Ad5/35 mCD20载体的构建及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】B细胞来源的淋巴瘤是淋巴瘤中最常见的一种类型,而免疫治疗在该类型淋巴瘤的治疗中具有重要的作用;编码肿瘤相关抗原腺病毒载体感染树突状细胞(Dendritic cells,DC)是一种很有前景的肿瘤疫苗。然而,目前常用的5型腺病毒载体感染DC的效率较低。本研究的目的在于比较5型和5/35型腺病毒载体感染DC的效率,并在此基础上克隆小鼠CD20(mCD20)基因、构建编码mCD20的5/35型腺病毒载体(Ad5/35 mCD20),并鉴定其表达产物,为编码CD20基因的5/35型腺病毒载体修饰DC作为一种B细胞淋巴瘤的免疫基因治疗手段提供实验依据和前期的基础。
     【方法】从健康人外周血单个核细胞中培养DC,用不同病毒滴度的Ad5 EGFP或Ad5/35 EGFP感染DC,用流式细胞仪双染色,检测EGFP的表达,比较两型不同的腺病毒载体感染DC的效率。运用分子克隆技术,从C57BL/6小鼠中克隆小鼠CD20,经PCR、酶切进行鉴定并测序正确后,将该基因cDNA片段插入腺病毒穿梭质粒pDC315中,构建pDC315 mCD20。采用Ad Max~(TM)腺病毒载体包装体系,将pDC315mCD20与含35型腺病毒纤维的腺病毒骨架质粒通过磷酸钙沉淀法共转染至293细胞中,经反复扩增、纯化获得Ad5/35 mCD20。将鉴定后的Ad5/35mCD20转染至HepG2细胞中,经抗鼠CD20单克隆抗体染色,通过流式细胞技术检测CD20的表达。
     【结果】用每个细胞100、50和10 pfu的Ad5 EGFP或Ad5/35 EGFP感染人DC,经流式细胞仪CD11a-PE和EGFP双染色,其感染效率分别为28.41%,17.36%,3.22%and69.12%,49.03%,36.89%。从C57BL/6小鼠克隆的mCD20 cDNA经测序证实与GeneBank提供的序列(No.M62541)完全一致。Ad5/35mCD20转染HepG2细胞24h,流式细胞仪检测其表达为38.72%。
     【结论】两型腺病毒载体感染DC的效率与病毒感染的滴度成正比,滴度愈大其感染DC的效率愈高;在相同的病毒滴度时,5/35型腺病毒载体感染DC的效率明显地高于5型腺病毒载体。将小鼠CD20基因插入E1区缺失的5/35型腺病毒载体构建的Ad5/35 mCD20能有效地表小鼠CD20蛋白,为后续研究编码CD20基因的5/35型腺病毒载体修饰DC作为B细胞淋巴瘤免疫基因治疗的一种手段提供一种有用的工具。
[Objective]: B-cell lymphoma is one of the most common types of lymphomas,and immunotherapy plays an important role in the treatment of the lymphoma. Dendritic cells (DC) which is infected by adenovirus and encode as the tumor associated antigen (TAA) is a promising neoplasm tumor vaccine, however, the commonly used adenovirus subgenus C serotypes 5 (Ad5) carrier DC infections is of low efficiency. This research aims at comparing the efficiency of adenovirus subgenus C serotypes 5(Ad5) carrier DC infection with adenovirus subgenus B serotypes 5/35 (Ad5/35) carrier DC infection, cloning the CD20 (mCD20) gene of mouse, establishing the adenovirus vector 5/35 of coding mCD20 (Ad5/35mCD20), identifying expression outcomes,providing experimental evidence and initial basis for DC modification of adenovirus vector 5/35 coding CD20 gene being used as the immune gene therapy of B-cell lymphoma.
     [Method]: To culture DC in Peripheral blood mononuclear cell (PBMC) in the healthy people, infect DC with Ad5EGFP or Ad5/35EGFP of different virus tites, double-dye it with the flow cytometry device,check the expression of EGFP,and then compare the efficiency of the two different adenovirus vector infecting DC. The molecular clonal technology is employed to clone the mouse CD20 from mouse C57BL/6, insert cDNA segment of the gene into adenovirus shuttle plasmid pDC315 and establish pDC315mCD20 after PCR, restriction enzyme digesting, identification and DNA sequencing being confirmed. Ad MaxTM adenovirus vector packing system is employed to transfect pDC315mCD20 and the adenovirus framework plasmid containing adenovirus vector 5/35 fiber to 293 cells through the calcium phosphate precipitation method, and obtain Ad5/35mCD20 by repeated amplification and purification. The plasmid encodging the fusion genemCD20 was transfected into HepG2 cells which will be detected and identified by flow cytometry.
     [Result]: To infect the human DC with 100,50 or 10 pfu Ad5EGFP and Ad5/35EGFP of each cell, after double-dying CD11 a-PE and EGFP through the flow cytometry device the infection efficiencies are 28.41%,17.36%, 3.22% and 69.12%,49.03%,36.89% respectively. The cloned mCD20cDNA from the mouse C57BL/6 proves through DNA sequencing to have the same sequence (No.M62541) provided by Gene Bank. The plasmid was transfected into HepG2 cells and the stable expression clone was obtained. After dying CD20, the expression of mCD20 in the cells which is 38.72% was detected by flow cvtometry.
     [Conclusion]: The efficiencies of the two adenovirus vector carrier DC infections are in direct ratio with the tites of virus infection, and the higher tite will have the higher efficiency of DC infection; with the same virus tite, 5/35 adenovirus vector has an obviously higher efficiency of DC infection than adenovirus subgenus C serotypes 5 (Ad5). The Ad5/35mCD20 established by inserting the gene of the mouse CD20 into 5/35 adenovirus vector without section El can effectively express protein of the mouse CD20, thereby providing a useful tool for further research on 5/35 adenovirus vector coding CD20 gene, DC modification could be used as an approach for the immune gene therapy of B-cell lymphoma.
引文
1. Greenlee RT, et al. Cancer statistics, 2001. CA Cancer J Clin 2001 Mar-Apr; 51(2):144-156.
    2. Ghielmini M et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer Research (SAKK) Ann Oncol. 2005; 16: 1675-1682.
    3. Hiddemann W, et al. Front-Line Therapy with Rituximab added to the Combination of Cyclophosphamide, Doxorubicin, Vincristine and Prednisone (CHOP) significantly improves the Outcome of Patients with Advanced Stage Follicular Lymphomas as compared to CHOP alone - Results of a Prospective Randomized Study of the German Low Grade Lymphoma Study Group (GLSG). Blood, 2005; 106:3725-3732.
    4. Mangel J, et al. Pharmacokinetic study of patients with follicular or mantle cell immunotherapy following autologous stem cell transplantation. Ann Oncol. 2003; 14: 758-765.
    5. Olivieri A, et al. A New Schedule of CHOP/Rituximab Plus Granulocyte-Macrophage Colony-Stimulating Factor Is an Effective Rescue for Patients with Aggressive Lymphoma Failing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant, 2005; 11:627-636.
    6. Eisenbeis CF, et al. Combination immunotherapy of B-cell non-Hodgkin's lymphoma with rituximab and interleukin-2: a preclinical and phase I study. Clin Cancer Res, 2004; 10:6101-6110.
    7. Ansell SM, et al. Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood, 2002; 99:67-74.
    8. Davis TA, et al. Combination Immunotherapy of Relapsed or Refractory Low-Grade or Follicular Non-Hodgkin's Lymphoma with Rituximab and Interferon-a-2a. Clin Cancer Res, 2000; 6:2644-2652.
    9. Davis TA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of retreatment. J Clin Oncol, 2000; 18:3135-3143.
    10.Coiffier B,et al.Rituximab(anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma:a multicenter phase Ⅱ study.Blood,1998;92:1927-1932.
    11.Golay J,et al.CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia:further regulation by CD55 and CD59.Blood,2001;98:3383-3389.
    12.Davis TA,et al.Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression.Clin.Cancer Res,1999;5:611-615
    13.Banchereau J,et al.Dendritic cells as therapeutic vaccines against cancer.Nat Rev Immunol,2005;5:296-306.
    14.Ardavin C,et al.Dendritic cells:immunobiology and cancer immunotherapy.Immunity,2004;20:17-23.
    15.Hsu FJ,et al.Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat Med,1996;2:52-58.
    16.Hsu FJ,et al.Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma-long-term results of a clinical trial.Blood,1997;89:3129-3135.
    17.Zhong L,et al.Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells.Eur J Immunol,1999;29:964-972.
    18.李邦华,黄兆明.B细胞淋巴瘤治疗新药美罗华临床研究进展[J]。国外医学肿瘤学分册,2001,28(3):228.
    19.McLaughlin P,Grillo-Lopez,AJ,Link Bk,et al.Rituximab chimeric anti-CD20monoclonal antibody therapy for relapsed indolent lymphoma:half of patients respond to a four-dose treatment program[J].J Clin Oncol,1998,16:2825-2833.
    20.Coiffer,Haioun C,Ketterer N,et al.Ritucimab(anti-CD20 mono-clonal antibldy)for the treatment of patients with relapsing of refractory aggressive lymphoma:a multicenter Phase Ⅱ study[J].BLood,1998,92:1927-1932.
    21.Bykovskaia SN,et al.Differentiation of immunostimulatory stem-cell-and monocyte-derived dendritic cells involves maturation of intracellular compartments responsible for antigen presentation and secretion.Stem Cells.2002;20(5):380-393.
    22.Bottomly K.T cells and dendritic cells get intimate.Science.1999 Feb 19;283(5405):1124-1125.
    23.沈丽佳,方唯意,谢思明,等.小鼠B淋巴瘤A20细胞株mCD99L2基因表达检测及真核表达载体构建[J].南方医科大学学报,2006,26(2):144-149
    24.科亚,范我,吴锦昌.抗CD20抗体治疗非霍奇金淋巴瘤[J].国外医学:肿瘤学分册,2005,32(1):74-77.
    25 Sant'Angelo DB,et al.The imprint of intrathymic self-peptides on the mature T cell receptor repertoire.Immunity,1997 Oct;7(4):517-524.
    26 Hu Q,et al.Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes.Immunity,1997 Aug;7(2):221-231.
    27 Schwartz RH.T cell clonal anergy.Curr Opin Immunol.1997 Jun;9(3):351-357.
    28 Fong L,et al.Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy.J Immunol,2001 Dec 15;167(12):7150-7156.
    29 Overwijk WW,et al.gp100/pmel 17 is a murine tumor rejection antigen:induction of "self"-reactive,tumoricidal T cells using high-affinity,altered peptide ligand.J Exp Med.1998 Jul 20;188(2):277-286.
    30 Chiriva-Internati M,et al.Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type16 E7antigen gene transduction into dendritic cells.Eur J Immunol.2002 Jan;32(1):30-38.
    31 McArthur JG,et al.Induction of protective anti-tumor immunity by gene-modified dendritic cells.J Immunother.1998 Jan;21(1):41-47.
    32 Wan Y,et al.Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination.Hum Gene Ther.1997 Jul 20;8(11):1355-1363.
    33 Frolkis M,et al.Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors.Cancer Gene Ther.2003 Mar;10(3):239-249.
    34.王玉刚,黄英,谷欣,等.抗CD20嵌合抗体的构建与表达[J].细胞与分子免疫学杂志,2006,22(3):363-367
    35.Li Y,Pong R C,Jeffrey M,et al.Loss of adenoviral receptor expression in human bladder cancer cells:a potential impact on the efficacy of gene therapy[J].Cancer Res,1999,59:325-330.
    36. Koizumi N, Mizuguchi H, Hosono T, et al. Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide[J].Biochim Biophys Acta, 2001, 1568: 13-20.
    37. Miller C R, Buchsbaum D J,Reynolds P N, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer [J]. Cancer Res, 1998, 58: 5738-5748.
    38. Nalbantoglu J, Pari G, Karpati G, et al. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells[J].Hum Gene Ther, 1999, 10: 1009-1019.
    39. Okada N, Tsukada Y, Nakagawa S, et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors [J]. Biochem Biophys Res Commun, 2001, 282: 173-179.
    40. Tillman B W, Gruijl T D, Bakker L, et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector [J]. J Immunol, 1999, 162: 6378-6383.
    41. Shayakhmetov D M, Papayannopoulou T, Stamatoyannopoulos G, et al. Efficient gene transfer into human CD34-cells by a retargeted adenovirus vector [J]. J Virol, 2000, 74: 2567-2583.
    42. Nilsson M, Ljungberg J, Richter J,et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells [J]. J Gene Med, 2004, 6: 631-641.
    43. De Gruijl TD, et al. Intradermal delivery of adenoviral type-35 vectors leads to high efficiency transduction of mature, CD8+ T cell-stimulating skin-emigrated dendritic cells. J Immunol, 2006; 177(4):2208-2215.
    44. Marini III F C, Yu Q, Wickham T, et al. Adenovirus as a gene therapy vector for hematopoietic cells [J]. Cancer Gene Ther, 2000, 7(6):814-825.
    45. Havenga M J E , Lemckert A A C, Ophorst J A E, et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease[J]. J Virol, 2002; 76: 4612-4620.
    46. Shayakhmetov DM, Li ZY, Ternovoi V, et al. The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 2003; 77(6):3712-3723.
    47. Nilsson M, Ljungberg J, Richter J, et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J Gene Med 2004; 6(6):641-645.
    48. Ludewig B, Ochsenbein AF, Odermatt B, et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 2000; 191(5):795-804.
    49. Yotnda P, Onishi H, Heslop H E, et al. Efficient infection of primitive hematopoietic stem cells by modified adenovirus [J]. Gene Ther, 2001, 8: 930-937.
    50. Sakurai F, 1 Mizuguchi H, Yamaguchi T, et al. Characterization ofin vitroandin vivogene transfer properties of adenovirus serotype 35 vector [J]. Mol Ther, 2003, 8(5):813-821.
    51 Tshibashi K, et al. Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and beta subunit of the high-affinity IgE receptor .Gene. 2001 Feb 7; 264(1):87-93.
    52 Alas S, et al. Rituximab modifies the cisplatin-mitochondrial signaling pathway, resulting in apoptosis in cisplatin-resistant non-Hodgkin's lymphoma. Clin Cancer Res. 2002 Mar; 8(3):836-845.
    53 Erz J, et al. Level of CD 20-expression and efficacy of rituximab treatment in patients with resistant or relapsing B-cell prolymphocytic leukemia and B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2002 Jan; 43(1 ): 149-151.
    54 Maloney DG, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood. 1997 Sep 15; 90(6): 2188-2195.
    55 Davis TA, et al. Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma with rituximab and interferon-alpha-2a. Clin Cancer Res. 2000 Jul; 6(7):2644-2652.
    1.Trom betta ES,Ebersold M,Garrett W,et al.Activation of lysosomal function during dendritic cell maturation.Science.2003 299(5611):1400-1403.
    2.Luo Shu.The Development of Dendritic cells in Multiple Myeloma Immunotherapy.国际免疫学杂志。2006,29(6):400-403.
    3 朱雄鹏,陈志哲等。基因修饰树突状细胞诱导抗血液肿瘤效应的研究进展。国际输血及血液学杂志。2006,29(2):163-166。
    4 Liu A,Takaha shi M,Narita M,et al.Generation of functional and mature dendritic cells from cord blood bone marrow CD34~+cell by tow step culture combined with calcium innophore treatment.K Immunol med,2002,216(6):49 63
    5 Li Q,Ozer H,Lindner I,et al.Protein Kinase C block inhibits differentiation of myeloid blasts into dendritic cells by calcium ionophore A23187.Int J Hematol,2005,81(2):131-137
    6 Takahashi T,Tanaka Y,Nieda M,et al.[J].Leukres,2003,27(9):795-802
    7 Klammer M,Waterfall M,Samuel K,et al.Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential vaccine for acute myeloid leukaemia.Br J Heamatol,2005,129(3):340-349.
    8 Westers TM,Houtenbos I,Snoijs NC,et al.Leukemia-derived dendritic cells in acute myeloid leukemia exhibit potent migratory capacity.Leukemia,2005,19(7),1270-1272.
    9 陈君石,石庆之,余莉,等。阳离子脂质体包裹急性髓性白血病可溶性蛋白抗原诱导细胞毒性T淋巴细胞[J]中华血液学杂志,2005,26(1):56-57。
    10 Qian J,Wang S,Yang J,et al,Targeting heat shock proteins for immunotherapy in multiple myeloma:generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96.ClinCancer Res,2005,11(24Pt1):8808-8815
    11 Elisabeth Hs,Willy MH,Edith DM,et al,Identification of the angiogenic endothelial-cell growth factor-1/thymidine phosphorylase as apotential target for immunotherapy of cancer.Blood,2006,107(12),4954-4960
    12 左学兰 周新 树突状细胞疫苗与慢性粒细胞白血病[A]国际肿瘤学杂志2006 33(1),61-63。
    13 陶叠宏 杨新平等,树突状细胞在白血病免疫治疗中的研究进展[A]国际输血及血液学杂志2006,29(1),68-71。
    14 宋飞雪 张连生等,树突状细胞及其在血液系统肿瘤免疫治疗中的应用。[A]白血病·淋巴瘤2004,13(1),55-58。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700