IHH和FGF8在脊椎动物肢翼远端骨骼元件发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1903年,Farabee报道了第一例符合孟德尔遗传规律的人类常染色体显性遗传性状,即一种指(趾)畸形遗传病。1951年,Bell将该遗传病归为A1型短指(趾)症,其主要特征是中间指(趾)节缩短或缺失。2001年,我们实验室的高波等人报道了Ihh基因内的杂合错义突变导致了A1型短指(趾)症。在本课题中,我们分析了造成A1型短指(趾)症的三个突变体,并探索了指(趾)形成的信号调控机制。
     我们从体外诱导和体内诱导两个方面研究了Ihh的信号活性。在体外实验中,我们比较了野生型Ihh和三个突变型Ihh之间诱导效应的差异。用表达全长Ihh的质粒来诱导C3H10T1/2细胞,结果显示突变型Ihh的诱导效应明显减弱,但没有完全丧失。用原核表达并纯化的N-Ihh蛋白诱导C3H10T1/2细胞,结果与质粒诱导相仿。在体内实验中,我们将野生型N-Ihh蛋白导入到鸡胚指间区域,导致间叶细胞内Ihh信号通路活性上升和倒数第二指节变长,甚至长出额外的指节。Ihh在鸡胚中的表达模式分析表明在指(趾)顶端的浓缩体中表达的Ihh可能调控了指(趾)的形成。这些结果表明Ihh信号减弱是造成中间指(趾)节缩短或缺失的根本原因。
     为了揭示Ihh在指(趾)形成中的作用,我们进一步研究了Ihh蛋白诱导的鸡胚指(趾)发育的变化。Ihh蛋白延长了AER中FGF8的表达,扩展了间叶细胞中Sox9的表达区域。FGF8蛋白虽然可以扩展Sox9的表达,但是对指(趾)形成的诱导作用不同于Ihh蛋白。在指(趾)形成早期导入FGF8蛋白可以诱导出额外的指头,在后期导入则抑制末端指节的生成。同时导入Ihh和FGF8蛋白能诱导出一个大的末端指节。这些结果表明Ihh和FGF8在指(趾)形成中扮演了不同的角色并在促进软骨向外生长方面具有协同作用。另外,Ihh蛋白延缓了AER的衰退,FGF8蛋白则促进了AER衰退,这两者对指间间叶细胞的凋亡都有抑制作用。
     肢芽内Sox9的表达并不紧靠FGF信号源。我们分析了Sef基因的表达后发现,FGF信号在较近的距离内诱导Sef的表达,在较远的距离处诱导Sox9的表达。Sef是FGF信号的拮抗剂,有可能抑制了FGF信号诱导Sox9表达的胞内通路。据此,我们提出了一个新的反馈抑制模型。在未来的研究中验证这一模型,能够为揭示如何协调间叶细胞的维持和分化这一骨发育中的关键问题提供重要证据。
In 1903, Farabee reported the first recorded disorder of human autosomal dominant Mendelian trait, a kind of inherited digit malformation. In 1951, Bell classified this disorder as brachydactyly type A1 (BDA1), which is characterized by shortening or missing of the middle phalanges. In 2001, Gao et al reported that heterozygous missense mutations in the Ihh gene caused BDA1. In this project, we analyzed three mutants and explored the molecular mechanism of digit formation.
     We studied the activity of Ihh signal by in vitro induction and in vivo induction. In in vitro study, we compared the induction effect of wildtype Ihh with three mutants. When C3H10T1/2 cells were induced by the plasmids which expressed the full length wildtype and mutant Ihh proteins, the mutants showed decreased effect, but didn’t completely lose it. The induction of purified N-Ihh proteins showed similar results. Ihh expression pattern in chicks implicates that Ihh expressed in the tip of the digit plays a role in digit patterning. In in vivo study, Application of wildtype N-Ihh to the interdigital spaces in chick embryos resulted in up-regulated activity of Ihh signal pathway in mesenchyme and elongation of penultimate phalange, even an appearance of extra phalange. These results demonstrated that the reduced Ihh signal was the fundamental cause of BDA1.
     To discover the role of Ihh in digit formation, we further studied the changes of digit development induced by N-Ihh. This protein prolonged FGF8 expression in AER and expanded Sox9 expression in mesenchyme. FGF8 protein also expanded Sox9 expression, but its induction effect on digit formation was different from N-Ihh. Application of FGF8 at early stage induced extra digit and at later stage inhibited distal phalange formation. Application of both N-Ihh and FGF8 induced a large distal phalange. These results suggest Ihh and FGF8 play different roles and act synergistically to promote chondrogenesis during digit primordial elongation. Moreover, N-Ihh delayed AER regression and FGF8 accelerated AER regression. Both of them restrained mesenchymal cell apoptosis.
     Sox9 expression was not adjacent to the source of FGF signal. After analysis of Sef expression, we found that FGF signal induced Sef expression in the short range and Sox9 expression in the long range. Sef is an antagonist of FGF signal and possibly inhibites the intracellular pathway which activates Sox9 expression. We proposed a new model for negative feedback to explain this phenomenon. Further study on this model will provide important evidence for revealing pivotal mechanisms of bone development in which survival and differentiation of mesenchymal cells are coordinated.
引文
1. Zelzer E, Olsen BR. The genetic basis for skeletal diseases. Nature. 2003; 423:343-348
    2. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000; 16:191-220
    3. Cohen MM. The new bone Biology: pathologic, molecular, and clinical correlates. Am J Med Genet Part A. 2006; 140A:2646-2706
    4. Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays. 2000; 22:138-147
    5. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006; 97:33-44
    6. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003; 423:332-336
    7. Kobayashi T, Soegiarto DW, Yang Y at al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005; 115:1734-1742
    8. Lai LP, Mitchell J. Indian Hedgehog: its roles and regulation in endochondral bone development. J Cell Biochem. 2005; 96:1163-1173
    9. Vortkamp A, Lee K, Lanske B et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996; 273:613-622
    10. St Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999; 13:2072-2086
    11. Karp SJ, Schipani E, St Jacques B et al. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000; 127:543-548
    12. Long F, Zhang XM, Karp S et al. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001; 128:5099-5108
    13. Chung UI, Schipani E, McMahon AP et al. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest. 2001; 107:295-304
    14. Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet. 1997; 13:14-21
    15. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signalingproteins in animal development. Science. 1996; 274:255-259
    16. Pepinsky RB, Zeng C, Wen D et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 1998; 273:14037-14045
    17. Chamoun Z, Mann RK, Nellen D et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science. 2001; 293:2080-2084
    18. Lee JD, Kraus P, Gaiano N et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev Biol. 2001; 233:122-136
    19. Varjosalo M, Taipale J. Hedgehog signaling. J Cell Sci. 2007; 120: 3-6
    20. Burke R, Nellen D, Bellotto M et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell. 1999; 99:803-815
    21. Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature. 1998; 394:85-88
    22. Stone DM, Hynes M, Armanini M et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 1996; 384:129-134
    23. Taipale J, Cooper MK, Maiti T et al. Patched acts catalytically to suppress the activity of Smoothened. Nature. 2002; 418:892-897
    24. Agren M, Kogerman P, Kleman MI et al. Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene. 2004; 330:101-114
    25. Lum L, Yao S, Mozer B et al. Identification of Hedgehog pathway components by RNAi in Drosophila culture cells. Science. 2003; 299:2039-2045
    26. Tenzen T, Allen BL, Cole F et al. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell. 2006; 10:647-656
    27. Yao S, Lum L, Beachy P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell. 2006; 125:343-357
    28. Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature. 1999; 397:617-621
    29. Lee J, Platt KA, Censullo P et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124:2537-2552
    30. Koebernick K, Pieler T. Gli-type zinc finger proteins as bipotential transducers of Hedgehog signaling. Differentiation. 2002; 70:69-76
    31. Dai P, Akimaru H, Tanaka Y et al. Sonic Hedgehog-induced activation of the Gli1 promotor is mediated by GLI3. J Biol Chem. 1999;274:8143-8152
    32. Bai CB, Joyner AL. Gli1 can rescue the in vivo function of Gli2. Development. 2001; 128:5161-5172
    33. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000; 100:423-434
    34. Karaplis AC, Luz A, Glowacki J et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994; 8:277-289
    35. Lanske B, Karaplis AC, Lee K et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996; 273:663-666
    36. Weir EC, Philbrick WM, Amling M et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA. 1996; 93:10240-10245
    37. Schipani E, Lanske B, Hunzelman J et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA. 1997; 94:13689-13694
    38. Chung UI, Lanske B, Lee K et al. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA. 1998; 95:13030-13035
    39. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2(3):reviews 3005.1-3005.12
    40. Yayon A, Klagsbrun M, Esko JD et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991; 64:841-848
    41. Ornitz DM, Yayon A, Flanagan JG et al. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol. 1992;12:240-247
    42. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005; 16:139-149
    43. Kouhara H, Hadari YR, Spivak-Kroizman T et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997; 89:693-702
    44. Qi M, Elion EA. MAP kinase pathways. J Cell Sci. 2005; 118:3569-3572
    45. Bottcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005; 26:63-77
    46. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005; 287:390-402
    47. Deng C, Wynshaw-Boris A, Zhou F et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996; 84:911-921
    48. Colvin JS, Bohne BA, Harding GW et al. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12:390-397
    49. Liu Z, Xu J, Colvin JS et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002; 16:859-869
    50. Ohbayashi N, Shibayama M, Kurotaki Y et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002; 16:870-879
    51. Minina E, Kreschel C, Naski MC et al. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002; 3:439-449
    52. Pizette S, Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol. 2000; 219:237-249
    53. Yoon BS, Ovchinnikov DA, Yoshii I et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA. 2005; 102:5062-5067
    54. Brunet LJ, McMahon JA, McMahon AP et al. Noggin, cartilage morphogenesis and joint formation in the mammalian skeleton. Science. 1998; 280:1455-1458
    55. Minina E, Wenzel HM, Kreschel C et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001; 128:4523-4534
    56. Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res C. 2003; 69:305-317
    57. Guo X, Day TF, Jiang X et al. Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004; 18:2404-2417
    58. Day TF, Guo X, Garrett-Beal L et al. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005; 8:739-750
    59. Bell DM, Leung KK, Wheatley SC et al. SOX9 directly regulates the type II collagen gene. Nat Genet. 1997; 16:174-178
    60. Bridgewater LC, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem. 1998; 273:14998-15006
    61. Sekiya I, Tsuji K, Koopman P et al. SOX9 enhances aggrecan gene promoter/ enhancer activity and is upregulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem. 2000; 275:10738-10744
    62. Bi WM, Deng JM, Zhang ZP et al. Sox9 is required for cartilage formation. Nat Genet. 1999; 22:85-89
    63. Akiyama H, Chaboissier MC, Martin JF et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002; 16:2813-2828
    64. Smits P, Li P, Mandel J et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell. 2001; 1:277-290
    65. Komori T, Yagi H, Nomura S et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89:755-764
    66. Otto F, Thornell AP, Crompton T et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997; 89:765-771
    67. Inada M, Yasui T, Nomura S et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 1999; 214:279-290
    68. Takeda S, Bonnamy JP, Owen MJ et al. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001; 15:467-481
    69. Ueta C, Iwamoto M, Kanatani N et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol. 2001; 153:87-100
    70. Yoshida CA, Yamamoto H, Fujita T et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004; 18:952-963
    71. Mariani FV, Martin GR. Deciphering skeletal patterning: clues from the limb. Nature 2003; 423:319-325
    72. Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol. 1974; 32:651-660
    73. Niswander L. Pattern formation: old models out on a limb. Nat Rev Genet. 2003; 4:133-143
    74. Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb morphogenesis. Nature. 1973; 244:492-496
    75. Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apicalectodermal ridge in limb development. Nature. 2002; 418:501-508
    76. Dubley AT, Ros MA, Tabin CJ. A re-examination of proximodistal patterning during vertebrate limb development. Nature. 2002; 418:539-544
    77. Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 2007; 21:1433-1442
    78. Kawakami Y, Capdevila J, Buscher D et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001; 104:891-900
    79. Cohn MJ, Izpisua-Belmonte JC, Abud H et al. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell. 1995; 80:739-746
    80. Crossley PH, Minowada G, MacArthur CA et al. Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell. 1996; 84:127-136
    81. Vogel A, Rodriguez C, Izpisua-Belmonte JC. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development. 1996; 122:1737-1750
    82. Ohuchi H, Nakagawa T, Yamamoto A et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, and apical ectodermal factor. Development. 1997; 124:2235-2244
    83. Min H, Danilenko DM, Scull SA et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branckless. Genes Dev. 1998; 12:3156-3161
    84. Sekine K, Ohuchi H, Fujiwara M et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999; 21:138-141
    85. Kimmel RA, Turnbull DH, Blanquet V et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formatiom. Genes Dev. 2000; 14:1377-1389
    86. Lewandoski M, Sun X, Martin GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet. 2000; 26:460-463
    87. Moon AM, Capecchi MR. Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet. 2000; 26:455-459
    88. Niswander L, Tickle C, Vogel A et al. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993; 75:579-587
    89. Fallon JF, Lopez A, Ros MA et al. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science. 1994; 264:104-107
    90. Tickle C. Patterning systems--from one end of the limb to the other. Dev Cell. 2003; 4:449-458
    91. Sun X, Lewandoski M, Meyers EN et al. Conditional inactivation of Fgf4 reveals complexity of signaling during limb bud development. Nat Genet. 2000; 25:83-86
    92. Moon AM, Boulet AM, Capecchi MR. Normal limb development in conditional mutants of Fgf4. Development. 2000; 127:989-996
    93. Hung IH, Yu K, Lavine KJ et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the development stylopod. Dev Biol. 2007; 307:300-313
    94. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development. 2000; 127:1833-1843
    95. Boulet AM, Moon AM, Arenkiel BR et al. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol. 2004; 273:361-372
    96. Rubin L, Saunders JW Jr. Ectodermal-mesedermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol. 1972; 28:94-112
    97. Wang CL, Omi M, Ferrari D et al. Function of BMPs in the apical ectoderm of the developing mouse limb. Dev Biol. 2004; 269:109-122
    98. Pajni-Underwood S, Wilson CP, Elder C et al. BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development. 2007; 134:2359-2368
    99. Niswander L, Jeffrey S, Martin GR et al. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. 1994; 371:609-612
    100.Laufer E, Nelson CE, Johnson RL et al. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994; 79:993-1003
    101.Saunders JW Jr, Gasseling MT. in Epithelial-Mesenchymal Interactions (eds Fleischmajer R, Billingham RR) 289-314 (Williams and Wilkins, Baltimore, 1968)
    102.Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993; 75:1401-1416
    103.Lopez-Martinez A, Chang DT, Chiang C et al. Limb-patterning activity and restricted posterior localization of the amino-terminal product of sonic hedgehog cleavage. Curr Biol. 1995; 5:791-796
    104.Yang YZ, Drossopoulou G, Chuang PT et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development. 1997; 124:4393-4404
    105.Chiang C, Litingtung Y, Harris MP et al. Manifestation of the limb prepattern: limb development in the absence of Sonic hedgehog function. Dev Biol. 2001; 236:421-435
    106.Harfe BD, Scherz PJ, Nissim S et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell. 2004; 118:517-528
    107.Ahn S, Joyner AL. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell. 2004; 118:505-516
    108.McGlinn E, Tabin CJ. Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev. 2006; 16:426-432
    109.Litingtung Y, Dahn RD, Li Y et al. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature. 2002; 418:979–983
    110.te Welscher P, Zuniga A, Kuijper S et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science. 2002; 298:827–830
    111.Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in Shh signaling in combination with a Gli2 mutation. Development. 2000; 127:1593-1605
    112.Mo R, Freer AM, Zinyk DL et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development. 1997; 124:113-123
    113.Zuniga A, Haramis AP, McMahon AP et al. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 1999; 401:598–602
    114.Khokha MK, Hsu D, Brunet LJ et al. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet. 2003; 34:303-307
    115.Scherz PJ, Harfe BD, McMahon AP et al. The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science. 2004; 305:396-399
    116.Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science. 2000; 289:438-441
    117.Sanz-Ezquerro JJ, Tickle C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr Biol. 2003; 13:1830-1836
    118.Sanz-Ezquerro JJ, Tickle C. Autoregulation of Shh expression and Shh induction of cell death suggest a mechanism for modulating polarizing activity during chick limb development. Development. 2000; 127:4811-4823
    119.Yokouchi Y, Sakiyama J, Kameda T et al. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development. 1996; 122:3725-3734
    120.Zou H, Niswander L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science. 1996; 272:738-741
    121.Macias D, Ganan Y, Sampath TK et al. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development. 1997; 124:1109-1117
    122.Guha U, Gomes WA, Kobayashi T et al. In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol. 2002; 249:108-120
    123.Montero JA, Ganan Y, Macias D et al. Role of FGFs in the control of programmed cell death during limb development. Development. 2001; 128:2075-2084
    124.Vogel A, Rodriguez C, Warnken W et al. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature. 1995; 378:716–720
    125.Riddle RD, Ensini M, Nelson C et al. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell. 1995; 83: 631–640
    126.Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature. 1995; 374:350–353
    127.Loomis CA, Harris E, Michaud J et al. The mouse Engrailed-1 gene and ventral limb patterning. Nature. 1996; 382:360–363
    128.Cygan JA, Johnson RL, McMahon AP. Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development. 1997; 124:5021–5032
    129.Logan C, Hornbruch A, Campbell I et al. The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development. 1997; 124:2317–2324
    130.Ahn K, Mishina Y, Hanks MC et al. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development. 2001; 128:4449–4461
    131.Pizette S, Abate-Shen C, Niswander L. BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development. 2001; 128:4463–4474
    132.Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell. 1995; 80:939–947
    133.Farabee WC. Hereditary and Sexual Influence in Meristic Variation: A Study of Digital Malformations in Man. Dissertation, 1903. Harvard University
    134.Drinkwater H. An account of a brachydactylous family. Proc Royal Soc Edin. 1908; 28:35-57
    135.Drinkwater H. Account of a family showing minor brachydactyly. J Genet. 1912; 2:21-40
    136.Drinkwater H. A second brachydactylous family. J Genet. 1915; 4:323-339
    137.Bell J. On brachydactyly and symphalangism. Treasury of Human Inheritance.1951; Cambridge University Press
    138.McKusick V. Mendelian Inheritance in Man. 1975; Johns Hopkins University Press
    139.Fitch N. Classification and identification of inherited brachydactylies. J Med Genet.1979; 16:36-44
    140.Haws DV, Mckusick VA. Farabee’s brachydactylous kindred revisited. Bull Johns Hopkins Hosp. 1963; 113:20-30
    141.Slavotinek A, Donnai D. A boy with severe manifestations of type A1 brachydactyly. Clin Dysmorphol. 1998; 7:21-27
    142.McCready ME, Sweeney E, Fryer AE et al. A novel mutation in the IHH gene causes brachydactyly type A1: a 95-year-old mystery resolved. Hum Genet. 2002; 111:368-375
    143.Temtamy SA, McKusick VA. The genetics of hand malformations. Birth Defects Orig Artic Ser. 1978; 14:1-619
    144.Laporte G, Serville F, Peant J. [Type A1 branchydactyly. Study of one family (author's transl)]. Nouv Presse Med. 1979; 8:4095-4097
    145.Piussan C, Lenaerts C, Mathieu M et al. [Regular dominance of thumb ankylosis with mental retardation transmitted over 3 generations]. J Genet Hum. 1983; 31:107-114
    146.Tsukahara M, Azuno Y, Kajii T. Type A1 brachydactyly, dwarfism, ptosis, mixed partial hearing loss, microcephaly, and mental retardation. Am J Med Genet. 1989; 33:7-9
    147.Fukushima Y, Ohashi H, Wakui K et al. De novo apparently balanced reciprocal translocation between 5q11.2 and 17q23 associated with Klippel-Feil anomaly and type A1 brachydactyly. Am J Med Genet. 1995; 57:447-449
    148.Mastrobattista JM, Dolle P, Blanton SH et al. Evaluation of candidate genes for familial brachydactyly. J Med Genet. 1995; 32:851-854
    149.Raff ML, Leppig KA, Rutledge JC et al. Brachydactyly type A1 with abnormal menisci and scoliosis in three generations. Clin Dysmorphol. 1998; 7:29-34
    150.Armour CM, Bulman DE, Hunter AG. Clinical and radiological assessment of a family with mild brachydactyly type A1: the usefulness of metacarpophalangeal profiles. J Med Genet. 2000; 37:292-296
    151.Giordano N, Gennari L, Bruttini M et al. Mild brachydactyly type A1 maps to chromosome 2q35-q36 and is caused by a novel IHH mutation in a three generation family. J Med Genet. 2003; 40:132-135
    152.Yang X, She C, Guo J et al. A locus for brachydactyly type A-1 maps to chromosome 2q35-q36. Am J Hum Genet. 2000; 66:892-903
    153.Gao B, Guo J, She C et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat Genet. 2001; 28:386-388
    154.Liu M, Wang X, Cai Z et al. A novel heterozygous mutation in the Indian hedgehog gene (IHH) is associated with brachydactyly type A1 in a Chinese family. J HumGenet. 2006; 51:727-731
    155.Mastrobattista JM, Dolle P, Blanton SH et al. Evaluation of candidate genes for familial brachydactyly. J Med Genet. 1995; 32:851-854
    156.Fuse N, Maiti T, Wang B et al. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc Natl Acad Sci USA. 1999; 96:10992-10999
    157.Pepinsky RB, Rayhorn P, Day ES et al. Mapping sonic hedgehog-receptor interactions by steric interference. J Biol Chem. 2000; 275:10995-11001
    158.Kirkpatrick TJ, Au KS, Mastrobattista JM et al. Identification of a mutation in the Indian Hedgehog (IHH) gene causing brachydactyly type A1 and evidence for a third locus. J Med Genet. 2003; 40:42-44
    159.McCready ME, Grimsey A, Styer T et al. A century later Farabee has his mutation. Hum Genet. 2005; 17:285-287
    160.Mortier GR, Kramer PP, Giedion A et al. Acrocapitofemoral dysplasia: an autosomal recessive skeletal dysplasia with cone shaped epiphyses in the hands and hips. J Med Genet. 2003; 40:201-207
    161.Hellemans J, Coucke PJ, Giedion A et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am J Hum Genet. 2003; 72:1040-1046
    162.Armour CM, McCready ME, Baig A et al. A novel locus for brachydactyly type A1 on chromosome 5p13.3-p13.2. J Med Genet. 2002; 39:186-188
    163.Rezikoff CA, Brankow DW, Heidelberger C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973; 33:3231-3238
    164.Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979; 17:771-779
    165.Bereford JN, Bennett JH, Devlin C et al. Evidence for an inverse relationship between the differentiation of adipocyte and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992; 102:341-351
    166.Dennker AE, Nicoll SB, Tuan RS. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-B1. Differentiation. 1995; 59:25-34
    167.Ahrens M, Ankenbauer T, Schroder D et al. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineaeges. DNA Cell Biol. 1993; 12:871-880
    168.Collee MS, Cory ME, Thomas AE et al. BMP treatment of C3H10T1/2 mesenchymalstem cells induces both chondrogenesis and osteogenesis. J Cell Biochem. 2003; 90:1112-1127
    169.Kinto N, Iwamoto M, Enomoto-Iwamoto M et al. Fibroblasts expressing Sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Lett. 1997; 404:319-323
    170.Pathi S, Pagan-Westphal S, Baker DP et al. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Develop. 2001; 106:107-117
    171.Tickle C. The contribution of chicken embryology to the understangding of vertebrate limb development. Mech Develop. 2004; 121:1019-1029
    172.Hamburger H, Hamilton HL. A series of normal stages in the development of the chick embryo. J Exp Morphol. 1951; 88:49-92
    173.Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995; 172:126-138
    174.Goetz JA, Singh S, Suber LM et al. A highly conserved amino-terminal region of Sonic hedgehog is required for the formation of its freely diffusible multimeric form. J Biol Chem. 2006; 281:4087-4093
    175.Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C. 2005; 75:237-248
    176.Welten MCM, Verbeek FJ, Meijer AH et al. Gene expression and digit homology in the embryo wing. Evol Dev. 2005; 7:18-28
    177.Harduf H, Halperin E, Reshef R et al. Sef is synexpressed with FGFs during chick embryogenesis and its expression is differentially regulated by FGFs in the developing limb. Dev Dyn. 2005; 233:301-312
    178.Murakami S, Kan M, McKeehan WL et al. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 2000; 97:1113-1118
    179.Abzhanov A, Tabin CJ. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Dev Biol. 2004; 273:134-148
    180.Tsang M, Friesel R, Kudoh T et al. Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol. 2002; 4:165-169
    181.Furthauer M, Lin W, Ang S et al. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol. 2002; 4:170-174
    182.Minowada G, Jarvis LA, Chi CL et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development. 1999; 126:4465-4475
    183.Mason JM, Morrison DJ, Basson MA et al. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006; 16:45-54
    184.Eblaghie M, Lunn JS, Dickinson RJ et al. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr Biol. 2003; 13:1009-1018
    185.Smith TG, Karlsson M, Lunn JS et al. Negative feedback predominates over cross-regulation to control ERK MAPK activity in response to FGF signalling in embryos. FEBS Lett. 2006; 580:4242-4245
    186.Niehrs C, Meinhardt H. Modular feedback. Nature. 2002; 417:35-36
    187.Yu K, Ornitz DM. FGFsignaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008; 135:483-491
    188.Lu P, Minowada G, Martin GR. Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development. 2006; 133:33-42
    189.Sidow A, Bulotsky MS, Kerrebrock AW et al. A novel member of the F-box/WD40 gene family, encoding dactylin, is disrupted in the mouse dactylaplasia mutant. Nat Genet. 1999; 23:104-107
    190.Kano H, Kurahashi H, Toda T. Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype. Proc Natl Acad Sci USA. 2007; 104:19034-19039
    191.Mak KK, Kronenberg HM, Chuang PT et al. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008; 135:1947-1956
    192.Kobayashi T, Chung UI, Schipani E et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002, 129:2977-2988
    193.Long F, Chung UI, Ohba S et al. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004; 131:1309-1318
    194.Li C, Chen L, Iwata T et al. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet. 1999; 8:35-44
    195.Sahni M, Ambrosetti DC, Mansukhani A et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999; 13:1361-1366
    196.Naski MC, Wang Q, Xu J et al. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet. 1996; 13:233-237
    197.Iwata T, Chen L, Li C et al. A neonatal lethal mutation in FGFR3 uncouplesproliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet. 2000; 9:1603-1613
    198.Liu Z, Lavine KJ, Hung IH et al. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007; 302:80-91
    199.Hung IH, Yu K, Lavine KJ et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol. 2007; 307:300-313
    200.Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005; 16:205-213
    201.Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004; 93:93-103
    202.Kobayashi T, Lyons KM, McMahon AP et al. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A. 2005; 102: 18023-18027
    203.Kugimiya F, Kawaguchi H, Kamekura S et al. Involvement of endogenous bone morphogenetic protein (BMP) 2 and BMP6 in bone formation. J Biol Chem. 2005; 280:35704-35712
    204.Yoon BS, Pogue R, Ovchinnikov DA et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006; 133:4667-4678
    205.Kawai S, Sugiura T. Characterization of human bone morphogenetic protein (BMP)-4 and -7 gene promoters: activation of BMP promoters by Gli, a sonic hedgehog mediator. Bone. 2001; 29:54-61
    206.Seki K, Hata A. Indian hedgehog gene is a target of the bone morphogenetic protein signaling pathway. J Biol Chem. 2004; 279:18544-18549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700