. J., Trompeter R. S., and Barratt T. M. (1997) . Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol 11: 302-6.
    32. Sanzen T., Harada K., Yasoshima M., Kawamura Y., Ishibashi M., and Nakanuma Y. (2001) . Polycystic kidney rat is a novel animal model of Caroli's disease associated with congenital hepatic fibrosis. Am J Pathol 158: 1605-12.
    33. Scott DA, Drury S, Sundstrom RA, Bishop J, Swiderski RE, Carmi R, Ramesh A, Elbedour K, Srikumari Srisailapathy CR, Keats BJ, Sheffield VC, Smith RJ (2000) . Refining the DFNB7-DFNB11 deafness locus using intragenic polymorphisms in a novel gene, TMEM2. Gene 246: 265-274.
    
    
    34. Upadhya P, Churchill G, Birkenmeier EH, Barker JE, Frankel WN (1999) . Genetic modifiers of polycystic kidney disease in intersubspecific KAT2J mutants. Genomics 58: 129-137.
    35. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham VK, Bacallao B, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) . The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nature Genetics 30: 259-269.
    36. Wu G., D'Agati V., Cai Y., Markowitz G., Park J. H., Reynolds D. M., Maeda Y., Le T. C., Hou H., Jr., Kucherlapati R., Edelmann W., and Somlo S. (1998) . Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93: 177-88.
    37. Wu GQ, Markowitz GS, Li L, D'Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) . Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nature Genetics 24: 75-78.
    38. Xiao W.Oefner PJ(2001) .Denaturing high-performance liquid chromatography:a review.Hum Mutat. 17:429-474.
    39. Zerres K., Mucher G., Bachner L., Deschennes G., Eggermann T., Kaariainen H., Knapp M., Lennert T., Misselwitz J., von Muhlendahl K. E., and et al. (1994) . Mapping of the gene for
    
    autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat Genet 7: 429-32.
    40. Zerres K., Mucher G., Becker J., Steinkamm C., Rudnik-Schoneborn S., Heikkila P., Rapola J., Salonen R., Germino G. G., Onuchic L., Somlo S., Avner E. D., Harman L. A., Stockwin J. M., and Guay-Woodford L. M. (1998a). Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76: 137-44.
    41. Zerres K., Rudnik-Schoneborn S., Deget F., Holtkamp U., Brodehl J., Geisert J., and Scharer K. (1996) . Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft fur Padiatrische, Nephrologie. Acta Paediatr 85: 437-45.
    42. Zerres K., Rudnik-Schoneborn S., Steinkamm C., Becker J., and Mucher G. (1998b). Autosomal recessive polycystic kidney disease. J Mol Med 76: 303-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700