超高层筒中筒结构上下部共同作用分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上部结构与地基、基础共同作用是当前的一个热点研究课题,它是随着高层建筑大量兴建及计算机技术迅速发展而产生的。目前,上部结构与地基基础共同作用问题越来越受到工程界的重视。在目前建筑结构设计中,把上部结构看成是柱端固接于基础上的独立结构,这种传统的设计方法不考虑上部结构与地基和基础共同作用的影响,计算结果与实际有较大的出入,尤其是在高层建筑中,不合理的现象更加明显。高层建筑的上部结构、基础同地基是一个统一的有机整体,三者相互联系、相互影响。在建筑结构设计中,共同作用的影响是不容忽视的。
     本文以实际工程项目——陕西省邮政电信网管中心大楼为研究对象,基于大型有限元程序ANSYS,将群桩基础视为复合材料,建立了合理、有效的分析模型,进行了共同作用结构静力和动力特性分析研究。本文研究内容及结论如下:(1)建立地基基础模型,施加等效温度荷载模拟了停止降水致使局部桩出现的受拉现象,并对此现象做了定性及定量的解释;(2)简化了单桩有限元模型,并将群桩基础中桩—土体系作等效连续化处理,视为一种复合材料,建立了桩土复合体材料的本构关系和等效复合体模型。结果表明等效复合体模型很好地反映出群桩基础的传力机理,这样大大降低了有限元分析的难度,为利用大型通用有限元分析软件分析超高层建筑的上下部共同作用开辟了有效的途径;(3)通过对考虑上部结构—基础—地基共同作用模型的静力分析,以及同建立在刚性地基上模型的比较,得出了上部结构内力及地基沉
    
    降的规律,筏板厚度及地基弹性模量对整体结构的影响;(4)对考虑共同作用后的上
    部结构进行了动力特性分析,得出上部结构一基础一地基共同作用(与刚性地基上的
    结构相比)使得结构动力特性发生改变一自振周期延长,振型发生改变。
    关键词:筒中筒结构,上下部结构共同作用,有限元程序,ANSYS,等效温度荷载,
    等效复合体模型,动力特性
As the number of the tall-building and computer technology were developed rapidly and emerged, interaction between superstructure and foundation becomes a jumped-up research subject. At present, the question of interaction between superstructure and foundation is paid attention to more and more by project circle. In the structural design of the building at present, regard the superstructure as the top of column be root the base of independent structure, which does not consider interaction between superstructure and foundation. It caused a big discrepancy in the result of calculation and reality. The unreasonable phenomenon is more obvious, especially in tall-building. Superstructure in tall-building, base and foundation are an organic whole. The three connecting each other and influencing each other .In the structural design of the building, influence of interaction can not be ignored.This paper looked at the practical project - the building of post and telecommunication and administration of networks in Shanxi as the research example. The paper used large-scale finite element program (ANSYS), looked grouped piles foundation as the composite material, established reasonable and efficient analysis model, and made research on interaction structure static and dynamic behavior. The contents and results of this paper were as follows: (l)The base model was established, some pile tensile phenomenon for which the throw
    
    equivalent thermal load simulated stopped dewatering, and the phenomenon was explained in quality and in quantity.(2)The single pile finite element model was simplified, and the pile-soil system in grouped piles foundation was looked as one kind of composite material in terms of the equivalent continuum method ,on this base, the pile-soil composite material's constitutive relation and equivalent complex model were established. The result showed the equivalent complex model reflected the grouped piles foundation's load transfer mechanism well, which reduced the finite analysis difficulty and explored efficient solution for the interaction between superstructure and foundation of ultrahigh-rise building's analysis in order to take advantage of finite element software.(3)The superstructure internal force and the foundation settlement law, the raft thickness and the foundation elastic modulus' effect were received by analyzing the superstructure-soil interaction model and comparing the model established on the rigid foundation. (4)The superstructure in regard of mutual interaction was analyzed in the way of dynamic behavior ,and the conclusion that the superstructure-soil interaction(compared with the rigid foundation's structure) changed the structure dynamic behavior-the natural period was prolonged and the modes of vibration was changed was made in this paper.
引文
[1] 周景星,王洪瑾,虞石民,李广信.基础工程[M].北京:清华大学出版社,1996.
    [2] 董建国,赵锡宏.高层建筑地基基础—共同作用理论与实践[M].上海:同济大学出版社,1997.9.
    [3] 赵锡宏,董建国,杨敏.高层建筑与地基基础作用概论[M].南京:河海大学出版社,1993.
    [4] 包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2001.
    [5] 赵西安.现代高层建筑结构设计(上册)[M].北京:科学出版社,2000.
    [6] 刘金砺,迟铃泉.桩土变形计算模型和变形度调平法[J].岩士工程学报,2002,(2).
    [7] 宰金珉,宰金璋.高层建筑基础分析与设计(土与结构物共同作用的理论与应用)[M].北京:中国建筑工业出版社,1993.
    [8] G.G.Meyerhof. Some recent foundation research and its appliation to design[J]. Struct. Engr., 1953, Vol.31, 151~167.
    [9] S.Chamecki. Structural rigidity in calculating settlements. J.Soil Mech,and Found[J].Div., ASCE, 1956, Vol.82, SM1, 1~9.
    [10] H.Grosshof. Influence of flexural rigidity of superstructure on the distribution of contact pressure and bending moments of an elastic combined footing[J]. Proc.4th ICSMFE, London 1957, Vol.1 300~306.
    [11] H.Sommer. A method of calculation of settlements contact pressures and bending moments in a foundation including the flexural rigidity of the superstructure[J]. Proc.6th ICSMFE, Montreal 1965, Vol.2, 197~201.
    [12] O.C.Zeinkeiwicz and Y.K.Cheung. Plates and tanks on elastic foundation an application finite element method[J]. J.Solids and Struct,1965, Vol.1,451~461.
    [13] J.S.Przemienicki.Theory of matrix structural analysis[M]. New York Wiley, 1968.
    [14] I.K.Lee and H.B.Harrison. A theoretical study of the interaction of structure and foundation[J]. J.Struct .Div.,Proc ASCE, 1970,Vol.96, No.ST2,177~197.
    [15] M.J.Haddadin. Mats and combined footings analysis by the finite element methods[J]. Proc.ACI, 1971, Vol.68, No12, 945~949.
    [16] J.T.Christian. Soil structure-interaction for tall buildings[J]. Planing and Design of Tall Buildings, Lehigh U., 1972, Vol.la, 967~983.
    [17] S.J.Hain and I.K.Lee. Rational analysis of raft foundation[J].J.Geotech.Engg.Div ASCE, 1974, Vol.100, No.GT7, 843~860.
    [18] W.J.Larnach and L.A.Wood. The effects of soil structure interaction on settlements[M]. Int.Symp. on Computer Aided Design, Univ. of Warwick, 1972.
    [1
    
    [19] J.A.Hooper. Observations on the behavior of a piled-raft Foundation on London Clay[J]. Proc .ICE.1973, 55(2), 855~877.
    [20] G.J.w.King and V.S.Chandrasekaran. Interactive analysis of a rafted multistorey space frame resting on an inhomogeneous clay stratum. Proc.Int.Conf on Finite Element Methods in Engineering. Australia, 1974, 493~509.
    [21] L.J.wardle and R.A.Fraser. Methods for foundation design including soil-structure interaction[M]. Proc. Sypm. on Raft Foundations, perth, Austrail,1975,1~11.
    [22] J.A.Hooper and L.A.Wood. Foundation analysis of a cross-wall structure[M].Proc.Int, Conf. on performance Big.Struct., Glasgow, 1976, 229~248.
    [23] H.G.Poulos and E.H.Davis. Pile foundation analysis and design[M]. New York Wiley, 1980.
    [24] Boundary Elements Ⅵ, Brebbia, C.A Ed, July 1984, SPringer Verlay.
    [25] Boundary Elements Ⅶ, Brebbia, C.A. and Maicv, G.Ed, Sept 1984, Como Italy, Springer Verlay.
    [26] 赵锡宏.带裙房的高层建筑与地基基础共同作用的理论与实践[M].上海:同济大学出版社,1999,1~9.
    [27] 刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [28] 李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003.
    [29] 陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M].北京:中国铁道出版社.
    [30] 夸克工作室.有限元分析基础篇——ANSYS与Mathematica[M].北京:清华大学出版社,2002.
    [31] O.C. Zienkiewicz. The Generalized Finite Element Method-State of the Art and Future Directions [J] Transactions of the ASME. Dec.1983, Vol.50. 1210-1217.
    [32] 崔俊芝,梁俊.现代有限元软件方法[M].北京:国防工业出版社,1995.5.
    [33] 蒋咏秋,陆逢升,顾志建.复合材料力学[M].西安:西安交通大学出版社,1990.
    [34] Scordelis.A.C. Past, Present and Future Development, Finite Element Analysis of Reinforced Concrete Structure [J], ASCE, 1986.
    [35] 朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [36] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997。
    
    [37] Sawicki A, Lesnieewska D. On modeling viscous elastic behaveiour of reinforced soil[A], in: Proc. Of the Inter. Sym. On Earth Reinforcement Practice[C]. Japan: 1992.
    [38] 陈永辉,赵维炳,汪志强.一个加筋复合土体的本构关系[J].水利学报,2002(12).
    [39] 李广信等.加筋土体应力变形计算的新途径[J].岩土工程学报,1994,16(3).
    [40] Lempriere, B.M. Poisson's Ratio in Orthotropic Materials[J]. AIAAJ, 1968,Nov.
    [41] 刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.7.
    [42] 陈惠发,A.F.萨里普.土木工程材料的本构方程(第一卷弹性与建模)[M](余天庆,王勋文译).武汉:华中科技大学出版社,2001.5.
    [43] 陈惠发.土木工程材料的本构方程(第二卷塑性与建模)[M](余天庆,王勋文,刘再华译).武汉:华中科技大学出版社,2001.5.
    [44] 中国建筑西北设计研究院.陕西省电信网管中心设计资料[Z].1998.10.
    [45] 谢霏.筒体—桩筏基础共同作用的研究[D].武汉:武汉理工大学,2003.
    [46] 朱绪平.大底盘高低层连体建筑与地基基础共同作用的机理分析[D].北京:北京工业大学,2004.
    [47] 陈杰.高层建筑上部结构、厚筏基础与地基共同工作的分析与研究[D].西安:西安建筑科技大学,2003.
    [48] 宋亚新,蒋通,楼梦麟.桩基—非线性框剪结构相互作用体系(下)—相互作用对结构抗震反应的影响[J].地震工程与工程振动,2000,20(1):48~55.
    [49] 龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1988.
    [50] M.帕兹.结构动力学—理论与计算[M] (李裕澈等译).北京:地震出版社,1993.
    [51] 李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [52] 徐植信,胡再尤.结构地震反应分析[M].北京:高等教育出版社,1993.
    [53] 包世华,方鄂华.高层建筑结构设计[M].北京:清华大学出版社,1989.
    [54] 陆伟民,刘雁.结构动力学及其应用[M].上海:同济大学出版社,1996.
    [55] R.W.克拉夫.J.结构动力学[M] (彭津译).北京:科学出版社,1981.
    [56] 姜忻良,谷岩.地基—非线性结构相互作用体系的主共振与分叉[J].地震工程与工程振动,2000,20(3):22~27.
    [57] 肖文韬,赵玉祥.高层建筑结构计算模型的选取[J].第五届高层建筑技术交流会论文集,1995.
    [58] 房营光,曹洪.地基—结构系统地震响应的突变模型分析[J].岩土力学学报,2003,24(5):729~732.
    [59] Darbre,G.R.. Seimic Analysis of Non-Linearly Base-Isolated Soil-Structure Interacting reactor Building by way of the Hybrid Frequency-Time-Domain precefure[J]. Eartheq. Eng. And Struct. Dyn., Vol.19,725~738, 1990.
    [6
    
    [60] 谷岩,姜忻良.地基—非线性结构相互作用体系的超谐和亚谐振动[J].地震工程与工程振动,2001,21(1):56~60.
    [61] 吕西林,陈跃庆.结构—地基相互作用体系的动力相似关系研究[J].地震工程与工程振动,2001,21(3):85~92.
    [62] 李辉,赖明,白绍良.土—结构动力相互作用研究综述(Ⅰ)—研究的历史、现状与展望[J].重庆建筑大学学报,1999,21(4):112~116.
    [63] 李辉,赖明,白绍良.土—结构动力相互作用研究综述(Ⅱ)—简化分析模型[J].重庆建筑大学学报,1999,21(5):112~116.
    [64] 林颖孜.桩—土—筏基础共同工作的设计与实测分析[J].建筑结构学报,2003,33(7):60~63.
    [65] 曹志远,孔凡峰,花炳灿.结构与地基介质相互作用分析的远区解析模拟[J].岩石力学与工程学报,2003,22(4):532~536.
    [66] 曹志远.相互作用分析数值方法的若干新进展[A].见:曹志远编.结构与介质相互作用理论及其应用[C].南京:河海大学出版社,1993.
    [67] 范秋雁,刘文连,黄经秋.框架结构—十字交叉条形基础—地基共同作用分析[J].岩土力学学报,2003,24(2):249~253.
    [68] 刘开国.十字交叉弹性地基粮与空间高层框架相互作用的分析[J].建筑结构学报,1984,5(4):70~79.
    [69] 刘开国.地基—基础—框架体系相互作用的计算方法[J].建筑结构学报,1981,2(5):55~72.
    [70] 朱百里,曹名葆,魏道垛.框架结构与地基基础共同作用的数值分析[J].同济大学学报,1981,(4):15~31.
    [71] 李培振,吕西林,陈波,陈跃庆.均匀土—箱基—结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(5):115~121.
    [72] 陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构—地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126~131.
    [73] 窦立军,杨柏坡,刘光和.土—结构动力相互作用几个实际应用问题[J].世界地震工程,1999,15(4):62~68.
    [74] 姜忻良.相邻建筑物—桩基—土相互作用[J].土木工程学报,1995,28(5):32~38.
    [75] 楼晓明,刘建航.刚性基础—桩—土非线性共同作用的近似分析方法[J].岩土力学学报,2003,24(4):639~643.
    [76] 郑刚.桩土明确分担荷载的复合桩基及其设计方法[J].建筑结构学报,2000,21(5):75~79.
    [77] 周定松,吕西林,王莺歌.筒体—桩筏—地基土共同足以他非线性数值分析[J].同济大学学报,2003,31(9):1019~1023.
    [78] 杨敏,王树娟.桩筏基础相互作用下土中应力场的变化规律[J].岩土工程 学报,1999,21(1):26~30.
    [7
    
    [79] 刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题[J].土木工程学报,2004,37(1):78~83.
    [80] 严平,龚晓南.桩筏基础在上下部共同作用下的极限分析[J].土木工程学报,2000,33(2):87~94.
    [81] 陆培俊.高层建筑结构—桩—土共同作用空间分析[J].岩土工程学报,1993,15(6).
    [82] 赵春洪,赵锡宏.上部结构—筏—桩—地基共同作用分析的新方法[J].建筑结构学报,1990,11(2).
    [83] 陈素文,严士超.高层建筑—地下室—桩—土系统的相互作用[J].建筑结构学报,(12):11~20.
    [84] 尚守平,文学章,刘光栋.地基—箱型基础—上部结构共同作用分析[J].工程力学学报,2001,增刊:123~132.
    [85] 张问清,赵锡宏,董建国.上海砂土地基(弹塑性地基)与高层建筑箱型基础的共同作用[J].建筑结构学报,1982,3(4):50~63.
    [86] 廖雄华,周健,张克绪,李锡夔.广义位移法在土—结构相互作用问题分析中的应用[J].岩土工程学报,2001,23(6):672~676.
    [87] 廖雄华.桩—土相互作用数值方法的研究及其在高桩码头安全性分析中的应用[D].哈尔滨:哈尔滨工业大学,2000.
    [88] 陈波,吕西林,李培振,陈跃庆.均匀土—桩基—结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91~99.
    [89] 熊仲明,赵鸿铁.高层结构—桩—土共同作用的地震反应分析[J].世界地震工程,2002,18(2):99~104.
    [90] 熊仲明.高层建筑上部结构与桩筏基础和地基共同作用受力行为的分析与研究[D].西安:西安建筑科技大学,2000.
    [91] 张延,唐锦春,侯永峰.框架一桩筏基础空间共同作用机理[J].辽宁工程技术大学学报(自然科学版),1998,17(5).
    [92] 袁聚云,赵锡宏,董建国.高层空间剪力墙结构与地基(弹塑性模型)共同作用的研究[J].建筑结构学报,1994,15(2):60~69.
    [93] 姚祖恩,蔡驰.空间框架、基础、桩与土共同作用分析研究[J].浙江大学学报,1991,(7):411~418.
    [94] O.C监凯维奇.有限元法[M].北京:科学出版社,1985.
    [95] 塞尔瓦杜雷.土与基础相互作用的弹性分析[M].北京:中国铁道出版社,1984.
    [96] 方世敏.上部结构与地基基础共同工作的子结构分析方法[J].建筑结构学报.1980,(4):71~79.
    [97] 朱伯芳.有限单元法原理与应用[M].北京:水利电力出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700