中国西北地区非综合征型耳聋常见聋病基因突变图谱的绘制及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
听觉在人类进行社会活动和日常生活中具有不可替代的重要作用。听觉功能障碍表现为不同程度的听力损失,是导致言语交流障碍的常见疾病,是人类最大的苦难之一。研究发现:遗传和/或环境因素均可致聋,而仅由遗传引起的至少占50%,与耳聋相关的基因超过了140个。然而,大部分遗传性耳聋仅仅与少数耳聋相关基因的突变有关。中国西北地区的五个省、自治区面积大,人口、民族分布很不一致,经济文化相对落后。为了解该地区非综合征型耳聋群体的病因学特点,探讨遗传因素在耳聋发病中的规律,本课题在2004-2009年原有甘肃、青海和新疆样本的基础上,进一步对陕西、宁夏的耳聋患者进行研究,对整个中国西北耳聋人群的常见两个耳聋基因突变图谱进行了初步的绘制,快速、高效分析了解耳聋的概况,以利于为该地区耳聋基因诊断的和遗传咨询奠定基础,为政府制定有效的而针对性的防聋治聋的政策措施提供科学依据。
     第一部分中国西北地区非综合征型耳聋患者线粒体DNA 12SrRNAm.1555A>G突变图谱的绘制和分析及新突变的探索分析
     本部分研究通过对来自中国西北地区的陕西、甘肃、青海、宁夏、新疆共2398例非综合征型耳聋患者进行线粒体DNA 12SrRNAm.1555A>G突变图谱的绘制,结果发现126例患者携带m.1555A>G均质性突变;1例异质性改变,均质性突变携带频率为5.25%(126/2398)。在126例突变携带者中发现52例有明确的氨基糖苷类抗生素应用史,该结果提示氨基糖苷类抗生素的使用是该地区聋哑人群中m.1555A>G突变检出率较高的重要原因。统计学分析结果显示m.1555A>G突变携带率在中国西北不同地区、民族之间均有差别。同时发现的包括m.1556C>T在内的26个核苷酸改变位点,与耳聋的相关性尚需更深入的研究。
     第二部分中国西北地区非综合征型耳聋患者GJB2基因突变图谱的绘制与分析及特殊突变的相关分析
     本部分研究在第一部分的基础上,进一步对2398例非综合征型耳聋患者进行了GJB2基因编码区突变图谱的绘制。明确了10.2%(245/2398)的患者为GJB2基因突变所致。经统计学分析显示:在不同地区、不同民族GJB2基因突变携带率均有差别,尤其是热点突变在主要的四个民族汉族、回族、维吾尔族和藏族有所不同,c.235delC是每个民族的热点突变,但是四个民族的携带率并不一致;而高加索人群的热点突变c.35delG在三个主要民族(汉族、回族和维吾尔族)的携带率也有差别。
     本研究同时还发现了GJB2基因突变所致的三个显性遗传家系,最后对一种突变命名进行了校正,进一步丰富了GJB2基因突变相关内容。
Hearing plays an irreplaceable important role in social activities in human daily life. Auditory dysfunction, one of the humanity's greatest suffering and manifested as varying degrees of hearing loss, which is the common disease leading to speech communication barriers.It was found that many known or unknown genetic environmental causes or a combination thereof may cause deafness, at least 50% of which caused only by heredity. However, with the identification of 140 loci for deafness, recent findings indicate that a small number of genes cause a large proportion of genetic hearing loss. The five provinces or autonomous regions in the Silk Road of China contain a large district, with inconsistent distribution of population or nation and relatively backward economy and culture now. Based on the samples from Gansu, Qinghai and Xinjiang collected from the year 2004 to 2009 and with the further research to deaf people from Shaanxi and Ningxia. This study focused on analyzing some common deafness genes in Northwest Chinese deaf population to investigate the molecular pathogenesis and molecular epidemiology, with supplements to gene diagnosis and genetic counseling and provide the basis for the government to develop prevention policies and systems for hearing loss.
     Chapter I:Mutation maps drawing and analysis of mitochondrial DNA 12SrRNA m.1555A>G mutation among non-syndromic hearing loss in Northwest China and exploring analysis of new mutations
     The aim of the present study was to draw mitochondrial DNA12SrRNA m.1555A>G mutation map in a total of 2398 cases of non-syndromic deaf patient representative of the general population of the Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang along the Silk Road.The carrier frequency of mitochondrial DNA 12SrRNA m.1555A>G mutation was estimated to be 5.25%(126/2398) in the studied population.In the 126 m.1555A>G homogeneity mutation carriers, and one heterogeneity carrier,52 cases were found to have a clear history of using aminoglycoside antibiotics, the results suggested that the application of aminoglycoside antibiotics in this region, was an important reason of higher incidence of m.1555A>G mutation in deaf-mute population. Statistically significant difference was showed between different districts or different nations. Simultaneously, the relationship between the 26 discovered nucleotide changes including the m.1556C>T and deafness still needs more deep research.
     ChapterⅡ:Mutation maps drawing and analysis of GJB2 gene mutation among non-syndromic hearing loss in Northwest China and correlation analysis of special mutations
     Based on the research of ChapterⅠ,the aim of the present study was to draw the map of GJB2 gene mutation in 2398 cases of non-syndromic deaf patient representative of the general population of the Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang along the Silk Road. As a result,245 cases were caused by mutations of GJB2 gene, gave a rate of 10.2%(245/2398). The statistical analysis showed that the GJB2 gene mutations carrier rate was in different districts or nations.The hot spot mutations were also different in four main nations:Han, Hui, Uighur or Tibetan. c.235delC was the hot spot mutation among these four nations, but in different rate: the highest rate in Han, with a rate of 10.4%(362/3618), while the lowest in Tibetan. The mutation c.35delG, very popular in Caucasian, also found in three main nations (Han, Hui and Uighur), with the highest carrying rate of 2.9%(12/414) in Uighur compared to the lowest rate of 0.3%(10/3618) in Han.
     This study also found the dominant GJB2 gene mutations in three families. Finally, corrected the name of a mutation, further enriched the content of GJB2 gene mutations.
引文
1.Steel, K.P., Science, medicine, and the future:New interventions in hearing impairment. BMJ,2000.320(7235):p.622-5.
    2. Van Camp, G., P.J. Willems, and R.J.Smith, Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet,1997.60(4):p.758-64.
    3.Lalueza-Fox, C., et al.,Unravelling migrations in the steppe:mitochondrial DNA sequences from ancient central Asians. Proc Biol Sci,2004.271(1542):p.941-7.
    4. Quintana-Murci, L., et al.,Where West Meets East:The Complex mtDNA Landscape of the Southwest and Central Asian Corridor. The American Journal of Human Genetics,2004. 74(5):p.827-845.
    5.Prezant, T.R., et al., Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993.4(3):p.289-294.
    6. Fischel-Ghodsian, N., et al., Mitochondrial mutation associated with nonsyndromic deafness. Am J Otolaryngol,1995.16(6):p.403-8.
    7. Usami, S.-i.M.D., et al., Genetic and Clinical Features of Sensorineural Hearing Loss Associated With the 1555 Mitochondrial Mutation. Laryngoscope April,1997.107(4):p. 483-490.
    8.Malik, S.G,et al., Prevalence of the mitochondrial DNA A1555G mutation in sensorineural deafness patients in island Southeast Asia. J Hum Genet,2003.48(9):p.480-3.
    9. Kupka, S., et al., [Mitochondrial A1555G mutation. Molecular genetic diagnosis in sporadic cases of non-syndromic hearing impairment]. Hno,2004.52(11):p.968-72.
    10. Wu, C.C., et al., Prevalence and clinical features of the mitochondrial m.1555A>G mutation in Taiwanese patients with idiopathic sensorineural hearing loss and association of haplogroup F with low penetrance in three families. Ear Hear,2007.28(3):p.332-42.
    11.Guo, Y.F.,et al., GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol,2008.128(3):p.297-303.
    12. Rydzanicz, M., et al., Screening of the General Polish Population for Deafness-Associated Mutations in Mitochondrial 12S rRNA and tRNASer(UCN) Genes. Genetic Testing and Molecular Biomarkers,2009.13(2):p.167-172.
    13.Kokotas, H.,et al., The A1555G mitochondrial DNA mutation in Greek patients with non-syndromic, sensorineural hearing loss. Biochemical and Biophysical Research Communications,2009.390(3):p.755-757.
    14. Guan, M.X., N. Fischel-Ghodsian, and G. Attardi, A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet,2000.9(12):p.1787-93.
    15.Price, K.E., Aminoglycoside research 1975-1985:prospects for development of improved agents. Antimicrob Agents Chemother,1986.29(4):p.543-8.
    16. Estivill, X., et al., Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment with aminoglycosides. The American Journal of Human Genetics,1998.62(1):p.27-35.
    17. Konings, A., et al., Mutation analysis of mitochondrial DNA 12SrRNA and tRNASer(UCN) genes in non-syndromic hearing loss patients. Mitochondrion,2008.8(5-6):p.377-382.
    18. Berrettini, S., et al.,Mitochondrial non-syndromic sensorineural hearing loss:a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep, 2008.28(1):p.49-59.
    19. Li, R., et al., Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet,2004.41(8):p.615-20.
    20. Wu, C.C.,et al.,Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities. Audiol Neurootol,2008.13(3):p.172-81.
    21.Pandya, A.,et al., Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet,1999.65(6):p.1803-6.
    22. Oshima, T., T.Kudo, and K. Ikeda, Point mutation of the mitochondrial genome in Japanese deaf-mutism. ORL J Otorhinolaryngol Relat Spec,2001.63(6):p.329-32.
    23.Ramsebner, R., et al., Relevance of the A1555G mutation in the 12S rRNA gene for hearing impairment in Austria. Otol Neurotol,2007.28(7):p.884-6.
    24. Bhalla, S., et al., Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochemical and Biophysical Research Communications,2009.385(3):p.445-448.
    25.Wang, Q.J., et al., [Studies of the strategy for newborn gene screening]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2007.42(11):p.809-13.
    26.王秋菊,等,遗传性耳聋资源的收集、保存及利用-综合系统的建立.中华耳科杂志,2003.4(1):p.65-69.
    27. Joint Committee on Infant Hearing.1994 position statement. ASHA,1994.36(12):p.38-41.
    28. Kountakis, S.E., et al., Risk factors for hearing loss in neonates:a prospective study. Am J Otolaryngol,2002.23(3):p.133-7.
    29. Miller, S.A., D.D. Dykes, and H.F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res.,1988.16(3):p.1215.
    30. J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等泽,分子克隆实验指南(第三版).2002:社科学出版社.
    31.Sanger, F.,S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977.74(12):p.5463-7.
    32.李丽,等,1234例新生儿听力与聋病易感基因联合筛查.中国耳鼻咽喉头颈外科,2009(04):p.187-189.
    33. Zhu, Q., et al., [Molecular etiology of 573 patients with nonsyndromic hearing loss in 5 provinces of northwest region of China]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2007.21(10):p.460-2.
    34. Liu, X., et al., [Large-scale screening of mtDNA A1555G mutation in China and its significance in prevention of aminoglycoside antibiotic induced deafness]. Zhonghua Yi Xue Za Zhi,2006.86(19):p.1318-22.
    35.Yuan, Y, et al., Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. Journal of Translational Medicine,2009.7(1):p.79.
    36. Wu, C.C., et al., Prospective Mutation Screening of Three Common Deafness Genes in a Large Taiwanese Cohort with Idiopathic Bilateral Sensorineural Hearing Impairment Reveals a Difference in the Results between Families from Hospitals and Those from Rehabilitation Facilities. Audiol Neurootol,2007.13(3):p.172-181.
    37. Noguchi, Y., et al., Audiovestibular findings in patients with mitochondrial A1555G mutation. Laryngoscope,2004.114(2):p.344-8.
    38. Rybak, L.P., Drug ototoxicity. Annu Rev Pharmacol Toxicol,1986.26:p.79-99.
    39. Prazic, M.,B. Salaj,and R. Subotic, FAMILIAL SENSITIVITY TO STREPTOMYCIN. J Laryngol Otol,1964.78:p.1037-43.
    40. Hu, D.N., et al., Genetic aspects of antibiotic induced deafness:mitochondrial inheritance. J Med Genet,1991.28(2):p.79-83.
    41.郭玉芬,等,中国西北地区线粒体DNA12SrRNAA1555G和GJB2基因突变.中国耳鼻咽喉头颈外科,2006.13(10):p.666-669.
    42.刘晓雯,等,非综合征型聋患者线粒体DNA A1555G突变频率分析.中华耳鼻咽喉头颈外科杂志,2007(10):p.739-742.
    43.徐百成,等,线粒体DNA 12SrRNA A1555G突变在中国西北地区的流行病学研究.中华耳科杂志,2007.5(1):p.56-59.
    44.满荣军,等,新疆少数民族和汉族聋哑学生GJB2基因和线粒体DNA 12SrRNA A1555G突变研究.中国耳鼻咽喉头颈外科,2009(04):p.190-193.
    45.惠培林,等,青海省部分聋校学生线粒体DNA12SrRNAA1555G和GJB2基因突变筛查报告.听力学及言语疾病杂志,2009.17(01):p.23-26.
    46. Quintana-Murci, L., et al.,Where west meets east:the complex mtDNA landscape of the southwest and Central Asian corridor. Am J Hum Genet,2004.74(5):p.827-45.
    47. Yao, Y.-G., et al.,Different Matrilineal Contributions to Genetic Structure of Ethnic Groups in the Silk Road Region in China. Mol Biol Evol,2004.21(12):p.2265-2280.
    48.李春香.等,利用分子遗传学方法探索新疆地区人类起源和迁徙模式.自然科学进展,2007.17(006):p.817-821.
    49.温有锋,西藏藏族起源初探.中国医科大学博士学位论文,2007.
    50.黄辰,等,3个str位点在中国7个民族遗传距离中的研究.西北农林科技大学学报,2004.32(1):p.81-84.
    51.Marchington, D.R., et al., Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes:support for a genetic bottleneck. Am J Hum Genet,1997.60(2):p.408-16.
    52. Sekiguchi, K., K. Kasai, and B.C. Levin, Inter-and intragenerational transmission of a human mitochondrial DNA heteroplasmy among 13 maternally-related individuals and differences between and within tissues in two family members. Mitochondrion,2003.2(6):p. 401-14.
    53.Bae, J.W., et al., Molecular analysis of mitochondrial gene mutations in Korean patients with nonsyndromic hearing loss. Int J Mol Med,2008.22(2):p.175-80.
    54. Tekin, M., et al.,Frequency of mtDNA A1555G and A7445G mutations among children with prelingual deafness in Turkey. European journal of pediatrics,2003.162(3):p.154-158.
    55.Bardien, S., et al., A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness. BMC Medical Genetics,2009.10(1):p.2.
    56. Mkaouar-Rebai, E., et al., New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss. Biochem Biophys Res Commun,2008.369(3):p.849-52.
    57. Scrimshaw, B.J., et al., Rapid identification of an A1555G mutation in human mitochondrial DNA implicated in aminoglycoside-induced ototoxicity. J Hum Genet,1999.44(6):p. 388-90.
    58. Vandebona, H., et al., Prevalence of mitochondrial 1555A-->G mutation in adults of European descent. N Engl J Med,2009.360(6):p.642-4.
    59. Bitner-Glindzicz, M., et al.,Prevalence of mitochondrial 1555A-->G mutation in European children. N Engl J Med,2009.360(6):p.640-2.
    60. Ballana, E.,et al., Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment. Biochemical and Biophysical Research Communications,2006.341(4):p.950-957.
    61.Lehtonen, M.S.,et al., Frequency of mitochondrial DNA point mutations among patients with familial sensorineural hearing impairment. Eur J Hum Genet,2000.8(4):p.315-8.
    62. E, O.S.,et al., The A1555G mtDNA mutation in Danish hearing-impaired patients:frequency and clinical signs. Clin Genet,2002.62(4):p.303-5.
    63.Hutchin, T.P., et al., Prevalence of mitochondrial DNA mutations in childhood/congenital onset non-syndromal sensorineural hearing impairment. J Med Genet,2001.38(4):p. 229-31.
    64. Kupka, S., et al., Mutation A1555G in the 12S rRNA gene and its epidemiological importance in German, Hungarian, and Polish patients. Hum Mutat,2002.1.9(3):p.308-9.
    65.Kokotas, H., et al., The A1555G mitochondrial DNA mutation in Greek patients with non-syndromic, sensorineural hearing loss. Biochem Biophys Res Commun,2009.390(3):p. 755-7.
    66. Tang, H.Y.,et al., Genetic susceptibility to aminoglycoside ototoxicity:How many are at risk? Genetics in Medicine,2002.4(5):p.336.
    67. Li, Z., et al., Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Human Genetics, 2005.117(1):p.9-15.
    68. Samanich, J., et al., Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. Am J Med Genet A, 2007.143(8):p.830-8.
    69. Maniglia, L.P.,et al.,Screening of the mitochondrial A1555G mutation in patients with sensorineural hearing loss. Braz J Otorhinolaryngol,2008.74(5):p.731-6.
    70. Gravina, L.P., et al., Carrier frequency of the 35delG and A1555G deafness mutations in the Argentinean population. Impact on the newborn hearing screening. Int J Pediatr Otorhinolaryngol,2007.71(4):p.639-43.
    71.Liu, Y., et al., Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension,2009.53(6):p. 1083-90.
    72. Lu, J., et al., Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation. Mitochondrion,2010.10(1):p.69-81.
    73. Sternberg, D., et al., Exhaustive scanning approach to screen all the mitochondrial tRNA genes for mutations and its application to the investigation of 35 independent patients with mitochondrial disorders. Hum. Mol. Genet.,1998.7(1):p.33-42.
    74. Dobrowolski, S.F., et al., Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling. Hum Mutat,2009.30(6):p.891-8.
    75.Obayashi, T., et al., Point mutations in mitochondrial DNA in patients with hypertrophic cardiomyopathy. Am Heart J,1992.124(5):p.1263-9.
    76. Hutchin, T., et al.,A Molecular basis for human hypersensitivity of aminoglyscoside antibiotics. Nucl. Acids Res.,1993.21(18):p.4174-4179.
    77. Prezant, T.R., et al., Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993.4(3):p.289-94.
    78. Guan, M.,N. Fischel-Ghodsian, and G. Attardi, Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum. Mol. Genet.,1996.5(7):p.963-971.
    79. Matthijs, G., et al., Non-syndromic deafness associated with a mutation and a polymorphism in the mitochondrial 12S ribosomal RNA gene in a large Zairean pedigree. Eur J Hum Genet, 1996.4(1):p.46-51.
    80. Li,R., et al.,Cosegregation of C-insertion at position 961 with the A1555G mutation of the mitochondrial 12S rRNA gene in a large Chinese family with maternally inherited hearing loss. Am J Med Genet A,2004.124(2):p.113-7.
    81.Sue, C.M., et al., Cochlear origin of hearing loss in MELAS syndrome. Ann Neurol,1998. 43(3):p.350-9.
    82. Ishikawa, K., et al., Nonsyndromic hearing loss caused by a mitochondrial T7511C mutation. Laryngoscope,2002.112(8 Pt 1):p.1494-9.
    83. Hutchin, T.P. and G.A. Cortopassi, Mitochondrial defects and hearing loss. Cell Mol Life Sci, 2000.57(13-14):p.1927-37.
    84. Brown, M.D., et al.,Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations. Hum Mutat,1995.6(4):p.311-25.
    85.Wang, Q., et al., Clinical and molecular characterization of a Chinese patient with auditory neuropathy associated with mitochondrial 12S rRNA T1095C mutation. Am J Med Genet A, 2005.133A(1):p.27-30.
    86. Tessa, A.,et al., Maternally inherited deafness associated with a T1095C mutation in the mDNA. Eur J Hum Genet,2001.9(2):p.147-9.
    87. Bacino, C., et al., Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness. [Article]. Pharmacogenetics June,1995.5(3):p.165-172.
    88. Zhu, Y, et al., Mitochondrial haplotype and phenotype of 13 Chinese families may suggest multi-original evolution of mitochondrial C1494T mutation. Mitochondrion,2009. In Press, Corrected Proof.
    89. Chen, J., et al., Maternally inherited aminoglycoside-induced and nonsyndromic hearing loss is associated with the 12S rRNA C1494T mutation in three Han Chinese pedigrees. Gene, 2007.401(1-2):p.4-11.
    90. Tanimoto, H., et al., A novel mitochondrial mutation,1556C-->T, in a Japanese patient with streptomycin-induced tinnitus. Acta Otolaryngol,2004.124(3):p.258-61.
    91.Rydzanicz, M., et al., Screening of the general Polish population for deafness-associated mutations in mitochondrial 12S rRNA and tRNA Ser(UCN) genes. Genet Test Mol Biomarkers,2009.13(2):p.167-72.
    92. GUAN, M.-X., Molecular Pathogenetic Mechanism of Maternally Inherited Deafness. Annals of the New York Academy of Sciences,2004.1011(Mitochondrial Pathogenesis: From Genes and Apoptosis to Aging and Disease):p.259-271.
    93.Sugata, A.,et al.,High-throughput screening for GJB2 mutations--its clinical application to genetic testing in prelingual deafness screening for GJB2 mutations. Auris Nasus Larynx, 2002.29(3):p.231-9.
    94. Kelsell, D.P., et al., Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature,1997.387(6628):p.80-83.
    95.Scott, D.A., et al.,Connexin mutations and hearing loss. Nature,1998.391(6662):p.32.
    96. Gerido, D.A. and T.W.White, Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta,2004.1662(1-2):p.159-70.
    97.Common, J.E., et al.,Further evidence for heterozygote advantage of GJB2 deafness mutations:a link with cell survival. J Med Genet,2004.41(7):p.573-5.
    98.Maeda, Y,et al., In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet,2005.14(12):p.1641-50.
    99. Thonnissen, E., et al., Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet,2002.111(2):p. 190-7.
    100. Jun, A.I., et al., Temporal bone histopathology in connexin 26-related hearing loss. Laryngoscope,2000.110(2 Pt 1):p.269-75.
    101.Ballana E, et al. The Connexin-deafness homepage.2010; Available from: http://davinci.crg.es/deafness/index.php.
    102. Green, G.E., et al., Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. Jama,1999.281(23):p.2211-6.
    103.Dong, J., et al., Nonradioactive detection of the common Connexin 26 167delT and 35delG mutations and frequencies among Ashkenazi Jews. Mol Genet Metab,2001.73(2):p.160-3.
    104. Abe, S., et al., Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet, 2000.37(1):p.41-3.
    105.Liu, X.Z., et al., The prevalence of connexin 26(GJB2) mutations in the Chinese population. Hum Genet,2002.111(4-5):p.394-7.
    106.李庆忠,等,GJB2基因突变始祖效应对中国耳聋人群的影响 解放军医学杂志,2005.30(5):p.394-396.
    107.付四清,等,语前聋患儿GJB2基因35delG突变研究.中国妇幼保健,2008(20).
    108. Sobe, T., et al., The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet,2000.106(1):p.50-7.
    109. Chang, E.H.,G. Van Camp, and R.J. Smith, The role of connexins in human disease. Ear Hear,2003.24(4):p.314-23.
    110. Kokotas, H., et al., Sudden hearing loss in a family with GJB2 related progressive deafness. International Journal of Pediatric Otorhinolaryngology,2008.72(11):p.1735-1740.
    111.Goodenough, D.A. and D.L. Paul, Gap junctions. Cold Spring Harb Perspect Biol,2009. 1(1):p. a002576.
    112. Cryns, K., et al.,A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet,2004.41(3):p.147-54.
    113.Wiszniewski, W., et al., High frequency of GJB2 gene mutations in Polish patients with prelingual nonsyndromic deafness. Genet Test,2001.5(2):p.147-8.
    114.王苹,等,Connexin 26基因233delC突变与中国人先天性耳聋的研究.中国耳鼻咽喉头颈外科杂志,2001.8(1):p.24-26.
    115.Lucotte, G. and F. Dieterlen, The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness:European carrier frequencies and evidence for its origin in ancient Greece. Genet Test,2005.9(1):p.20-5.
    116. Hamelmann, C., et al., Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat,2001.18(1):p.84-5.
    117. Han, S.-H.,et al., Carrier frequency of GJB2 (connexin-26) mutations causing inherited deafness in the Korean population. Journal of Human Genetics,2008.53(11/12):p. 1022-1028.
    118. Dai, P., et al., The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet Med,2007.9(5):p.283-9.
    119.Wattanasirichaigoon, D., et al., High prevalence of V37I genetic variant in the connexin-26 (GJB2) gene among non-syndromic hearing-impaired and control Thai individuals. Clin Genet,2004.66(5):p.452-60.
    120. Oliveira, C.A.,et al., Allelic frequencies of the 35delG mutation of the GJB2 gene in different Brazilian regions. Genet Test,2007.11(1):p.1-3.
    121.Posukh, O.,et al.,First molecular screening of deafness in the Altai Republic population. BMC Med Genet,2005.6:p.12.
    122. Hwa, H.L.,et al., Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med,2003.5(3):p.161-5.
    123.Liu, Y.,et al., Connexin26 gene(GJB2):prevalence of mutations in the Chinese population. J Hum Genet,2002.47(12):p.688-90.
    124. Choung, Y.H., S.K. Moon, and H.J. Park, Functional study of GJB2 in hereditary hearing loss. Laryngoscope,2002.112(9):p.1667-71.
    125.Dai, P., et al., GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment. Journal of Translational Medicine,2009.7(1):p.26.
    126. Ohtsuka, A., et al., GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum Genet,2003.112(4):p.329-33.
    127. Tekin, M., et al., GJB2 Mutations in Mongolia:Complex Alleles, Low Frequency, and Reduced Fitness of the Deaf. Ann Hum Genet,2010.
    128. RamShankar, M.,et al., Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet,2003.40(5):p. e68.
    129. Maheshwari, M., et al., Screening of families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene:Indian scenario. Am J Med Genet A,2003.120(2):p.180-4.
    130. Santos, R.L., et al., Low prevalence of Connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. Clin Genet,2005.67(1):p. 61-8.
    131.Snoeckx, R.L., et al., GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population. Am J Med Genet A,2005.135(2):p.126-9.
    132. Mustapha, M., et al., Autosomal recessive non-syndromic hearing loss in the Lebanese population:prevalence of the 30delG mutation and report of two novel mutations in the connexin 26 (GJB2) gene. J Med Genet,2001.38(10):p. E36.
    133. Shahin, H., et al., Genetics of congenital deafness in the Palestinian population:multiple connexin 26 alleles with shared origins in the Middle East. Hum Genet,2002.110(3):p. 284-9.
    134. Najmabadi, H.,et al.,GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Hum Mutat,2002.19(5):p.572.
    135.Uyguner, O.,et al., Frequencies of gap-and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clin Genet,2003.64(1):p.65-9.
    136. Bayazit, Y.A., et al., GJB2 gene mutations causing familial hereditary deafness in Turkey. Int J Pediatr Otorhinolaryngol,2003.67(12):p.1331-5.
    137. Tekin, M.,et al.,Evidence for single origins of 35delG and delE120 mutations in the GJB2 gene in Anatolia. Clin Genet,2005.67(1):p.31-7.
    138. Kalay, E., et al., GJB2 mutations in Turkish patients with ARNSHL:prevalence and two novel mutations. Hear Res,2005.203(1-2):p.88-93.
    139. Denoyelle,E, et al., Prelingual deafness:high prevalence of a 30delG mutation in the connexin 26 gene. Human Molecular Genetics,1997.6(12):p.2173-2177.
    140. Murgia, A., et al., Cx26 deafness:mutation analysis and clinical variability. J Med Genet, 1999.36(11):p.829-32.
    141.Denoyelle, F., et al.,Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect:implications for genetic counselling. Lancet,1999. 353(9161):p.1298-303.
    142. Roux, A.F., et al., Molecular epidemiology of DFNB1 deafness in France. BMC Med Genet, 2004.5:p.5.
    143. P, M.P., et al., Correlation between GJB2 mutations and audiological deficits:personal experience. Eur Arch Otorhinolaryngol,2008.
    144. Pampanos, A.,et al., Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol,2002.65(2):p.101-8.
    145.Iliades, T., et al., Prelingual nonsyndromic hearing loss in Greece. Molecular and clinical findings. ORL; Journal For Oto-Rhino-Laryngology And Its Related Specialties,2002.64(5): p.321-323.
    146. Frei, K., et al., Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. Eur J Hum Genet,2002.10(7):p.427-32.
    147. Janecke, A.R., et al., Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations-phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet,2002.111(2):p.145-53.
    148. Medlej-Hashim, M., et al., Non-syndromic recessive deafness in Jordan:mapping of a new locus to chromosome 9q34.3 and prevalence of DFNB1 mutations. Eur J Hum Genet,2002. 10(6):p.391-4.
    149. Kupka, S., et al., Frequencies of GJB2 mutations in German control individuals and patients showing sporadic non-syndromic hearing impairment. Hum Mutat,2002.20(1):p.77-8.
    150.Zoll, B., et al., Evaluation of Cx26/GJB2 in German hearing impaired persons:mutation spectrum and detection of disequilibrium between M34T (c.101T>C) and-493del10.Hum Mutat,2003.21(1):p.98.
    151.Minarik, G, et al., High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys,2003.22(4):p. 549-56.
    152. Alvarez, A., et al., High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A,2005.137A(3):p.255-8.
    153.Seeman, P., et al., Spectrum and frequencies of mutations in the GJB2 (Cx26) gene among 156 Czech patients with pre-lingual deafness. Clin Genet,2004.66(2):p.152-7.
    154. Toth, T.,et al.,GJB2 mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Hum Mutat,2004.23(6):p.631-2.
    155.Masmoudi, S., et al., Determination of the frequency of connexin26 mutations in inherited sensorineural deafness and carrier rates in the Tunisian population using DGGE. J Med Genet,2000.37(11):p. E39.
    156. Gasmelseed, N.M., et al.,Low frequency of deafness-associated GJB2 variants in Kenya and Sudan and novel GJB2 variants. Hum Mutat,2004.23(2):p.206-7.
    157. Dahl, H.H.,et al., Prevalence and nature of connexin 26 mutations in children with non-syndromic deafness. Med J Aust,2001.175(4):p.191-4.
    158. Prasad, S., et al., Genetic testing for hereditary hearing loss:connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA). Hum Mutat,2000.16(6):p.502-8.
    159. Pandya, A.,et al., Frequency and distribution of GJB2(connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med,2003.5(4):p. 295-303.
    160. Uyguner, O., et al., The novel R75Q mutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family. Clin Genet,2002.62(4):p. 306-9.
    161.Piazza, V.,et al., Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin Genet,2005.68(2):p.161-6.
    162.'Feldmann, D.,et al., The GJB2 mutation R75Q can cause nonsyndromic hearing loss DFNA3 or hereditary palmoplantar keratoderma with deafness. Am J Med Genet A,2005. 137(2):p.225-7.
    163. Lin, D., et al., Assessment of denaturing high-performance liquid chromatography (DHPLC) in screening for mutations in connexin 26 (GJB2). Hum Mutat,2001.18(1):p.42-51.
    164. Wu, B.L., et al., Effectiveness of sequencing connexin 26 (GJB2) in cases of familial or sporadic childhood deafness referred for molecular diagnostic testing. Genet Med,2002. 4(4):p.279-88.
    165.Yuge, I., et al., Identification of 605ins46, a novel GJB2 mutation in a Japanese family. Auris Nasus Larynx,2002.29(4):p.379-82.
    166. den Dunnen, J.T. and S.E. Antonarakis, Mutation nomenclature extensions and suggestions to describe complex mutations:a discussion. Hum Mutat,2000.15(1):p.7-12.
    1.Gerido, D.A. and T.W. White, Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta,2004.1662(1-2):p.159-70.
    2. Chang, E.H., G. Van Camp, and R.J. Smith, The role of connexins in human disease. Ear Hear, 2003.24(4):p.314-23.
    3.Lee, J.R. and T.W. White, Connexin-26 mutations in deafness and skin disease. Expert Reviews in Molecular Medicine,2009.11(e35):p.1-19.
    4. Bruzzone, R., Learning the language of cell-cell communication through connexin channels. Genome Biol,2001.2(11):p. REPORTS4027.
    5.Kumar, N.M. and N.B. Gilula, The gap junction communication channel. Cell,1996.84(3):p. 381-8.
    6. Goodenough, D.A. and D.L. Paul, Gap junctions. Cold Spring Harb Perspect Biol,2009.1(1): p. a002576.
    7. Kikuchi, T., et al., Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev, 2000.32(1):p.163-6.
    8. Lautermann, J., et al., Developmental expression patterns of connexin26 and-30 in the rat cochlea. Dev Genet,1999.25(4):p.306-11.
    9. Kelley, P.M., et al., Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss:molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics,1999.62(2):p.172-6.
    10. Xia, A.,et al., Expression of connexin 30 in the developing mouse cochlea. Brain Res,2001. 898(2):p.364-7.
    11.Xia, A.P.,et al., Expression of connexin 31 in the developing mouse cochlea. Neuroreport, 2000.11(1.1):p.2449-53.
    12. Forge, A., et al., Connexins and gap junctions in the inner ear. Audiol Neurootol,2002.7(3): p.141-5.
    13.Cohen-Salmon, M., et al., Expression of the connexin43-and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res,2004.316(1):p.15-22.
    14. Kelsell, D.P., et al., Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature,1997.387(6628):p.80-83.
    15.Common, J.E., et al.,Further evidence for heterozygote advantage of GJB2 deafness mutations:a link with cell survival. J Med Genet,2004.41(7):p.573-5.
    16. Maeda, Y.,et al., In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet,2005.14(12):p.1641-50.
    17. Thonnissen, E., et al., Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet,2002.111(2):p. 190-7.
    18. Jun, A.I., et al., Temporal bone histopathology in connexin 26-related hearing loss. Laryngoscope,2000.110(2 Pt 1):p.269-75.
    19. Ballana E, et al. The Connexin-deafness homepage.2010; Available from: http://davinci.crg.es/deafness/index.php.
    20. Green, G.E., et al.,Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. Jama,1999.281(23):p.2211-6.
    21.Abidi, O., et al., GJB2 (connexin 26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2-35delG mutation. Int J Pediatr Otorhinolaryngol,2007.71(8):p.1239-45.
    22. Al-Qahtani, M.H., et al., Spectrum of GJB2 Mutations in a Cohort of Nonsyndromic Hearing Loss Cases from the Kingdom of Saudi Arabia. Genetic Testing and Molecular Biomarkers, 2010.14(1):p.79-83.
    23.Alvarez, A., et al., High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A,2005.137(3):p.255-8.
    24. Angeli, S.I., Phenotype/Genotype Correlations in a DFNB1 Cohort With Ethnical Diversity. Laryngoscope,2008.
    25. Lazar, C., et al., Prevalence of the c.35delG and p.W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. International Journal of Pediatric Otorhinolaryngology,2010.74(4):p.351-355.
    26. Wiszniewski, W., et al., High frequency of GJB2 gene mutations in Polish patients with prelingual nonsyndromic deafness. Genet Test,2001.5(2):p.147-8.
    27.韩明鲲,等,散发感音神经性聋患者中GJB2基因突变检测的临床意义.中国耳鼻咽喉头颈外科,2008(04).
    28. Lucotte, G. and F. Dieterlen, The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness:European carrier frequencies and evidence for its origin in ancient Greece. Genet Test,2005.9(1):p.20-5.
    29. Dong, J.,et al.,Nonradioactive detection of the common Connexin 26 167de1T and 35de1G mutations and frequencies among Ashkenazi Jews. Mol Genet Metab,2001.73(2):p.160-3.
    30. Hamelmann, C., et al., Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat,2001.18(1):p.84-5.
    31.Sobe, T., et al., The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet,2000.106(1):p.50-7.
    32. Gravina, L.P., et al., Prevalence of DFNB1 mutations in Argentinean children with non-syndromic deafness. Report of a novel mutation in GJB2. International Journal of Pediatric Otorhinolaryngology,2010.74(3):p.250-254.
    33.Oliveira, C.A.,et al.,Allelic frequencies of the 35delG mutation of the GJB2 gene in different Brazilian regions. Genet Test,2007.11(1):p.1-3.
    34. Posukh, O., et al., First molecular screening of deafness in the Altai Republic population. BMC Med Genet,2005.6:p.12.
    35.Tekin, M.,et al., GJB2 Mutations in Mongolia:Complex Alleles, Low Frequency, and Reduced Fitness of the Deaf. Ann Hum Genet,2010.
    36.满荣军,等,新疆少数民族和汉族聋哑学生GJB2基因和线粒体DNA 12SrRNA A1555G突变研究.中国耳鼻咽喉头颈外科,2009(04):p.190-193.
    37. Abe, S.,et al., Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet,2000. 37(1):p.41-3.
    38. Han, S.-H., et al., Carrier frequency of GJB2 (connexin-26) mutations causing inherited deafness in the Korean population. Journal of Human Genetics,2008.53(11/12):p. 1022-1028.
    39. Wattanasirichaigoon, D., et al., High prevalence of V37I genetic variant in the connexin-26 (GJB2) gene among non-syndromic hearing-impaired and control Thai individuals. Clin Genet,2004.66(5):p.452-60.
    40. Guo, Y.F., et al.,GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol,2008.128(3):p.297-303.
    41.Yang, J.J., et al., Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol,2007.12(3):p.198-208.
    42. Liu, Y., et al., Connexin26 gene(GJB2):prevalence of mutations in the Chinese population. J Hum Genet,2002.47(12):p.688-90.
    43.Choung, Y.H., S.K. Moon, and H.J. Park, Functional study of GJB2 in hereditary hearing loss. Laryngoscope,2002.112(9):p.1667-71.
    44. Kokotas, H., et al., Sudden hearing loss in a family with GJB2 related progressive deafness. International Journal of Pediatric Otorhinolaryngology,2008.72(11):p.1735-1740.
    45.Cryns, K., et al., A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet,2004.41(3):p.147-54.
    46. Grifa, A., et al., Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet,1999.23(1):p.16-8.
    47. Lerer, I., et al., A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness:A novel founder mutation in Ashkenazi Jews. Hum Mutat,2001. 18(5):p.460.
    48. Del Castillo, I.,et al., Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects:a multicenter study. Am J Hum Genet,2003.73(6):p.1452-8.
    49. Martinez, A.D., et al.,Gap-Junction Channels Dysfunction in Deafness and Hearing Loss. Antioxidants & Redox Signaling,2009.11(2):p.309-322.
    50. del Castillo, F.J., et al.,A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet,2005.42(7):p.588-94.
    51.Medica, I., et al.,C.35delG/ GJB2 and del(GJB6-D13S1830) mutations in Croatians with prelingual non-syndromic hearing impairment. BMC Ear Nose Throat Disord,2005.5:p.11.
    52. Utrera, R., et al., Detection of the 35delG/GJB2 and del(GJB6-D13S1830) mutations in Venezuelan patients with autosomal recessive nonsyndromic hearing loss. Genet Test,2007. 11(4):p.347-52.
    53.Batissoco, A.C., et al., Prevalence of GJB2 (connexin-26) and GJB6 (connexin-30) mutations in a cohort of 300 Brazilian hearing-impaired individuals:implications for diagnosis and genetic counseling. Ear Hear,2009.30(1):p.1-7.
    54. Bhalla, S., et al., Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochemical and Biophysical Research Communications,2009.385(3):p.445-448.
    55. Lee, K.Y., et al., Molecular analysis of the GJB2, GJB6 and SLC26A4 genes in Korean deafness patients. Int J Pediatr Otorhinolaryngol,2008.72(9):p.1301-9.
    56. Esmaeili, M., M. Bonyadi, and M. Nejadkazem, Common mutation analysis of GJB2 and GJB6 genes in affected families with autosomal recessive non-syndromic hearing loss from Iran:simultaneous detection of two common mutations (35delG/del(GJB6-D13S1830)) in the DFNB1-related deafness. Int J Pediatr Otorhinolaryngol,2007.71(6):p.869-73.
    57.韩东一,等,中国散发耳聋患者GJB6基因的突变筛查.中国耳鼻咽喉头颈外科,2006.13(10):p.670-672.
    58. Pandya, A., et al., Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med,2003.5(4):p. 295-303.
    59. Yum, S.W., J. Zhang, and S.S.Scherer, Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiology of Disease,2010. In Press, Corrected Proof.
    60. Rodriguez-Paris, J. and I. Schrijver, The digenic hypothesis unraveled:The GJB6 del(GJB6-D13S1830) mutation causes allele-specific loss of GJB2 expression in cis. Biochemical and Biophysical Research Communications,2009.389(2):p.354-359.
    61.Wilch, E., et al., A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression. Clin Genet,2010. In Press.
    62. Xia, J.H., et al., Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet,1998.20(4):p.370-3.
    63.Lopez-Bigas, N., et al., Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum. Mol. Genet.,2001.10(9):p. 947-952.
    64. Liu, X.-Z., et al., Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Human Genetics,2009.125(1):p.53-62.
    65. Bergoffen, J., et al., Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science, 1993.262(5142):p.2039-42.
    66.Liu, X.Z.,et al., Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet,2001.10(25):p.2945-51.
    67. Paznekas, W.A., et al., Connexin 43 (GJA1) Mutations Cause the Pleiotropic Phenotype of Oculodentodigital Dysplasia. The American Journal of Human Genetics,2003.72(2):p. 408-418.
    68. Hong, H.M., et al., Novel mutations in the connexin43 (GJA1) and GJA1 pseudogene may contribute to nonsyndromic hearing loss. Hum Genet,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700