直接甲醇燃料电池阳极碳纳米管和碳黑负载Pt基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有燃料便宜、易于储存和携带、理论比能量高,近乎零污染排放等优点,是各种小型便携式电源的理想动力源之一。而实际DMFC性能和理论性能还有较大的差距,制备和寻找高活性的电催化剂是提高DMFC性能的重要途径,也成为研究者们孜孜以求的目标。目前,Pt基催化剂仍然是DMFC中最广泛被使用的电催化剂,通常Pt基催化剂负载在导电的高比表面的碳载体上,碳载体的种类、表面性质等在很大程度上影响着Pt基催化剂的分散程度、颗粒大小和分布等。如何制备粒径适宜、分布均匀的Pt基纳米颗粒,如何有效地提高贵金属的利用率对DMFC的性能具有重要的意义。碳纳米管有着不同于传统的碳材料的特征,在燃料电池领域正受到研究者们广泛的关注。本文主要对DMFC阳极电催化剂进行了研究,从载体入手,首先研究了负载型高分散性Pt基催化剂的制备,后考察了不同管径和管长碳纳米管负载的Pt基催化剂的性能,接着开发了碳纳米管和Vulcan XC-72碳黑复合载体负载的Pt基催化剂。在DMFC电池方面,本文最后对被动式DMFC的性能进行了初步研究。
     在燃料电池催化剂的制备方面,本文优化了微波协助乙二醇还原方法来制备Vulcan XC-72负载的Pt和PtRu催化剂。我们成功地合成出粒径细小,分布较窄(2-5 nm),高分散性的纳米颗粒。研究结果表明反应溶液的pH值对催化剂颗粒以及金属负载情况影响很大,金属纳米粒子粒径随着溶液pH值的增加而减小,平均颗粒范围在3.5-1.8 nm之间。此外,当溶液pH值超过11时,由于Pt、Ru粒子被保护剂过保护以及颗粒比较小造成金属担载量减小。对制备PtRu和Pt催化剂来说,适宜的pH值分别在9和10左右。电化学表征显示,实验室制备的催化剂具有优异的性能,对甲醇氧化的活性和商品化E-Tek催化剂相当。PtRu/C催化剂比Pt/C催化剂具有更好的甲醇氧化活性,PtRu/C和Pt/C催化剂对甲醇氧化的起始电位分别为0.19 V和0.32 V,峰电位分别在0.53 V和0.62 V。但在金属含量都为20%的情况下,Pt/C催化剂对甲醇氧化的峰电流比PtRu/C催化剂的高。CO溶出实验显示,PtRu/C催化剂比Pt/C催化剂具有更低的CO氧化峰电位,以上结果间接地说明了PtRu催化剂促进甲醇氧化的双功能机理。
     碳纳米管具有好的电子传导性,特殊的管状结构以及更少的硫含量,作为燃料电池Pt基催化剂的载体有着独特的性能,成为现阶段研究的热点。本文首次系统地研究了不同管径和管长多壁碳纳米管(MWCNTs)负载的Pt及PtRu催化剂的性能。从TEM分析中发现,Pt基颗粒担载在较大管径、较短管长的MWCNTs上时,部分金属颗粒可以负载在管的内壁和管口上,从而增加了金属的分散性和利用率。CV和XPS结果显示,MWCNTs表面含氧官能团量随着管径和管长的减小而增加,但表面官能团并不是影响甲醇氧化活性的主要因素。电化学性能测试结果显示,甲醇的氧化活性主要是和金属的分散性相关,而金属的分散性和MWCNTs的管长和管径有着很大的关系。负载在管径为30-50 nm、管长约50μmMWCNTs上的PtRu纳米粒子的电化学比表面(ECSA)为57.6 m~2g~(-1)。,而负载在同样管径、较短管子(约2μm)MWCNTs上的PtRu纳米粒子的ECSA达到74.4m~2g~(-1)。此外,当MWCNTs管径相似时,Pt纳米粒子负载在较短MWCNTs上的特定活性是负载在较长MWCNTs上活性的1-4倍,从中分析我们可以得到碳纳米管的边缘效应,即碳纳米管管口原子的助催化作用,管口原子比基面原子使碳纳米管具有更高的性能。文中最后得到,合适管径(30-50 nm)、更短管长MWCNTs负载的Pt基催化剂具有最好的金属分散性和甲醇氧化活性。
     虽然MWCNTs具有一系列的优点,但本文研究发现MWCNTs负载的Pt基催化剂的分散性不如Vulcan XC-72负载的催化剂好,为了有效地利用两种载体的优点,接着本文开发了以碳黑Vulcan XC-72和多壁碳纳米管(MWCNTs)为复合载体的Pt及PtRu催化剂。利用BET、TEM、XRD、XPS等多种手段研究了催化剂的形貌、合金程度及表面状态等。结果表明相对于Vulcan XC-72负载的Pt基纳米粒子,MWCNTs负载的金属纳米粒子产生部分团聚现象,而复合载体负载的Pt基颗粒大部分担载在Vulcan XC-72上,少量负载在MWCNTs上,从而使金属粒子有较小的粒径,较少团聚体生成,增加了电化学比表面积。相比较Vulcan XC-72和MWCNTs,复合载体和PtRu金属之间的相互作用更强,PtRu/C+MWCNTs中具有更高的PtRu合金程度。我们对催化剂进行甲醇氧化的电化学表征,结果显示,复合载体负载的Pt基催化剂具有比单一载体负载的催化剂更好的甲醇氧化活性。在相同条件下,Pt/C+MWCNTs催化剂对甲醇氧化峰电流活性达到600 mAmg~(-1),是Pt/C催化剂活性的1.4倍。PtRu/C+MWCNTs催化剂对甲醇氧化的峰电流密度为256.4 mA mg~(-1),高于PtRu/C催化剂的活性(206.7 mA mg~(-1)),而PtRu/WCNTS和PtRu/C对甲醇氧化的活性相当。当PtRu/C+MWCNTs催化剂实际用作DMFC的阳极催化剂时,相比于其它单一载体负载的阳极催化剂,电池能得到更高的功率密度。通过一系列的分析和表征,本论文认为复合载体兼具了两种载体的优点,对甲醇氧化活性的增加主要归于催化剂更高的电化学表面积,高的合金程度及增加的金属利用率。
     被动式DMFC不需要泵等额外的辅助设施,结构简单,易于携带,使电池的重量和体积更容易进行微型化和商业化,被认为是最具有市场化潜力的一种燃料电池。而对被动式DMFC的研究目前还处在初步发展阶段,本论文的最后对实验室组装的被动式DMFC的性能进行了初步的研究。在室温下工作,两电池组峰值功率达到80 mW,开路电压达到1.2 V。甲醇浓度对电池性能影响较大。由于浓差极化和甲醇渗透的共同影响,随着甲醇浓度的增加,电池性能先上升后下降。本实验结果表明,在低电流密度下,低浓度甲醇具有较大的开路电压,在高电流密度下,1.0 M和2.0 M甲醇浓度下电池较早出传质极化,3.0 M甲醇浓度下电池具有最佳性能。此外,实验研究发现提高温度和空气的流动速度都可以很大程度地增加电池性能。对被动式DMFC的长期性能的研究结果显示,一次性注入3 ml 3.0 M甲醇溶液,在100 mA电流下放电,电池电压为0.2 V,单电池可连续稳定地工作4个小时。
Direct methanol fuel cell(DMFC) is one of the most desirable power source for small-scale power units because of inexpensive fuel,ease of handling,high theoretical energy density and near-zero pollutant emission.However,there is large distance between the practical DMFC performance and the theoretical performance. Synthesizing and searching for electrocatlasyts with high activity are the important approach to improve DMFC performance,which also become to be the endlessly goal for researchers.At present,Pt-based catalysts are still used as electrocatalysts most widely in DMFC.Generally,Pt-base catalysts are prepared supported on carbon materials of conductive and high surface area.The support type and surface chemistry have a significant effect in the resulting metal dispersion,particle sizes and distribution.How to synthesize Pt-based nanoparticles with appropriate particle sizes, homogenous distribution and how to improve noble metal utilization effectively have important sense for DMFC.Lately,carbon nanotubes have attracted more and more attention in fuel cell due to its different characteristics from the traditional carbon supports.This dissertation mainly focused on the anode electrocatalysts for DMFC, being based on the supports,firstly studied the preparation of Pt-based catalysts with high dispersion,then investigated the Pt and PtRu electrocatalysts supported on multi-walled carbon nanotubes(MWCNTs) with various diameters and lengths,and then exploited the Vulcan XC-72 carbon and MWCNTs composite supported Pt-based catalysts.For the DMFC,last part of this paper investigated the performance of passive DMFC.
     For the preparation of DMFC catalyst,the dissertation optimized the microwave-assisted polyol reduction process to prepare Vulcan XC-72 supported Pt and PtRu catalysts.We synthesized the nanoparticles with small particle sizes and narrow particle distribution(2-5 nm) successfully.The experiment results indicated that the pH value of solution made important influence on the metal particle sizes and the metal loading.The metal particle sizes decreased with the increase of solution pH,the average particle sizes were in the range from 3.5 nm to 1.8 nm.Moreover,when the solution pH exceeded 11,the metal loading decreased caused by small particles and the competition reduction of Pt and Ru ions.The appropriate pH values were about 9 and 10 for PtRu/C and Pt/C catalysts,respectively.The electrochemical results indicated that the prepared Pt/C and PtRu/C catalysts had excellent activity and showed comparable methanol electrooxidation activity with the commercial E-Tek catalysts.PtRu/C catalyst had higher methanol oxidation activity than Pt/C catalyst. The onset potential for methanol oxidation was 0.19 V and 0.32 V,the peak potential was 0.53 V and 0.62 V for PtRu/C and Pt/C catalysts,respectively.But when the metal loading was 20%,the Pt/C catalyst showed the higher peak current than PtRu/C catalyst.CO stripping test also showed that PtRu/C catalyst exhibited the lower peak potential for CO oxidation than Pt/C catalyst.The results demonstrated indirectly the bifunctional mechanism of PtRu catalyst.
     Carbon nanotubes has the extraordinary property as supports for Pt and Pt alloy catalysts in fuel cell due to its good electronic conductivity,unique tubular structure and low sulfur content.Pt and PtRu electrocatalysts supported on MWCNTs with various diameters and lengths were studied systematically firstly in the paper.It can be found from TEM that part of metal particles can deposit on the inner walls of MWCNTs with large tube diameter and short tubes,which increased the metal dispersion and utilization.The results of CV and XPS showed that the amounts of surface oxides of MWCNTs increased with the decrease of the diameters and lengths, but the amounts of surface oxides were not the mainly factor on the methanol electrooxidation activity The electrochemical results showed that methanol electrooxidation activity was influenced mainly by the dispersion of metal in this work,and the metal dispersion connected with the tube diameters and lengths of MWCNTs primarily.PtRu nanoparticles supported on long MWCNTs(50μm) with a diameter of 30-50 resulted in the electrochemical surface area(ECSA) of 57.6 m~2g~(-1), while the ECSA reached 74.4 m~2g~(-1) when PtRu supported on short MWCNTs(2μm) with the same diameter.In addition,the specific activities of Pt supported on short MWCNTs were 1.4 times of Pt supported on long MWCNTs.It can be deduced the edge effect of MWCNTs,namely,the intrinsic activity of the ends of MWCNTs.The atoms of ends in MWCNTs had higher properties compared with the carbon atoms of side walls.It can be obtained lastly that the Pt-based nanoparticles supported on short MWCNTs with a diameter of 30-50 nm showed the best metal dispersion and highest methanol oxidation activity.
     Although MWCNTs had a serious of advantages,we found that the MWCNTs supported Pt-based catalysts yielded poorer dispersion than Vulcan XC-72 supported catalysts.To take use of the advantages of the two supports effectively,the dissertation then exploited Vulcan XC-72 carbon and MWCNTs composite supported Pt and PtRu catalysts.The dispersion,alloy degree and the surface states of prepared catalysts were characterized by BET,TEM,XRD,XPS.The results indicated that, compared to the Vulcan XC-72 supported Pt-based nanoparticles,MWCNTs supported metal nanoparticles resulted in aggregates partly.For the composite supported catalysts,most of metal particles deposited on the Vulcan XC-72,a small quantity of particles was supported on MWCNTs,which resulted in small particles size,a few aggregates and enhanced ECSA.Compared with Vulcan XC-72 and MWCNTs,there were the stronger interaction of composite supports and metal,which made composite supported catalysts PtRu/C+MWCNTs had the higher alloy degree.It can be found by electrochemical results that,compared to the single supported catalysts,the composite supported catalysts exhibited superior electrocatalytic activity for methanol electrooxidation.At the same conditions,the methanol oxidation activity at peak potential for Pt/C+MWCNTs catalyst got 600 mAmg~(-1),which was 1.4 times to the activity of Pt/C catalyst of 430 mAmg~(-1).The methanol oxidation peak current density of PtRu/C+MWCNTs catalyst(256.4 mAmg~(-1)) was higher than that of PtRu/C catalyst(206.7 mA mg~(-1)),while the PtRu/MWCNTs catalyst showed the comparable activity to PtRu/C catalyst.The DMFC performance test showed that composite supported PtRu anode catalysts yielded higher power density than single carbon supported anode PtRu catalysts.Through analysis and characterization,we attributed the higher methanol oxidation activity of composite supported catalysts to the higher electrochemical surface area,higher alloy degree and the enhancement of metal utilization.
     Passive DMFC have been considered as one of the most potential fuel cells for commercialization because of its much simpler structures with no pumps or other auxiliary devices,ease of carrying,easiness of micromation and commercialization of eight and volume.However,studies of passive DMFC are at initial progress stage,in the last part of this dissertation,the performance of home-made passive DMFC was studied primarily.The maximal power of two-cell stacks was 80 mW and the open circuit voltage was 1.2 V at room temperature.The methanol concentration made significant influence on the cell performance.The performance of cell ascended at the beginning then dropped with the increase of methanol concentration,which was caused by anode concentration polarization and methanol crossover.Experiment results showed that at low current density,low methanol concentration exhibited the larger open circuit voltage,but at high current density,DMFC with 1 M and 2 M methanol resulted in transport polarization earlier and 3 M methanol yielded the best DMFC performance.In addition,the increase of cell temperature and flowing air can improve the cell performance evidently.The study of long-operation performance indicated that single cell can work with the cell voltage 0.2 V stably and continuously for 4 h at 100 mA discharge at room temperature under the condition of infusing 3 ml 3 M methanol one-off.
引文
[1]Costamagna P.,Srinivasan S.Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part Ⅰ Fundamental scientific aspects[J].J.Power Sources,2001,102:242-252.
    [2]Services E.G.G.Parsons Inc.Fuel cell handbook 5~# edition[M].U S department of Energy,Office of Fossil Energy,National Energy Technology Laboratory,2000.
    [3]衣宝廉.燃料电池-原理、技术、应用[M].北京:化学工业出版社,2003.
    [4]王林山,李瑛.燃料电池[M].北京:冶金工业出版社,2005.
    [5]Zhan Z.L.,Barnett S.A.An octane-fueled solid oxide fuel cell[J].Science,2005,308:844-847.
    [6]Cameron D.S.Fuel cell-science and technology 2002[J].Platinum Metals.Rev.,2003,47:28-31.
    [7]Christoffersen E.,Liu P.,Skriver H.L.,Norskov J.K.Anode materials for low temperature fuel cell:a density function theory study[J].J.Catal.,2001,199:123-131.
    [8]Ge S.H.,Wang C.Y.Liquid water formation and transport in the PEFC anode[J].J.Electrochem.Soc.,2007,154:B998-B1005.
    [9]Kordesch H.,Simader G.Fuel cells and their applications[M].VCH,Weinheim,Germany 1996.
    [10]Demirci U.B.Direct liquid-feed fuel cells:Thermodynamic and environmental concerns[J].J.Power Sources,2007,169:239-246.
    [11]Wasmus.S.,Kuver A.Methanol oxidation and direct methanol fuel cells:a selective review[J].J.Electroanal.Chem.,1999,461:14-31.
    [12]Acres G.J.K.Recent advances in fuel cell technology and its applications[J].J.Power Sources,2001,100:60-66.
    [13]汪国雄.直接甲醇燃料电池膜电极制备及阴极结构研究[D].大连:中国科学院大连化学物理研究所,2006.
    [14]Cruickshank J.,Scott K.The degree and effect of methanol crossover in the direct methanol fuel cell[J].J.Power Sources,1998,70:40-47.
    [15]Oedegaard A.,Hebling C.,Schmitz A.,Moiler-Hoist S.,Tunold R.Influence of diffusion layer properties on low temperature DMFC[J].J.Power Sources,2004,127:187-196.
    [16]Yu H.M.,Hou Z.J.,Yi B.L.Composite anode for CO tolerance PEMFCs[J].J.Power Sources,2002,105:52-57.
    [17]樊小颖,赵新生,孙海,汪国雄,王素力,孙公权,农宝廉,辛勤.甲醇燃料电池高性能双催化层阳极的研究[J].电源技术,2005,29:231-235.
    [18]谢克文,王晓红,姜英棋,刘理天.基于MEMS技术的微型燃料电池的制作[J].微细加工技术,2004,3:55-58.
    [19]Hoekaday R.G.Non- bipolar fuel cell stack configuration[P].US:6194095,2001202227.
    [20]Hamnett A.Mechanism and electrocatalysis in the direct methanol fuel cell[J].Catai.Today.,1997,38:445-457.
    [21]Hogarth M.P.,Ralph T.P.Catalysts for low temperature fuel cell[J].Platinum Mater.Rev.,2002,46:44- 46.
    [22]Lovic J.The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media[J].J.Am.Chem.Soc.,2007,72:709-712.
    [23]Persons R.,VanderNoot T.The oxidation of small organic molecules:A survey of recent fuel cell related research[J].J.Electroanal.Chem.,1988,257:9-45.
    [24]Sugimoto W.,Aoyama K.,Kawaguchi T.,Murakami T.,Murakami Y.,Takasu Y.Kinetics of CH_3OH oxidation on PtRu/C studied by impedance and CO stripping voltammetry[J].J.Electroanal.Chem.,2005,576: 215-221.
    [25] Lin W. F., Wang J. T., Savinell R. F. On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell [J]. J. Electrochem. Soc., 1997,144: 1917-1922.
    [26] Fan Q. B., Pu C, Smotkin E. S. In situ fourier transform infrared-diffuse reflection spectroscopy of direct methanol fuel cell anodes and cathodes [J]. J. Electrochem. Soc., 1996, 143:3053-3057.
    [27] Kim C., Kwon H. H., Song I. K., Sung Y. E., Chung W. S., Lee H. I. Preparation of PtRu nanoparticles on various carbon supports using surfactants and their catalytic activities for methanol electro-oxidation [J]. J. Power Sources, 2007, 171:404-411.
    
    [28] Hsin Y. L., Hwang K. C., Yeh C. T. Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells [J]. J. Am. Chem. Soc., 2007,129: 9999-10010.
    [29] Santiago E. I., Camara G. A., Ticianelli E. A. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method [J]. Electrochim. Acta, 2003,48:3527-3534.
    [30] Dupont C., Jugnet Y., Loffreda D. Theoretical evidence of PtSn alloy efficiency for CO oxidation [J]. J. Am. Chem. Soc., 2006, 128: 9129-9136.
    [31] Papageorgopoulos D. C, Keijzer M., Veldhuis J. B. J., Bruijn F. A. CO tolerance of Pd-rich PtPd carbon-supported electrocatalysts [J]. J. Electrochem. Soc, 2002, 149: A1400-1404.
    [32] Watanabe M., Motoo S. Enhancement of the oxidation of methanol on platinum by Ru ad-atoms [J]. J. Electroanal. Chem., 1975,60:267-273.
    [33] Lin W. F., Zei M. S., Eiswirth M., Ertl G., Iwasita T., Vielstich W. Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation [J]. J. Phy. Chem. B, 1999, 103: 6968-6977.
    [34] Ticanelli E., Beery J. G., Paffett M. T., Gottesfeld S. An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface [J]. J. Electroanal. Chem., 1989, 258: 61-77.
    [35] Liu R., Iddir H., Fan Q., Hou G., Bo A., Ley K. L, Smotkin E. S., Sung Y. E., Kim H., Thomas S., Wieckowski A. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes [J]. J. Phys. Chem. B, 2000, 104: 3518-3531..
    [36] Mcbreen J., Mukerjee S. In situ X-ray absorption studies of a Pt-Ru Electrocatalyst [J]. J. Electrochem. Soc., 1995, 142: 3399-3404.
    [37] Frelink T., Visscher W., Van Veen J. A. R. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt [J]. Surf. Sci., 1995, 335: 353-360.
    [38] Goodenough J. B., Manoharan R., Shukla A. K., Ramesh K. V. Electron transfer and catalyst performance: a spectroscopic and electrochemical Study [J]. Chem. Mater., 1989,1: 391-398.
    [39] Iwasita T., Nart F. C, Vielstich W. An FTIR study of the catalytic activity of a 85:15 Platinum-Ruthenium alloy for methanol oxidation [J]. Ber Bunsenges Phys. Chem., 1990, 94: 1030-1034.
    [40] Stamenkovic V., Arenz M., Blizanac B. B., Mayrhofer K. J. J., Ross P. N., Markovic N. M. In situ CO oxidation on well characterized Pt_3Sn(hkl) surfaces: A selective review [J]. Surf. Sci., 2005, 576: 145-157.
    [41] Xia X. H., Iwasita T., Ge F, Vielstich W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum [J]. Electrochim. Acta, 1996,41: 711-718.
    [42] Chrzanowski W., Wieekowski A. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis [J]. Langmuir, 1998,14:1967-1970.
    [43] Wwang J. T., Chung J. K. The morphological and surface properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts [J]. Electrochim. Acta, 1993, 38: 2715-2723.
    [44] Jarvi T. D., Sriramulu S., Stuve E. M. Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum(100) [J]. J. Phys. Chem. B, 1997,101: 3649-3652.
    [45] Gastriger H. A., Markovie N., Ross P. N., Caims E. J. Temperature-dependent methanol electro-oxidation on well characterizations Pt-Ru alloys [J]. J. Electrochem. Soc, 1994,141:1795-1803.
    
    [46] Park K. W., Choi J. H., Kwon B. K., Lee S. H., Sung Y. E., Kim H., Wieckowski A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation [J]. J. Phy. Chem. B, 2002, 106:1869-1877.
    [47] Li X. G., Hsing I. M. Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation [J]. Electrochim. Acta, 2006, 52:1358-1365.
    [48] Gu Y. J., Wong W. T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation [J]. Langmuir, 2006,22:11447-11452.
    [49] Charkraborty D., Bischoff H., Chorkenorff I., Johannessen T. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis [J]. J. Electrochem. Soc., 2005, 152: A2357-A2363.
    [50] Friedrich K. A., Geyzers K. P., Dickinson A. J., Stimming U. Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts [J]. J. Electroanal. Chem., 2002,524: 261-272.
    [51] He Z. B., Chen J. H., Liu D. Y., Zhou H. H., Kuang Y. F. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J]. Diamond & Related Materials, 2004,13:1764-1770.
    [52] Cao D. X., Bergens S. H. Pt-Ru_(ad) atom nanoparticles as anode catalysts for direct methanol fuel cells [J]. Journal of Power Sources, 2004, 134: 170-180.
    [53] Tong Y. Y., Kim H. S., Babu P. K., Waszczuk P., Wieckowski A., Oldfield E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst [J]. J. Am. Chem. Soc., 2002, 124:468-473.
    [54] Ge Q, Desai S., Neurock M., Kourtakis K. CO adsorption on Pt-Ru surface alloys and on the surface of Pt-Ru bulk alloy [J]. J. Phys. Chem. B, 2001, 105: 9533-9536.
    [55] Long J. W., Stroud R. M., Swider-Lyons K. E., Rolison D. R. How To make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys! [J]. J. Phys. Chem. B, 2000, 104: 9772-9776.
    [56] Davies J. C, Hayden B. E., Pegg D. J. The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation [J]. Surf. Sci., 2000,467: 118-130
    [57] Dubau L., Hahn F., Coutanceau C., Leger J. M., Lamy C. On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation [J]. J. Electroanal. Chem., 2003, 554- 555: 407- 415.
    [58] Lu Q. Y., Yang B., Zhuang L., Lu J. T. Anodic activation of PtRu/C catalysts for methanol oxidation [J]. J. Phys. Chem. B, 2005,109:1715-1722.
    [59] Wu G., Li L., Xu B. Q. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation [J]. Electrochim. Acta, 2004, 50: 1-10.
    [60] Sirk A. H. C., Hill J. M., Kung S. K. Y., Birss V. I. Effect of redox state of PtRu electrocatalysts on methanol oxidation activity [J]. J. Phy. Chem. B, 2004, 108: 689-695.
    [61] Gasteiger H. A., Markovic N, Ross P. N., Cairns E. J. Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys [J]. J. Electrochem. Soc., 1994,147:1795-1803.
    [62] Kabbabi A., Faure R., Durand R., Beden B., Hahn F., Leger J. M., Lamy C. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes [J]. J. Electroanal. Chem., 1998,444:41-53.
    [63] Gasteiger H. A., MarkovicN., Ross P. N., Cairns E. J. Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys [J]. J. Electrochim. Acta, 1994, 39: 1825-1828.
    [64] Iwasita T., Hoster H., John-Anacker A., Lin W. F., Vielstich W. Methanol oxidation on PtRu electrodes: influence of surface structure and Pt-Ru atom distribution [J]. Langmuir, 2000,16: 522-529.
    [65] Bock C., MacDougall B., LePage Y. Dependence of CH_3OH oxidation activity for a wide rangeof PtRu alloys [J]. J. Eletrochem. Soc, 2004, 151(8): A1269-A1278.
    [66] Lizcano-Valbuena W. H., Paganin V. A., Gonzalez E. R. Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts [J]. Electrochimca. Acta, 2002,47:3715-3722.
    [67] Wang K., Gasteiger H. A., Markovic M. N., Ross P. N. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces [J]. Electrochim. Acta, 1996, 41: 2587-2593.
    [68] Tseung A. C. C, Chen K. Y. Hydrogen spill-over effect on Pt/WO_3 anode catalysts [J]. Catal. Today, 1997,38: 439-443.
    [69] Shen P. K., Tseung A. C. C. Anodic oxidation of methanol on Pt/WO_3 in acidic media [J|. J. Electrochem. Soc., 1994, 141:3082-3090.
    [70] Chen K. Y., Shen P. K., Tseung A. C. C. Anodic oxidation of formic acid on electrodeposited Pt/WO_3 electrode at room temperature [J]. J. Electrochem. Soc., 1995,142: L54-L56.
    [71] Park K. W., Ahn K. S., Nah Y. C, Choi J. H., Sung Y. E. Electrocatalytic enhancement of methanol oxidation at Pt-WQ_x nanophase electrodes and In-Situ observation of hydrogen spillover using electrochromism [J] J. Phys. Chem. B, 2003,107:4352-4355.
    [72] Park K. W., Choi J. H., Ahn K. S., Sung Y. E. PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method [J]. J. Phys. Chem. B, 2004,108: 5989-5994.
    [73] Park K. W., Choi J. H., Sung Y. E. Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation [J]. J. Phys. Chem B, 2003,107:5851-5856.
    [74] Kowal A., Port S. N., Nichols R. Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods [J]. Catal Today, 1997, 38:483-492.
    [75] Zhang X., Zhang F., Guan R. F., Chan K. Y. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation mater [J]. Research. Bullein., 2007,42: 327-333.
    [76] Mathiyarasu J., Remona A., Mani M. A., Phani K. L. N., Yegnaraman V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H_2SO_4: Pt-Ni system [J]. J Solid. State. Electrochem., 2004,8:968-975.
    [77] Zhao Y., Fan L. Z., Qiu Y. F., Yang S. H. A new route for the electrodeposition of platinum-nickel alloy nanooparticles on multi-walled carbon nanotubes [J]. Electrochim. Acta, 2007, 52: 5876-5878.
    [78] Yang H., Vogel W., Lamy C., Alonso-Vante N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction [J]. J. Phys. Chem. B, 2004, 108: 11024-11034.
    [79]Yang H., Coutanceau C., Leger J. M, Alonso-Vante N., Lamy C. Methanol tolerant oxygen reduction on carbon supported Pt-Ni alloy nanoparticels [J]. J. Electrocanal. Chem., 2005,576: 305-313.
    [80] Gotz M., Wendt H. Binary and ternary anode catalyst formulations including the elements W、 Sn and Mo for PEMFCs operated on methanol for reformate gas [J]. Electrochim. Acta, 1998,43: 3637-3644.
    [81] Mukerjee S., Richard C. U. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy [J]. Electrochim. Acta, 2002, 47: 3219-3231.
    [82] Santiago E. I., Giz M. J., Ticianelli E. A. Studies of carbon monoxide oxidation on carbon-supported platinum-osmium electrocatalysts [J]. J. Solid. State. Electrochem., 2003, 7:607-613.
    [83] Maksimuk S., Yang S. C., Peng Z. M., Yang H. Synthesis and characterization of ordered intermetallic PtPb Nanorods synthesis and characterization of ordered intermetallic PtPb nanorods [J]. J. Am. Chem. Soc., 2007, 129: 8684-8685.
    [84] Jusys Z., Schmidt T. J., Dubau L., Lasch K., Jonssen L., Garche J., Behm R. J. Activity of PtRuMeO_x (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization [J]. J. Power Sources, 2002,105: 297-304.
    [85] Wang Z. B., Yin G. P., Yu-Yan Shao Y. Y., Bo-Qian Yang B. Q., Shi P. F., Feng P. X. Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell [J]. J. Power Sources, 2007,165:9-15.
    [86] Liang Y. M., Huamin Zhang H. M., Tian Z. Q., Zhu X. B., Wang X. L., Yi B. L. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchangemembrane fuel cells [J]. J. Phys. Chem. B, 2006,110: 7828-7834.
    [87] Reetz M. T., Lopez M., Grulnert W. G. Preparation of colloidal nanoparticles of mixed metal oxides containing platinum, ruthenium, osmium, and indium and their use as electrocatalysts [J]. J. Phys. Chem. B, 2003,107: 7414-7419.
    [88] Arico A. S., Poltrzewski Z., Kim H. Investigation of a carbon-supported quaternaty Pt-Ru-Sn-W catalyst for direct methanol fuel cells [J]. J. Power Sources, 1995, 55: 159-166.
    
    [89] Gurau B., Viswanathan R., Liu R. X., Lafrenz T. J., Ley K. L., Smotkin E. S., Reddington E., Sapienza A., Chan B. C., Mallouk T. E., Sarangapani S. Structural and electrochemical characterization of binary, ternary and quaternary platinum alloy catalysts for methanol electro-oxidation [J]. J. Phys. Chem B, 1998, 102: 9997-10003.
    [90] Park K. W., Choi J. H., Lee S. A., Pak C., Chang H., Sung Y. E. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell [J]. J. Catal, 2004,224: 236-242.
    [91] WroWowa H., Pan Y. C., Razumney J. Electroreduction of oxygen: A new mechanistic criterion [J] J. Electroanal. Chem., 1976, 69: 195-201.
    [92] Markovi(?) N . M., Schmidt T. J., StamenkovicV., Ross P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review [J]. Fuel cells.. 2001, 1: 105-116.
    
    [93] Yeager E. Electrocatalysts for O_2 reduction [J]. Electrochim. Acta, 1984, 29: 1527-1537.
    [94] Chu D., Gilman S. The influence of methanol on O_2 electroreduction at a rotating Pt disk electrode in acid electrolyte [J]. J. Electrochem. Soc., 1994, 141: 1770-1774.
    [95] Koffi R. C., Coutanceau C., Gamier E., Leger E., Leger J. M, Lamy C. Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) [J]. Electrochim. Acta, 2005, 50: 4117-4127.
    [96] Glass J. T., Cahen G. L., Stoner G. E., Taylor E. J. The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys [J]. J. Electrochem. Soc., 1987, 134: 58-65.
    [97] Xiong L., Manthiram A. Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs [J]. J. Electrochem. Soc, 2005,152: A697-A703.
    [98] Soderberg J. N., Sirk A. H. C, Campbell S. A., Birss V. I., Oxygen reduction by sol-derived Pt/Co-based alloys for PEM fuel cells [J]. J. Electrochem. Soc., 2005, 152: A2017-2022.
    [99] Stamenkovic V., Schmidt T. J., Ross P. N., Markovic N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt_3Ni and Pt_3Co alloy surfaces [J]. J. Phys. Chem B, 2002, 106: 11970-11979.
    [100] Paulus U. A., Wokaun A., Scherer G. G., Schmidt T. J., Stamenkovic V., Radmilovic V., Markovic N. M., Ross P. N. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts [J]. J. Phys. Chem. B, 2002,106:4181-4191.
    [101] Drillet J. F., Ee A., Friedemann J., K5tz R., Schnyder B., Schmidt V. M. Oxygen reduction at Pt and Pt_(70)Ni_(30) in H_2SO_4/CH_3OH solution [J]. Electrochim. Acta, 2002, 47: 1983-1988.
    [102] Hwang J. T., Chung J. S. The morphological and surface properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts [J]. Electrochim. Acta, 1993, 38: 2715-2720.
    [103] Toda T., Igarashi H., Watanabe M. Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen [J]. J. Electrochem. Soc., 1998,145(12): 4185-4188.
    [104] Antolini E., Passos R. R., Ticianelli E. A. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells [J]. Electrochim. Acta, 2002,48:263-270.
    [105] Liu J. H., Jeon M. K., Woo S. I. High-throughput screening of binary catalysts for oxygen electroreduction [J]. Appli Surf. Sci., 2006,252:2580-2587.
    [106] Xiong L. F., He T. Synthesis and characterization of carbon supported PtW catalysts from carbonyl complexes for oxygen electroreduction [J]. Electrochem. Commun., 2006,8:1671-1676.
    [107] Neergat M., Shukla A. K., Gandhi S. Platinum-based alloys as oxygen-reduction catalysts for solid-polymer- electrolyte direct methanol fuel cell [J]. J. Appl. Electrochem., 2001,31: 373-378.
    [108] Paulus U. A., Wokaun A., Scherer G. G., Schmidt T. J., Stamenkovic V., Markovic N. M., Ross P. N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrode [J]. Electrochim. Acta, 2002,47:3787-3798.
    [109] Salgado J. R. C., Antolini E., Gonzalez E. R., Carbon supported Pt-Co alloys electrocatalysts for as methanol-resistant oxygen-reduction direct methanol fuel cells [J]. Appl. Cata. B Environ., 2005, 57(4): 283-290.
    [110] Min M. K., Cho J., Cho K., Kim H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. Electrochim. Acta, 2000,45: 4211-4217.
    [111] Ross P. N. Hydrogen chemisorption on Pt single crystal surfaces in acidic solutions [J]. Surf. Sci., 1981,102: 463-485.
    [112] Mukerjee S., Srinivasan S., Sortiaga M. P. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction [J]. J. Electrochem. Soc., 1995, 142: 1409-1422.
    [113] Tamizhmani G., Capuano G. A. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells [J]. J. Electrochem. Soc., 1994,141: 968-975.
    [114] Faubert G., Lalande G., Cote R. Guay D., Dodelet J. P., Weng L. T., Bertrand P., Denes G. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells [J]. Electrochim. Acta, 1996, 41: 1689-1701.
    [115] Tamizhmani G., Dodelet J. P., Guay D., Lalande G. Elctrocatalytic activity of nafion impregnated pyrolyzed cobalt pathalocyanine [J]. J. Electrochem. Soc., 1994, 141: 41-48.
    [116] Zhang L., Zhang J. J., Wilkinson D. P., Wang H. J. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions [J]. J. Power Sources, 2006, 156: 171-182.
    [117] Reeve R. W., Christensen P. A., Dickinson A. J., Hamnett A., Scott K. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation [J]. Electrochim. Acta, 2000,45: 4237-4250.
    [118] Ozebker S. S., Kadirgan F. The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides [J]. J. Power Sources, 2006, 154: 364-369.
    [119] Cao D. X., Wieckowski A., Inukai J., Alonso-Vante N. Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur [J]. J. Electrochem. Soc., 2006, 153: A869-A874.
    [120] Alonso Vante N., Jaegermann W., Tributsch H., Honle fs W., Yvod K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters [J]. J. Am. Chem. Soc., 1987,109: 3251-3257.
    [121] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells : a review [J]. Mater. Chem. Phys., 2003, 78 (3): 563-573.
    [122] Chan K., Ding J., Ren J., Cheng S., Tsang K. Y. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells[J]. J. Mater. Chem., 2004, 14 (4): 505-516.
    [123] Ravikumar M. K., Shukla A. K. Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell [J]. J. Electrochem. Soc., 1996,143:2601-2606.
    [124] Takasu Y., Kawaguchi T., Sugimoto W., Murakami Y. Effects of the surface area of carbon support on the characteristics of highly-dispersed PtRu particles as catalysts for methanol oxidation [J]. Electrochim. Acta, 2003,48:3861-3868.
    
    [125] Van Dam H. E., Bekkun H. V. Preparation of platinum on activated carbon [J]. J. Catal., 1991,131: 335-349.
    [126] Ioroi T., Fujiwara N., Siroma Z., Yasuda K., Miyazaki Y. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide [J]. Electrochem. Commun., 2002,4: 442-446.
    [127] Burguete C. P., Solano A. L., Reinoso F. R., Lecea C. S. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts [J]. J. Catal., 1989,115 (1): 98-106.
    [128] Rao V., Simonov P. A., Savinova E. R., Plaksin G.V., Cherepanova S. V., Kryukova G.N., Stimming U. The influence of carbon porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation [J] J. Power Sources, 2005,145:178-187.
    [129] Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Ordered nanoporou arrays carbon supporting high dispersions of platinum nanoparticles [J]. Mature 2001,412:169-172.
    [130] Liu Y. C., Qiu X. P., Huang Y. Q., Zhu W. T., Wu G. S. Influence of preparation process of MEA with mesocarbon microbeads supported PtRu catalysts on methanol electrooxidation [J]. J. Appl. Electrochem., 2002, 32: 1279-1285.
    [131] Steigerwalt E. S., Deluga G. A., Lukehart C. M. Pt-Ru/Carbon fiber nanocomposites: synthesis, characterization, and performance as anode Catalysts of direct methanol fuel cells. A search for exceptional performance [J]. J. Phys. Chem. B, 2002, 106: 760-766.
    [132] Bessel C.A., Laubernds K., Rodriguez N. M., Baker R. T. K. Graphite nanofibers as an electrode for fuel cell applications [J]. J. Phys. Chem. B, 2001, 105: 1115-1118.
    [133] Prabhuram J., Zhao T. S., Tang Z. K., Chen R., Liang Z. X. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. J. Phys. Chem. B, 2006,110: 5245-5252.
    [134] Liu Z. L., Lee J. M., Chen W. X., Han M., Gan L. M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles [J]. Langmuir, 2004, 20: 181-187.
    [135] Chai G. S., Yoon S. B., Yu J. S., Choi J. H., Sung Y. E. Ordered porous carbons with tunable pore sizes as catalyst supports in oirect methanol fuel cell [J]. J. Phys. Chem. B, 2004, 108: 7074-7079.
    
    [136] Ijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [137] Zhang Y., Li J., Shen Y., Wang M., Li J. Poly-L-lysine Functionalization of Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B, 2004, 108: 15343-15346.
    [138] Sun L., Crooks R. M. Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials [J]. J. Am. Chem. Soc, 2000, 122: 12340-12345.
    [139] Bonard J. M., Weiss N., Kind H., Stocki T., Forro L., Kern K., Chatelain A. Tuning the field emission properties of patterned carbon nanotube films [J]. Adv. Mater., 2001,13: 184-188.
    [140] Fan Y. Y., Liao B., Liu M., Wei Y. L., Lu M. Q., Cheng H. M. Hydrogen uptake in vapor grown carbon nanofibers [J]. Carbon, 1999,37:1649-1652.
    [141] Planeix J. M., Coustel N., Coq B., Brotons V., Kumbhar P. S., Dutartre R., Geneste P., Bernier P., Ajayan P. M. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. J. Am. Chem. Soc, 1994, 116: 7935 -7936.
    [142] Mubeen S., Zhang T., Yoo B., Deshusses M. A., Myung N. V. Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor [J]. J. Phys. Chem. C, 2007, 111: 6321-6327.
    [143] Wu G., Chen Y. S., Xu B. Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation [J]. Electrochem. Commun., 2005,7:1237-1243.
    [144] Wang X., Li M., Chen Z., Waje M., Yan Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell [J]. J. Power Sources, 2006,138:154-159.
    [145] Rajalakshmi N., Ryu H., Shaijumon M. M., Ramaprabhu S. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material [J]. J. Power Sources, 2005, 140 (2): 250-257.
    [146] Huang J. E., Guo D. J., Yao Y. G., Li H. L. High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes [J]. J. Electroanal. Chem., 2005, 577: 93-97.
    [147] Wang Y., Hsing I. M., Yue P. L. Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells [J]. J. Power Sources, 2001,96: 282-287.
    [148] Anderson M. L., Stroud R. M., Rolison D. R. Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon-silica composite aerogels [J]. Nano. Letters., 2002, 2(3): 235-240.
    [149] Liu G., Zhang H. M., Zhong H. X., Hu J. W., Xu D. Y., Shao Z. G. A novel sintering resistant and corrosion resistant Pt_4ZrO_2/C catalyst for high temperature PEMFCs [J]. Electrochim. Acata, 2006,51: 5710-5714.
    [150] Zhou Z. H., Zhou W. J., Wang S. L, Wang G X., Jiang L. H., Li H. Q., Sun G Q., Xin Q. Preparation of highly active 40 wt.% Pt/C cathode electrocatalysts for DMFC via different routes [J]. Catal. Today, 2004, 93-95: 523-528.
    [151] Praburam J., Zhao T. S., Wong C. W., Guo J. W. Synthesis of physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cell [J]. J. Powe Sources, 2004, 134: 1-6.
    [152] Praburam J., Zhao T. S., Liang Z. X., Chen R. A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC [J]. Electrochim. Acta, 2007, 52: 2649-2656.
    [153] Deivaraj T. C., Chen W. X., Lee J. Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]. J. Mater. Chem., 2003,13: 2555- 2560.
    [154] Goodenough J. B., Hamnett A., Kennedy B. J., Manoharan R., Weeks S. A. Porous carbon anodes for the direct methanol fuel cell-I the role of the reduction method for carbon supported platinum electrodes [J]. Elecchim. Acta., 1990, 35: 199-207.
    [155] Shen P. K., Tian Z. Q. performance of highly dispersed Pt/C catalysts for low temperature fuel cell [J]. Elecchim. Acta, 2004, 49: 3107-3111.
    [156] Kawaguchi T., Sugimoto W., Murakami Y.. Takasu Y. Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes [J]. J. Catal., 2005, 229: 176-184.
    [157]Yang B., Lu Q. Y, Wang Y., Zhuang L., Lu J. T., Liu P. F. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts [J]. Chem. Mater., 2003,15: 3552-3557.
    [158] He Z. B., Chen J. W., Liu D. Y., Tang H., Deng W., Kuang Y. F. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation [J]. Mater. Chem. Phy., 2004, 85:396-401.
    [159] He Z. B., Chen J. W., Liu D. Y., Zhou H. H., Kuang Y. F. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J] Diamond & Related Materials, 2004,13: 1764- 1770.
    [160] Lee S. A., Park K. W., Choi J. H., Kwon B. K., Sung Y. E. Nanoparticles synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cell [J]. J. Electrochem. Soc., 2002,149: A1299-A1304.
    [161] Bonnemann H., Brinkmann R., Britz P., Endruschat U., Mortel R., Paulus U. A., Feldmeyer G. J., Schmidt T. J.,Gasteiger H.A.,Behm R.[J].J.New Mater.Electrochem.Sys.,2000,3:199-206.
    [162]Lee Y.H.,Lee G.,Shim J.H.,Hwang S.,Kwak J.,Lee K.,Song H.,Park J.T.Monodisperse PtRu nanoalloy on carbon as a high-performance DMFC catalyst[J].Chem.Mater.,2006,18:4209-4211.
    [163]唐浩林,潘牧,许程.Pt-Nafion/CNTs的合成与表征[J].电池,2005,35:43-441.
    [164]Petrow H.G.,Allen R.J.Catalytic platinum metal particles on a substrate and method of preparing the catalyst[P].US:3992331,1976.
    [165]Bock C.,Paquet C.,Couillard M.,Botton G.A.,MacDougall B.R.Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism[J].J.Am.Chem.Soc.,2004,126:8028-8037.
    [166]Liu Z.,Lee J.,Han M.,Chen W.,Gan L.,Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J].J.Mater.Chem.,2002,12:2453.-2458.
    [167]Yasude K.,Nishimura Y.The deposition of ultrafine platinum particles on carbon black by surface ion exchange-increase in loading amount[J].Mater.Chem.Phys.,2003,82:921-928.
    [1]Yu W.Y.,Tu W.X.,Liu H.F.Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating[J].Langmuir,1999,15:6-9.
    [2]Komarneni S.,Li D.S.,Newalkar B.,Katsuki H.,Bhalla A.S.Microwave-Polyol Process for Pt and Ag Nanoparticles[J].Langmuir,2002,18:5959-5962.
    [3]Li X.,Chen W.X.,Zhao J.,Xing W.,Xu Z.D.Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J].Carbon,2005,43:2168-2174.
    [4]Wang Y.,Ren J.W.,Deng K.,Gui L.L.,Tang Y.Q.Preparation of Tractable Platinum,Rhodium,and Ruthenium Nanoclusters with Small Particle Size in Organic Media[J].Chem.Mater.,2000,12:1622-1627.
    [5]梁栋材.X射线晶体学基础IM].北京:科学出版社,1991.
    [6]Yang B.,Lu Q.,Wang Y.,Zhuang L.,Lu J.,Liu P.,Wang J.,Wang R.Simple and low-cost preparation method for highly dispersed PtRu/C catalysts[J].Chem.Mater.,2003,15:3552-3557.
    [7]刘维桥,孙桂大.固体催化剂实用研究方法[M].北京:中国石化出版社,1999.
    [8]刘世宏.X-射线光电子能谱分析[M].北京:科学出版社,1988.
    [9]柳厚田.电化学中的仪器方法[M].上海:复旦大学出版社,1992.
    [10]Liu Z.L.,Lee J.Y.,Chen W.X.,Han M.,Gan L.M.Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles[J].Langmuir,2004,20:181-187.
    [11]Vidakovic T.,Christov M.,Sundmacher K.,Nagabhushana K.S.,Fei W.,Kinge S.,B(o|¨)nnemann H.PtRu colloidal catalysts:Characterisation and determination of kinetics for methanol oxidation[J].Electrochim.Acta,2007,52:2277-2284.
    [1]Ravikumar M.K.,Shukla A.K.Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell[J].J.Electrochem.Soc.,1996,143:2601-2606.
    [2]Lizcano-Valbuena W.H.,Azevedo D.C.,Gonzalez E.R.Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells[J].Electrochim.Acta,2004,49:1289-1295.
    [3]Tu W.X.,Liu H.F.Continuous synthesis of colloidal metal nanoclusters by microwave irradiation[J].Chem.Mater.,2000,12:564-567.
    [4]Komarneni S.,Li D.S.,Newalkar B.,Katsuki H.,Bhalla A.S.Microwave-polyol process for Pt and Ag nanoparticles[J].Langmuir,2002,18:5959-5962.
    [5]Qiu J.S.,Zhang H.Z.,Liang C.H.,Li J.W.,Zhao Z.B.Co/CNF catalysts tailored by controllingthe deposition of metal colloids onto CNFs:preparation and catalytic properties[J].Chem Eur.J.,2006,12:2147-2152.
    [6]Bock C.,Paquet C.,Couillard M.,BoRon G.A.,MacDougall B.R.Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism[J].J.Am.Chem.Soc.,2004,126:8028-8037.
    [7]Yu R.Q.,Chen L.W.,Lin Q.P.,Lin J.Y.,Tan K.L.,big S.C.,Chan H.S.O.,Xu G.Q.,Hot T.S.A.Platinum deposition on carbon nanotubes via chemical modification[J].Chem.Mater.,1998,10:718-722.
    [8]Hull R.V.,Li L.,Xing Y.C.,Chusuei C.C.Pt nanoparticle binding on functionalized muitiwalled carbon nanotubes[J].Chem.Mater.,2006,18:1780-1788.
    [9]Vidakovic T.,Christov M.,Sundmacher K.,Nagabhushana K.S.,Fei W.,Kinge S.,B(o|¨)nnemann H.PtRu colloidal catalysts:Characterisation and determination of kinetics for methanol oxidation[J].Electrochim.Acta,2007,52:2277-2284.
    [10]Lizcano-Valbuena W.H.,Paganin V.A.,Gonzalez E.R.Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts[J].Electrochim.Acta,2002,47:3715-3722.
    [11]Liang Y.M.,Zhang H.M.,Yi B.L.,Zhang Z.H.,Tan Z.C.Preparation and characterization of multi-walled carbon nanutubes supported PtRu catalysts for proton exchange membrane fuel cells[J].Carbon,2005,43:3144-3152.
    [12]Zhou Z.H.,Zhou W.J.,Wang S.L.,Wang G.X.,Jiang L.H.,Li H.Q.,San G.Q.,Xin Q.Preparation of highly active 40 wt.%Pt/C cathode electrocatalysts for DMFC via different routes[J].Catal.Today.,2004,93-95:523-528.
    [13]Liu Z.L.,Ling X.Y.,Su X.D.,Lee J.Y.Carbon-Supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell[J].J.Phys.Chem.B,2004,108:8234-8240.
    [14]周振华.直接甲醇燃料电池:高分散高负载Pt基电催化剂的制备规律研究[D].大连:中国科学院大连化学物理研究所,2003.
    [15]肖成建,胡胜,傅中华,罗阳明,王和义.用Pt/C催化剂通过浸渍-还原法制备疏水催化剂[J].应用化工,2007,36:855-859.
    [16]Chien C.C.,Jeng K.T.Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts[J].Mater.Chem.Phys.,2006,99:80-87.
    [17]陈卫祥,赵杰,Lee J.Y.,刘昭林.微波合成碳负载纳米铂催化剂及其对甲醇氧化的电催化性能[J].化学学报,2004,62:42-46.
    [18]Iwasita T.,Hoster H.,John-Anacker A.,Lin W.F.,Vieistich W.Methanol oxidation on PtRu electrodes.influence of surface structure and Pt-Ru atom distribution[J].Langmuir,2000,16:522-529.
    [19] Lin Y. H., Cui X. L., Yen C. H., Wai C. M. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells [J]. Langmuir, 2005,21:11474-11479.
    
    [20] Takasu Y., Itaya H. Y., Iwazaki T. Y., Miyoshi R., Ohnuma T., Sugimoto W., Murakami Y. [J]. Chem. Commun., 2001,341.
    
    [21] Vielstich W., Lamm A., Gasteiger H. A. Handbook of fuel cell. Vol. 2: Electrocatalysts [M]. John Wiley & Sons: England, 2002.
    [1]Deivaraj T.C.,Lee T.Y.Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications-a comparative study[J].J.power sources,2005,142:43-49.
    [2]Takasu Y.,Kawaguchi T.,Sugimoto W.,Mumkami Y.Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation[J].Electrochim.Acta,2003,48:3861-3868.
    [3]Wasmus S.,K(u|¨)ver A.Methanol oxidation and direct methanol fuel cells:a selective review[.[].J.Electroanal.Chem.,1999,461:14-31.
    [4]Huang J.E.,Guo D.J.,Yan Y.G.,Li H.L.High dispersion and electroeatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes[J].J.Electroanal.Chem.,2005,577:93-99.
    [5]Prabhuram J.,Zhao T.S.,Tang Z.K.,Chen R.Liang Z.X.Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells[J].J.Phys.Chem.B,2006,110:5245-5252.
    [6]Li W.Z.,Wang X.,Chen Z.W,Waje M.,Yan Y.S.Pt-Ru supported on double walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.[J]J.Phys.Chem.B,2006,110:15353-15358.
    [7]Choi Y.C.,Bae D.J.,Lee Y.H.,Lee B.S.,Han I.T.,Choi W.B.,Lee N.S.,Kim J.M.Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition[J].Synthetic metals 2000,108:159-163.
    [8]成会明.碳纳米管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [9]Liu Z.L.,Lin X.H.,Lee J.M.,Zhang W.,Han M.,Gan L.M.Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells[J].Langmuir,2002,18:4054-4060.
    [10]Yu R.Q.,Chen L.W.,Lin Q.P.,Lin J.Y.,Tan K.L.,Ng S.C.,Chan H.S.O.,Xu G.Q.,Hot T.S.A.Platinum deposition on carbon nanotubes via chemical modification.[J].Chem.Mater.1998,10:718-722.
    [11]Li W.,Liang C.,Zhou W.,Qiu J.,Zhou Z.H.,Sun G.,Xin Q.Preparation and characterization of muitiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J].J.Phys.Chem.B,2003,107:6292-6299.
    [12]Lordi V.,Yao N.,Wei J.Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst[J].Chem.Mater.,2001,13:733-737.
    [13]Hou P.X.,Xu S.T.,Ying Z.,Yang Q.H.,Liu C.,Cheng H.M.Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters[J].carbon,2003,41:2471-2476.
    [14]Liang Y.M.,Zhang H.,Yi B.L.,Zhang Z.,Tan Z.C.Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells[J].carbon,2005,43:3144-3152.
    [15]Chen J.M.,Wang M.Y.,Liu B.,Fan Z.,Cui K.Z.,Kuang Y.F.Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation[J].J.Phys.Chem.B,2006,110:11775-11779.
    [16]Xing Y.,Li L.,Chusuei C.C.,Hull R.V.Sonochemieal oxidation of muitiwalled carbon nanotubes[J].Langmuir,2005,21:4185-4190.
    [17]Martinez M.T.,Callejas M.A.,Benito A.M.,Cochet M.,Seeger T.,Ans6n A.,Schreiber J.,Gordon C.,Marhic C.,Chauvet O.,Fierro J.L.G.,Maser W.K.Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification,intercalation and functionalisation[J].Carbon,2003,41:2247-2256.
    [18]G6mez de la Fuente J.L.,Rojas S.,Martinez-Huerta M.V.,Ten'eros P.,Pena M.A.,Fierro J.L.G.Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H_2 and CO electrooxidation [J]. Carbon, 2006,44: 1919-1929.
    [19] Yang C. W., Hu X. G., Wang D. L., Dai C. S., Zhang L., Jin, H. B. Agathopoulos S. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation [J]. J. Power Sources, 2006,160:187-193.
    [20] Noh J. S., Schwartz J. A. Effect of HNO_3 treatment on the surface acidity of activated carbons [J]. Carbon, 1990,28:675-682.
    
    [21] Foger K. In catalysis science and technology [M]. Springer Verlag, Heidelberg, 1984, Vol 6.
    [22] Van Dam H. E., Bekkun H. V. Preparation of platinum on activated carbon [J]. J. Catal., 1991,131: 335-349.
    [23] Roman-Martinez M. C, Cazorla-Amoro D., Linares-Solano A., Salinas-Martinez C. Metal-support interaction in Pt/C catalysts influence of the support surface chemistry and the metal precursor [J]. Carbon, 1995, 33: 3-13.
    [24] Tian Z. Q., Jiang S. P., Liang Y. M, Shen P. K. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell application [J]. J. Phy. Chem. B, 2006, 110:5345-5350.
    [25] Li Z. F., Luo G. H., Zhou W. P., Wei F., Xiang R., Liu Y. P. The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry [J]. Nanotechnology, 2006, 17: 3692-3698.
    [26] Banks C. E., Moore R. R.. Davies T. J., Compton R. G. Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes [J]. Chem. Commun.. 2004, 16: 1804-1805.
    [27] Li J., Cassell A., Delzeit L., Han J., Meyyappan M. Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles [J]. J. Phys. Chem. B, 2002, 106: 9299-9305.
    [28] Gooding J. J.. Wibowo R.. Liu J. Q., Yang W. R., Losic D., Orbons S.. Mearns F. J.. Shapter J. G., Hibbert D. B. Protein electrochemistry using aligned carbon nanotube arrays [J]. J. Am. Chem. Soc, 2003, 125: 9006-9007.
    [29] Chou A., Bocking T., Singh N. K... Gooding J. J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties [J]. Chem. Commun., 2005, 7: 842-844.
    [30] Liu Z. L., Lee J. Y., Chen W. X., Han M., Gan L. M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles {J]. Langmuir, 2004,20: 181-187.
    [1] Ticanelli E., Beery J. G., Paffett M. T., Gottesfeld S. An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface [J]. J. Electroanal. Chem., 1989,258:61-77.
    [2] Frelink T., Visscher W., Van Veen J. A. R. On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt [J]. Surf. Sci., 1995,335: 353-360.
    [3] Wang X., Li M., Chen Z., Waje M., Yan Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell [J]. J. Power Sources, 2006,158:154-159.
    [4] Bessel C.A., Laubernds K., Rodriguez N. M., Baker R. T. K. Graphite nanofibers as an electrode for fuel cell applications [J]. J. Phys. Chem. B, 2001,105:1115-1118.
    [5] Chai G. S., Yoon S. B., Yu J. S., Choi J. H., Sung Y. E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell [J]. J. Phys. Chem. B, 2004,108: 7074-7079.
    [6] Steigerwalt S., Deluga G. A., Cliffel D. E., Lukehart C. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst [J]. J. Phys. Chem. B, 2001, 105:8097-8101.
    [7] Anderson M. L., Stroud R .M., Rolison D. R. Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon-Silica composite aerogels [J]. Nano. Lett., 2002, 2: 235-240.
    [8] Hills C. W., Nashner M. S., Frenkel A. I., Shapley J. R., Nuzzo R. G. Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors [J]. Langmuir, 1999, 15: 690-700.
    [9] Wang X., Hsing I. M., Yue P. L. Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells [J ]. J. Power Sources, 2001, 96: 282-287.
    
    [10] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity [J]. J. Rouqueiol Pure Appl. Chem., 1985, 157: 603-619.
    [11] Prabhuram J., Zhao T. S., Tang Z. K., Chen R., Liang Z. X. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. J. Phys. Chem. B, 2006,110: 5245-5252.
    [12] Li X. G., Hsing I. M. Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation [J]. Elelctrochim. Acta, 2006, 52: 1358-1365.
    [13] Li J., Liang Y., Xu Q. C, Fu X. Z., Xu Q. C., Lin J. D., Liao D. W. Synthesis and characterization of sub-10 nm Platinum Hollow Spheres as electrocatalyst of direct methanol fuel cell [J]. J. Nanosci. Nanotech., 2006, 6: 1107-1113.
    [14] AricoA. S., Baglio V., Di Blasi A., Modica E., Antonucci P. L., Antonucci V. Analysis of the high-temperature methanol oxidation behaviour at carbon-supported Pt-Ru catalysts [J]. J. Electroanal. Chem., 2003, 557: 167-176.
    [15] Yu R., Chen L., Liu Q., Lin J., Tan K. L., Ng S. C., Chan H. S. O., Xu G. Q., Andy Hor T. S. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater., 1998,10: 718-722.
    [16] Gomez de la Fuente J. L., Rojas S., Martfnez-Huerta M. V., Terreros P., Pena M. A., Fierro J. L. G. Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H_2 and CO electrooxidation [J]. Carbon, 2006,44:1919-1929.
    [17] Duban L., Hahn F., Coutanceau C., Leger J. M., Lamy C. On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation [J]. J. Electroanal. Chem., 2003,554-555:407-415.
    [18] Bock C., MacDougall B., LePage Y. Dependence of CH_3OH oxidation activity for a wide rang of PtRu alloys [J]. J. Electrochem. Soc, 2004, 151: A1269-A1278.
    [19] Jiang J., Kucemak A. Electrooxidation of small organic molecules on mesoporous precious metal catalysts: II: CO and methanol on platinum-ruthenium alloy [J]. J. Electroanal. Chem., 2003, 543: 187-199.
    [20] Guo J. W., Zhao T. S., Prabhuram J., Chen R., Wong C. W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells [J]. Electrochim. Acta, 2005,51: 754-763.
    [21] Girishkumar G., Vinodgopal K., Kamat P. V. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction [J]. J. Phys. Chem. B, 2004,108: 19960-19966.
    [1]Wasmus S.,Kuver A.Methanol oxidation and direct methanol fuel cell:a selective review[J].J.Electroanal.Chem.,1999,461:14- 31.
    [2]Kulikovsky A.A.A method for analysis of DMFC performance curves[J].Electrochem.Commun.,2003,5:1030- 1036.
    [3]Lai C.C.,Kang K.Y.Flat fuel cell assembly and connection structure thereof[P].US:20040018415 A1.2004.
    [4]Lees J.,Chang C.A.,Cha S.W.,OHayre R.,Park Y.I.,Saito Y.,Prinz F.B.Design and fabrication of a micro fuel cell array with "flip-flop" interconnection[J].J.Power Sources,2002,112:410-418.
    [5]衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社,2003:330-360.
    [6]李俊.直接甲醇燃料电池催化剂及系统集成技术研究[D].厦门:厦门大学化学化工学院,2005.
    [7]彭程,张震.液相进样直接甲醇燃料电池性能的研究[J].材料导报2007,21:141-145.
    [8]Liu J.G.,Zhao T.S.,Chen R.,Wong C.W.The effect of methanol concentration on the performance of a passive DMFC[J].Electrochem.Commun.,2005,7:288 - 294.
    [9]Kho B.K.,Oh I.H.,Hong S.A.,Ha H.Y.The effect ofpretreatment methods on the performance of passive DMFCs[J].Electrochim.Acta,2004,50:781-785.
    [10]Scott K.,Taarna W.M.,Argyropoulos P.Engineering aspects of the direct methanol fuel cell system[J].J.Power Sources,1999,79:43-59.
    [11]Han J.,Park E.S.Direct methanol fuel-cell combined with a small back-up battery[J].J.Power Sources,2002,112:477-483.
    [12]Liu J.G.,Zhao T.S.,Liang Z.X.,Chen R.Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells[J].J.Power Sources,2006,153:61- 67.
    [13]Kho B.K.,Bae B.,Scibioh M.A.,Lee J.,Ha H.Y.On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells[J].J.Power Sources,2005,142:50 - 55.
    [14]Jiang R.,Chu D.Comparative studies of methanol crossover and cell performance for a DMFC[J].J.Electrochem.Soc.,2004,151:A69 - A76.
    [15]Bae B.,Kho B.K.,Lim T.H.,Oh I.H.,Hong S.A.,Ha H.Y.Performance evaluation of passive DMFC single cells[J].J.Power Sources,2006,158:1256 - 1261.
    [16]Martin J.J.,Qian W.M.,Wang H.J.,Neburchiiov V.,Zhang J.,Wilkinson D.P.,Chang Z.Design and testing of a passive planar three-cell DMFC[J].J.Power Sources,2007,164:287 - 292.
    [17]Chen C.Y.,Yang P.Performance of an air-breathing direct methanol fuel cell[J].J.Power Sources,2003,123:37 - 42.
    [18]刘建国.直接甲醇燃料电池结构与性能的研究fD].大连:中国科学院大连化学物理研究所,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700