GaN/InN核壳纳米线和Cu互连线在外场下的表/界面效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,核壳纳米线作为非常重要的一维异质纳米结构材料,吸引了人们的广泛关注。半导体异质结构纳米线呈现出独特的电学、光学、和力学等性能,在基础科学和纳米技术应用方面有着重要的研究价值。GaN和InN分别具有宽能隙和窄能隙,是非常重要的半导体材料。通过控制不同的生长条件,纳米线可以具有不同生长方向([0001]、[10(1|-)0]、[11(2|-)0]),并具有不同的横截面形状(六边形横截面、三角形横截面)。GaN和InN纳米线在光生伏打器件、光催化剂、自旋电子器件、发光二极管等方面有着广泛的应用前景。
     在超大规模集成电路中,Cu互连线因其具有高电导率和优良抗电迁移能力逐步取代了Al互连线和Al(Cu)互连线。Cu互连线是非常重要的电子部件,对超大规模集成电路的发展起着决定性的作用。伴随着集成电路小型化的进一步发展,器件尺寸将会降低到22 nm,甚至14 nm以下。此时,超细的Cu互连线的电迁移稳定性将会面临着巨大的挑战。Cu互连线与低k电介质材料或者是与它相关连接的阻挡层形成的界面会成为电迁移效应的路径,这主要是因为界面处的结合强度比较弱。因此,人们急需寻找能够有效改善Cu互连线的电迁移稳定性的新材料。
     在小型化纳米器件的应用中,纳米器件的尺寸越来越小,其性能对原子结构的变化也越来越敏感,因而在原子水平上电子态的分析是非常重要的。特别是当原子结构直径小于5 nm时,实验研究将变得比较困难。随着计算机模拟技术的发展,第一原理模拟计算在这一尺度范围越来越具有优势,因其可以有效深入探讨原子结构和电子结构对于纳米材料性能的影响。表面修饰、界面、掺杂、电场、应变场等单种外界条件,或者是多种外界条件对纳米器件性能的调节效果是显著。GaN/InN核壳纳米线通过表面修饰以及应变场使其具有优异的电学和光学等性能,在新能源领域中的光生伏打器件应用上具有巨大的应用潜力。另外,Cu互连线可以通过界面掺杂的作用使其具有优异的界面环境,增强界面的结合强度,使其在电场的条件下能够具有较好的电迁移稳定性能。这为集成电路的进一步小型化发展提供了重要的设计思路。本论文采用基于密度泛函理论的第一原理模拟方法,研究了表面修饰和应变场对GaN/InN核壳纳米线的电学和光学性能的影响,和界面掺杂对Cu互连线的电迁移稳定性能的改善。
     本论文主要研究成果可分如下三部分内容:
     首先,研究了表面修饰对沿[0001]生长方向、不同直径、横截面为六边形和三角形的GaN/InN核壳纳米线的原子结构、和电学、光学性能的影响。结果表明,由于量子禁闭效应和内应变的作用,对于表面氢化的GaN/InN核壳纳米线,当GaN核的半径固定不变,伴随着InN壳的厚度增加,能隙将会减小;当InN壳的厚度固定不变,伴随着GaN核的半径增加,能隙也将会减小。当GaN/InN核壳纳米线的表面修饰采用H和F原子时,调整H和F原子的吸附位置以及F与H原子比,将会进一步调整其能隙。值得注意的是,表面修饰可以有效的实现电子空穴的分离。这个结果阐释表面修饰可以使核壳纳米线从类型-Ⅰ带偏移转变为类型-Ⅱ带偏移,从而在新能源领域的应用中开辟了一条新的途径。
     其次,研究了沿[0001]生长方向、不同直径、横截面为六边形和三角形的GaN/InN核壳纳米线在应变场作用下其原子结构、和电学、光学性能的变化。GaN核和InN壳之间存在的内应变导致氢化核壳纳米线中GaN核的能隙与同等尺寸的纯的GaN纳米线的能隙不同。当对氢化GaN/InN核壳纳米线施加外轴向应变场时,伴随着外拉应变增加时,能隙将会降低;伴随着外压应变增加时,能隙将会增加。同时,增加外拉应变将会促使电子空穴的分离程度明显增强。研究结果表明,内应变和外应变能够有效的调节核壳纳米线的电学和光学性能,这提供了一种适应性很强的方法来满足实际应用中对GaN/InN核壳纳米线性能的需求。
     第三,研究了α-Al_2O_3薄膜和在它与Cu薄膜形成的界面处掺杂的Al原子对Cu薄膜在电场情况下的原子结构的影响。研究发现当电场强度达到0.040 au (1 au = 51.4 V/(?))时,纯Cu薄膜的原子结构发生非常大的变化,与之相比,在Cu(Al)/α-Al_2O_3界面处掺杂Al原子的Cu(Al)薄膜,在电场强度为0.040 au,甚至是较强的电场强度下,其原子结构变化很小。这主要是因为界面处存在的Cu?O共价离子键和Al?O离子键能够有效的改善Cu薄膜的稳定性。这为Cu互连线在超大规模集成电路中的应用提供了一条解决Cu互连线的电迁移稳定性问题的便捷途径。
Recently, as important one-dimension heterostructure nanostructures, core/shell nanowires (CSNWs) have attracted broad interest. Semiconductor heterostructure NWs exhibit unique electronic, optical, and mechanical properties. Thus, there are of importance in fundamental science and nanotechnology application. GaN and InN with wide and narrow band gaps are the most important semiconductor materials. Different growth directions ([0001], [10(1|-)0], and [11(2|-)0]) and different across shapes (hexagonal and triangular shapes) of NWs can be synthesized by controlling different growth conditions. It has been reported that GaN and InN NWs have great application prospects and can be widely used in photovoltaic devices, photocatalyst, spintronic devices, light emitting diode, etc.
     In ultra-large scale integration (ULSI), Cu interconnection replaces Al and Al(Cu), because of its high conductivity, and good electromigration (EM) resistance. Cu interconnection is one of the most essential concerns and determines the further development of ULSI. Upon miniaturization of ULSI with the feature sizes reduced to 22 or 14 nm, further thinning of Cu interconnection leads to more serious EM. The Cu/low-k dielectrics or Cu/barrier layers interfaces are main EM paths, due to the weak bonding strength at the interfaces. Thus, a vital issue addressed has arisen to seek a material that can effectively improve the EM reliability of Cu interconnection.
     In nanodevices with the miniaturization, the size becomes smaller and smaller. The performances of many nanoscale devices are sensitive to the variation of local atomic configurations, leading to that electronic state analysis at the scale of individual atoms becomes more and more important. In particular, when the diameter of NWs is less than 5 nm, it becomes a great challenge for studying in experimental studies. Thanks to the development of computer techniques, the first?principles calculations become much more powerful, and are beneficial to study the detail effects of the atomic and electronic structures on the properties of NWs. The surface modifications, interfaces, doping, electric field, strain field, ect, are essential to the properties of nanodevices. Especially, the coexistence of the external circumstance has significant effect on the performance of nanodevices. It is promising for GaN/InN CSNWs in the application as photovoltaic devices because of the unique electronic and optical properties of GaN/InN CSNWs induced by surface modifications and strain field. In addition, the good doping at the interfaces can enhance the interfacial stability and bonding strength of Cu interconnection, which effectively improves the EM reliability under electric field. The results provide a new way of designing the miniaturization of ULSI. In this thesis, using the first-principles calculations based on density-functional theory, we investigate the effects of the surface modifications and strain fields on the electronic and optical properties of GaN/InN CSNWs, and the effects of the doping at the interfaces on the EM realiablity of Cu interconnection.
     The main results obtained in the thesis are divided into three parts as following:
     Firstly, we investigate the effects of surface modifications on atomic structures, electronic and optical properties of triangular and hexagonal GaN/InN CSNWs along [0001] derection. The results show that the band gaps Eg decrease, as the thicknesses of InN shell ( radii of GaN core) increase in hydrogenated GaN/InN CSNWs with fixed radii of GaN core (thicknesses of InN shell), due to the effects of quantum confinement and intrinsic strain. Furthermore, our calculations demonstrate that surface modifications with H and F atoms substantially modulate the band gaps dependent on the adsoprtion sites and the F/H ratio. It is worthy noting that surface modifications induce the separation of electrons and holes. The results elucidate that surface modifications change electronic structures of CSNWs with a transition from type-Ⅰband alignment to quasi-type-Ⅱ, which open a new way in the field of renewable energy applications.
     Secondly, we investigate the influence of the intrinsic and external uniaxial strains on the atomic structures, electronic and optical properties of GaN/InN CSNWs with hexagonal and triangular shapes along [0001] direction. It is found that the band gap of the GaN core in hydrogenated CSNW differs from that of the pure GaN NW due to the intrinsic strainεi between GaN core and InN shell. Under the external uniaxial strainεe on GaN/InN CSNWs, the direct band gap decreases (increases) with increasing the external tensile (compressive) strain. The efficient dissociation of electrons and holes excitons is enhanced by the external tensile strain. The results demonstrate thatεi andεe substantially influence electronic and optical properties of CSNWs, which probably reach the requirement of GaN/InN CSNWs applied in practic devices.
     Thirdly, the effects ofα-Al_2O_3 films and the Al atoms doped at theα-Al_2O_3/Cu interfaces on atomic structures of Cu(Al) films are investigated under external electric fields F. The Cu films with large deformation indicate that EM of Cu slabs occurs as F reaches 0.040 au (1 au = 51.4 V/(?)), in contrast, the Cu(Al) films coated byα-Al_2O_3 films slightly change and are more stable under the same and larger F. The main reason is that Cu?O covalent-ionic and Al?O ionic bonds exist at the interfaces, indicating that the stronger bonding strength effectively improves the reliability of Cu atoms. These results provide a solution of enhancing the EM reliability of Cu interconnection in ULSI.
引文
[1] ROSINI M, MAGRI R, Surface Effects on the Atomic and Electronic Structure of Unpassivated GaAs Nanowires [J]. ACS Nano, 2010, 4: 6021-6031.
    [2] DONG L, YADAV S K, RAMPRASAD R, ALPAY S P, Band gap tuning in GaN through equibiaxial in-plane strains [J]. Applied Physics Letters, 2010, 96: 202106.
    [3] FANG D Q, ROSA A L, FRAUENHEIM T, ZHANG R Q, Band gap engineering of GaN nanowires by surface functionalization [J]. Applied Physics Letters, 2009, 94: 073116.
    [4] ADELMANN C, SARIGIANNIDOU E, JALABERT D, HORI Y, ROUVIERE J L, DAUDIN B, FANGET S, BRU-CHEVALLIER C, SHIBATA T, TANAKA M, Growth and optical properties of GaN/AlN quantum wells [J]. Applied Physics Letters, 2003, 82: 4154.
    [5] CHEN C H, YEH C M, HWANG J, TSAI T L, CHIANG C H, CHANG C S, CHEN T P, Band gap shift in the GaN/AlN multilayers on the mesh-patterned Si(111) [J]. Applied Physics Letters, 2006, 88: 161912.
    [6] CHEN Q, HU H, CHEN X, WANG J, Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations [J]. Applied Physics Letters, 2011, 98: 053102.
    [7] BIE Y-Q, LIAO Z-M, ZHANG H-Z, LI G-R, YE Y, ZHOU Y-B, XU J, QIN Z-X, DAI L, YU D-P, Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions [J]. Advanced Materials, 2011, 23: 649-653.
    [8] AHMAD I, KASISOMAYAJULA V, HOLTZ M, BERG J M, KURTZ S R, TIGGES C P, ALLERMAN A A, BACA A G, Self-heating study of an AlGaN/GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering [J]. Applied Physics Letters, 2005, 86: 173503.
    [9] AHN J, MASTRO M A, HITE J, EDDY J C R, KIM J, Violet electroluminescence from p-GaN thin film/n-GaN nanowire homojunction [J]. Applied Physics Letters, 2010, 96: 132105.
    [10] AN S J, YI G-C, Near ultraviolet light emitting diode composed of n-GaN/ZnOcoaxial nanorod heterostructures on a p-GaN layer [J]. Applied Physics Letters, 2007, 91: 123109.
    [11] ARYAL K, PANTHA B N, LI J, LIN J Y, JIANG H X, Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells [J]. Applied Physics Letters, 2010, 96: 052110.
    [12] BASTEK B, AUGUST O, HEMPEL T, CHRISTEN J, WIENEKE M, BLASING J, DADGAR A, KROST A, WENDT U, Direct microscopic correlation of crystal orientation and luminescence in spontaneously formed nonpolar and semipolar GaN growth domains [J]. Applied Physics Letters, 2010, 96: 172102.
    [13] CAO X A, YANG Y, Electroluminescence observation of nanoscale phase separation in quaternary AlInGaN light-emitting diodes [J]. Applied Physics Letters, 2010, 96: 151109.
    [14] CHANG K-H, SHEU J-K, LEE M-L, TU S-J, YANG C-C, KUO H-S, YANG J H, LAI W-C, Inverted Al_(0.25)Ga(0.75)N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy [J]. Applied Physics Letters, 2010, 97: 013502.
    [15] CHANG Y L, WANG J L, LI F, MI Z, High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111) [J]. Applied Physics Letters, 2010, 96: 013106.
    [16] CHEN C-C, SHIH M H, YANG Y-C, KUO H-C, Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector [J]. Applied Physics Letters, 2010, 96: 151115.
    [17] JANI O, FERGUSON I, HONSBERG C, KURTZ S, Design and characterization of GaN/InGaN solar cells [J]. Applied Physics Letters, 2007, 91: 132117.
    [18] LING S-C, LU T-C, CHANG S-P, CHEN J-R, KUO H-C, WANG S-C, Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes [J]. Applied Physics Letters, 2010, 96: 231101.
    [19] CHEN P-T, SUN C-L, HAYASHI M, First-Principles Calculations of Hydrogen Generation Due to Water Splitting on Polar GaN Surfaces [J]. The Journal of PhysicalChemistry C, 2010, 114: 18228-18232.
    [20] HIRAI T, MAEDA K, YOSHIDA M, KUBOTA J, IKEDA S, MATSUMURA M, DOMEN K, Origin of Visible Light Absorption in GaN-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts [J]. The Journal of Physical Chemistry C, 2007, 111: 18853-18855.
    [21] JIANG Q, ZHU Y F, ZHAO M, Recent Patents on Cu/low-k Dielectrics Interconnects in Integrated Circuits [J]. Recent Patents on Nanotechnology, 2007, 1: 193-209.
    [22] PYUN J W, BAEK W-C, ZHANG L, IM J, HO P S, SMITH L, SMITH G, Electromigration behavior of 60 nm dual damascene Cu interconnects [J]. Journal of Applied Physics, 2007, 102: 093516.
    [23] TAN C M, ROY A, Electromigration in ULSI interconnects [J]. Materials Science and Engineering: R: Reports, 2007, 58: 1-75.
    [24] MAROUDAS D, Surface morphological response of crystalline solids to mechanical stresses and electric fields [J]. Surface Science Reports, 2011, 66: 299-346.
    [25] KIM J-R, SO H M, PARK J W, KIM J-J, KIM J, LEE C J, LYU S C, Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition [J]. Applied Physics Letters, 2002, 80: 3548.
    [26] NAKAMURA S, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes [J]. Science, 1998, 281: 956-961.
    [27] LIU B, BANDO Y, TANG C, XU F, HU J, GOLBERG D, Needlelike Bicrystalline GaN Nanowires with Excellent Field Emission Properties [J]. The Journal of Physical Chemistry B, 2005, 109: 17082-17085.
    [28] TERENTJEVS A, CATELLANI A, PRENDERGAST D, CICERO G, Importance of on-site corrections to the electronic and structural properties of InN in crystalline solid, nonpolar surface, and nanowire forms [J]. Physical Review B, 2010, 82: 165307.
    [29] DHARA S, DATTA A, WU C T, LAN Z H, CHEN K H, WANG Y L, HSU C W, SHEN C H, CHEN L C, CHEN C C, Hexagonal-to-cubic phase transformation in GaN nanowires by Ga+ implantation [J]. Applied Physics Letters, 2004, 84: 5473.
    [30] SIMPKINS B S, ERICSON L M, STROUD R M, PETTIGREW K A, PEHRSSON P E, Gallium-based catalysts for growth of GaN nanowires [J]. Journal of Crystal Growth,2006, 290: 115-120.
    [31] XU B-S, ZHAI L-Y, LIANG J, MA S-F, JIA H-S, LIU X-G, Synthesis and characterization of high purity GaN nanowires [J]. Journal of Crystal Growth, 2006, 291: 34-39.
    [32] KIPSHIDZE G, YAVICH B, CHANDOLU A, YUN J, KURYATKOV V, AHMAD I, AURONGZEB D, HOLTZ M, TEMKIN H, Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition [J]. Applied Physics Letters, 2005, 86: 033104.
    [33] PENG H Y, WANG N, ZHOU X T, ZHENG Y F, LEE C S, LEE S T, Control of growth orientation of GaN nanowires [J]. Chemical Physics Letters, 2002, 359: 241-245.
    [34] KUYKENDALL T, PAUZAUSKIE P J, ZHANG Y, GOLDBERGER J, SIRBULY D, DENLINGER J, YANG P, Crystallographic alignment of high-density gallium nitride nanowire arrays [J]. Nature Materials, 2004, 3: 524-528.
    [35] DUAN X, LIEBER C M, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires [J]. Journal of the American Chemical Society, 2000, 122: 188-189.
    [36] HUANG Y, DUAN X, CUI Y, LIEBER C M, Gallium Nitride Nanowire Nanodevices [J]. Nano Letters, 2002, 2: 101-104.
    [37] ABE R, HIGASHI M, DOMEN K, Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H2 and O2 under Visible Light Irradiation [J]. Journal of the American Chemical Society, 2010, 132: 11828-11829.
    [38] KUYKENDALL T, PAUZAUSKIE P, LEE S, ZHANG Y, GOLDBERGER J, YANG P, Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections [J]. Nano Letters, 2003, 3: 1063-1066.
    [39] STACH E A, PAUZAUSKIE P J, KUYKENDALL T, GOLDBERGER J, HE R, YANG P, Watching GaN Nanowires Grow [J]. Nano Letters, 2003, 3: 867-869.
    [40] HA B, SEO S H, CHO J H, YOON C S, YOO J, YI G-C, PARK C Y, LEE C J, Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires [J]. The Journal of Physical Chemistry B, 2005, 109: 11095-11099.
    [41] CHENG G, KOLMAKOV A, ZHANG Y, MOSKOVITS M, MUNDEN R, REED M A,WANG G, MOSES D, ZHANG J, Current rectification in a single GaN nanowire with a well-defined p-n junction [J]. Applied Physics Letters, 2003, 83: 1578.
    [42] HAN D S, PARK J, RHIE K W, KIM S, CHANG J, Ferromagnetic Mn-doped GaN nanowires [J]. Applied Physics Letters, 2005, 86: 032506.
    [43] KING P D C, VEAL T D, MCCONVILLE C F, FUCHS F, FURTHM LLER J, BECHSTEDT F, SCH RMANN J, AS D J, LISCHKA K, LU H, SCHAFF W J, Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission spectroscopy and first-principles calculations [J]. Physical Review B, 2008, 77: 115213.
    [44] PASZKOWICZ W, (?)ERN R, KRUKOWSKI S, Rietveld refinement for indium nitride in the 105 - 295 K range [J]. Powder Diffraction, 2003, 18: 114-121.
    [45] STOICA T, MEIJERS R J, CALARCO R, RICHTER T, SUTTER E, L TH H, Photoluminescence and Intrinsic Properties of MBE-Grown InN Nanowires [J]. Nano Letters, 2006, 6: 1541-1547.
    [46] WERNER F, LIMBACH F, CARSTEN M, DENKER C, MALINDRETOS J, RIZZI A, Electrical Conductivity of InN Nanowires and the Influence of the Native Indium Oxide Formed at Their Surface [J]. Nano Letters, 2009, 9: 1567-1571.
    [47] KOLEY G, ET AL., Growth direction modulation and diameter-dependent mobility in InN nanowires [J]. Nanotechnology, 2011, 22: 295701.
    [48] CUSC R, Probing the electron density in undoped, Si-doped, and Mg-doped InN nanowires by means of Raman scattering [J]. Applied Physics Letters, 2010, 97: 221906.
    [49] CHANG C-Y, CHI G-C, WANG W-M, CHEN L-C, CHEN K-H, REN F, PEARTON S, Electrical transport properties of single GaN and InN nanowires [J]. Journal of Electronic Materials, 2006, 35: 738-743.
    [50] LIN H-M, CHEN Y-L, YANG J, LIU Y-C, YIN K-M, KAI J-J, CHEN F-R, CHEN L-C, CHEN Y-F, CHEN C-C, Synthesis and Characterization of Core?Shell GaP@GaN and GaN@GaP Nanowires [J]. Nano Letters, 2003, 3: 537-541.
    [51] LIN W, BENJAMIN D, LI S, SEKIGUCHI T, ITO S, KANG J, Band Engineering in Strained GaN/ultrathin InN/GaN Quantum Wells [J]. Crystal Growth & Design, 2009, 9: 1698-1701.
    [52] YOSHIKAWA A, CHE S B, YAMAGUCHI W, SAITO H, WANG X Q, ISHITANI Y, HWANG E S, Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix [J]. Applied Physics Letters, 2007, 90: 073101.
    [53] KWON S-Y, BAIK S-I, KIM Y-W, KIM H J, KO D-S, YOON E, YOON J-W, CHEONG H, PARK Y-S, Room temperature near-ultraviolet emission from In-rich InGaN/GaN multiple quantum wells [J]. Applied Physics Letters, 2005, 86: 192105.
    [54] KONG B H, KIM D C, CHO H K, LEE K H, KIM J W, KIM B J, Blue and green emission using In(Ga)N/GaN quantum wells with InN well layers grown by metalorganic chemical vapor deposition [J]. Journal of Crystal Growth, 2007, 299: 282-287.
    [55] LIN W, LI S, KANG J, Near-ultraviolet light emitting diodes using strained ultrathin InN/GaN quantum well grown by metal organic vapor phase epitaxy [J]. Applied Physics Letters, 2010, 96: 101115.
    [56] KADIR A, GOKHALE M R, BHATTACHARYA A, PRETORIUS A, ROSENAUER A, MOVPE growth and characterization of InN/GaN single and multi-quantum well structures [J]. Journal of Crystal Growth, 2008, 311: 95-98.
    [57] CHANG W-H, KE W-C, YU S-H, LEE L, CHEN C-Y, TSAI W-C, LIN H, CHOU W-C, LEE M-C, CHEN W-K, Effects of growth temperature on InN/GaN nanodots grown by metal organic chemical vapor deposition [J]. Journal of Applied Physics, 2008, 103: 104306.
    [58] KING P D C, VEAL T D, KENDRICK C E, BAILEY L R, DURBIN S M, MCCONVILLE C F, InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements [J]. Physical Review B, 2008, 78: 033308.
    [59] NEUFELD C J, TOLEDO N G, CRUZ S C, IZA M, DENBAARS S P, MISHRA U K, High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap [J]. Applied Physics Letters, 2008, 93: 143502.
    [60] KIM Y H, PARK H J, KIM K, KIM C S, YUN W S, LEE J W, KIM M D, Strain distribution and interface modulation of highly lattice-mismatched InN/GaN heterostructure nanowires [J]. Applied Physics Letters, 2009, 95: 033112.
    [61] PAN H, FENG Y P, Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio [J]. ACS Nano, 2008, 2: 2410-2414.
    [62] GUO C-S, LUO L-B, YUAN G-D, YANG X-B, ZHANG R-Q, ZHANG W-J, LEE S-T, Surface Passivation and Transfer Doping of Silicon Nanowires [J]. Angewandte Chemie International Edition, 2009, 48: 9896-9900.
    [63] READ A J, NEEDS R J, NASH K J, CANHAM L T, CALCOTT P D J, QTEISH A, First-principles calculations of the electronic properties of silicon quantum wires [J]. Physical Review Letters, 1992, 69: 1232.
    [64] ARADI B, RAMOS L E, DE K P, K HLER T, BECHSTEDT F, ZHANG R Q, FRAUENHEIM T, Theoretical study of the chemical gap tuning in silicon nanowires [J]. Physical Review B, 2007, 76: 035305.
    [65] NOLAN M, O'CALLAGHAN S, FAGAS G, GREER J C, FRAUENHEIM T, Silicon Nanowire Band Gap Modification [J]. Nano Letters, 2006, 7: 34-38.
    [66] ZHANG R Q, LIU X M, WEN Z, JIANG Q, Prediction of Silicon Nanowires as Photocatalysts for Water Splitting: Band Structures Calculated Using Density Functional Theory [J]. The Journal of Physical Chemistry C, 2011, 115: 3425-3428.
    [67] LEU P W, SHAN B, CHO K, Surface chemical control of the electronic structure of silicon nanowires: Density functional calculations [J]. Physical Review B, 2006, 73: 195320.
    [68] HUANG S-P, XU H, BELLO I, ZHANG R Q, Tuning Electronic Structures of ZnO Nanowires by Surface Functionalization: A First-Principles Study [J]. The Journal of Physical Chemistry C, 2010, 114: 8861-8866.
    [69] SHALISH I, TEMKIN H, NARAYANAMURTI V, Size-dependent surface luminescence in ZnO nanowires [J]. Physical Review B, 2004, 69: 245401.
    [70] CHANG P-C, CHIEN C-J, STICHTENOTH D, RONNING C, LU J G, Finite size effect in ZnO nanowires [J]. Applied Physics Letters, 2007, 90: 113101.
    [71] CARTER D J, GALE J D, DELLEY B, STAMPFL C, Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles [J]. Physical Review B, 2008, 77: 115349.
    [72] ALGRA R E, VERHEIJEN M A, BORGSTROM M T, FEINER L-F, IMMINK G, VAN ENCKEVORT W J P, VLIEG E, BAKKERS E P A M, Twinning superlattices in indium phosphide nanowires [J]. Nature, 2008, 456: 369-372.
    [73] LEAO C R, FAZZIO A, DA SILVA A J R, Confinement and Surface Effects in B and P Doping of Silicon Nanowires [J]. Nano Letters, 2008, 8: 1866-1871.
    [74] DEEPAK F L, VANITHA P V, GOVINDARAJ A, RAO C N R, Photoluminescence spectra and ferromagnetic properties of GaMnN nanowires [J]. Chemical Physics Letters, 2003, 374: 314-318.
    [75] LIU B, BANDO Y, TANG C, GOLBERG D, YAMAURA K, TAKAYAMA-MUROMACHI E, Synthesis and magnetic study for Ga -xMnxN whiskers [J]. Chemical Physics Letters, 2005, 405: 127-130.
    [76] CHEN X, Modification of the electronic properties of GaN nanowires by Mn doping [J]. Applied Physics Letters, 2007, 91: 082109.
    [77] WANG Q, SUN Q, JENA P, KAWAZOE Y, Ferromagnetic GaN-Cr Nanowires [J]. Nano Letters, 2005, 5: 1587-1590.
    [78] CHUN J, KIM D, Growth and structural characterization of ferromagnetic Cr-doped GaN nanowires [J]. physica status solidi (a), 2011, 208: 691-694.
    [79] SEONG H-K, KIM J-Y, KIM J-J, LEE S-C, KIM S-R, KIM U, PARK T-E, CHOI H-J, Room-Temperature Ferromagnetism in Cu Doped GaN Nanowires [J]. Nano Letters, 2007, 7: 3366-3371.
    [80] SHI F, ZHANG D, XUE C, Effect of ammoniating temperature on microstructure and optical properties of one-dimensional GaN nanowires doped with magnesium [J]. Journal of Alloys and Compounds, 2011, 509: 1294-1300.
    [81] DELLEY B, STEIGMEIER E F, Size dependence of band gaps in silicon nanostructures [J]. Applied Physics Letters, 1995, 67: 2370.
    [82] LI M, LI J C, Size effects on the band-gap of semiconductor compounds [J]. Materials Letters, 2006, 60: 2526-2529.
    [83] YANG C C, LI S, Size, Dimensionality, and Constituent Stoichiometry Dependence of Bandgap Energies in Semiconductor Quantum Dots and Wires [J]. The Journal of PhysicalChemistry C, 2008, 112: 2851-2856.
    [84] MA D D D, LEE C S, AU F C K, TONG S Y, LEE S T, Small-Diameter Silicon Nanowire Surfaces [J]. Science, 2003, 299: 1874-1877.
    [85] NG M-F, ZHOU L, YANG S-W, SIM L Y, TAN V B C, WU P, Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach [J]. Physical Review B, 2007, 76: 155435.
    [86] BRUNO M, PALUMMO M, MARINI A, DEL SOLE R, OSSICINI S, From Si Nanowires to Porous Silicon: The Role of Excitonic Effects [J]. Physical Review Letters, 2007, 98: 036807.
    [87] ZHAO X, WEI C M, YANG L, CHOU M Y, Quantum Confinement and Electronic Properties of Silicon Nanowires [J]. Physical Review Letters, 2004, 92: 236805.
    [88] SAITTA A M, BUDA F, FIUMARA G, GIAQUINTA P V, Ab initio molecular-dynamics study of electronic and optical properties of silicon quantum wires: Orientational effects [J]. Physical Review B, 1996, 53: 1446.
    [89] SCHEEL H, REICH S, THOMSEN C, Electronic band structure of high-index silicon nanowires [J]. physica status solidi (b), 2005, 242: 2474-2479.
    [90] RURALI R, ARADI B, FRAUENHEIM T, GALI A, Accurate single-particle determination of the band gap in silicon nanowires [J]. Physical Review B, 2007, 76: 113303.
    [91] YAN J-A, YANG L, CHOU M Y, Size and orientation dependence in the electronic properties of silicon nanowires [J]. Physical Review B, 2007, 76: 115319.
    [92] SOROKIN P B, AVRAMOV P V, KVASHNIN A G, KVASHNIN D G, OVCHINNIKOV S G, FEDOROV A S, Density functional study of <110>-oriented thin silicon nanowires [J]. Physical Review B, 2008, 77: 235417.
    [93] WU Z, NEATON J B, GROSSMAN J C, Quantum Confinement and Electronic Properties of Tapered Silicon Nanowires [J]. Physical Review Letters, 2008, 100: 246804.
    [94] KANG M S, SAHU A, NORRIS D J, FRISBIE C D, Size-Dependent Electrical Transport in CdSe Nanocrystal Thin Films [J]. Nano Letters, 2010, 10: 3727-3732.
    [95] TSAI M-H, JHANG Z-F, JIANG J-Y, TANG Y-H, TU L W, Electrostatic and structural properties of GaN nanorods/nanowires from first principles [J]. Applied Physics Letters, 2006, 89: 203101.
    [96] GULANS A, TALE I, Ab initio calculation of wurtzite-type GaN nanowires [J]. physica status solidi (c), 2007, 4: 1197-1200.
    [97] LYONS D M, RYAN K M, MORRIS M A, HOLMES J D, Tailoring the Optical Properties of Silicon Nanowire Arrays through Strain [J]. Nano Letters, 2002, 2: 811-816.
    [98] AUDOIT G, MHUIRCHEARTAIGH E N, LIPSON S M, MORRIS M A, BLAU W J, HOLMES J D, Strain induced photoluminescence from silicon and germanium nanowire arrays [J]. Journal of Materials Chemistry, 2005, 15: 4809-4815.
    [99] LI S, JIANG Q, YANG G W, Uniaxial strain modulated band gap of ZnO nanostructures [J]. Applied Physics Letters, 2010, 96: 213101.
    [100] XIANG H J, WEI S-H, DA SILVA J L F, LI J, Strain relaxation and band-gap tunability in ternary In_xGa_(1-x)N nanowires [J]. Physical Review B, 2008, 78: 193301.
    [101] YADAV S K, SADOWSKI T, RAMPRASAD R, Density functional theory study of ZnX (X=O, S, Se, Te) under uniaxial strain [J]. Physical Review B, 2010, 81: 144120.
    [102] HONG K-H, KIM J, LEE S-H, SHIN J K, Strain-Driven Electronic Band Structure Modulation of Si Nanowires [J]. Nano Letters, 2008, 8: 1335-1340.
    [103] WU Z, NEATON J B, GROSSMAN J C, Charge Separation via Strain in Silicon Nanowires [J]. Nano Letters, 2009, 9: 2418-2422.
    [104] YANG S Y, PRENDERGAST D, NEATON J B, Strain-Induced Band Gap Modification in Coherent Core/Shell Nanostructures [J]. Nano Letters, 2010, 10: 3156-3162.
    [105] SADOWSKI T, RAMPRASAD R, Core/Shell CdSe/CdTe Heterostructure Nanowires Under Axial Strain [J]. The Journal of Physical Chemistry C, 2010, 114: 1773-1781.
    [106] PENG X, LOGAN P, Electronic properties of strained Si/Ge core-shell nanowires [J]. Applied Physics Letters, 2010, 96: 143119.
    [107] HUANG S, YANG L, Strain engineering of band offsets in Si/Ge core-shellnanowires [J]. Applied Physics Letters, 2011, 98: 093114.
    [108] LI S, LI J L, JIANG Q, YANG G W, Electrical field induced direct-to-indirect bandgap transition in ZnO nanowires [J]. Journal of Applied Physics, 2010, 108: 024302.
    [109] ZHANG X W, Semiconductor-metal transition in InSb nanowires and nanofilms under external electric field [J]. Applied Physics Letters, 2006, 89: 172113.
    [110] ZHANG R Q, ZHENG W T, JIANG Q, External Electric Field Modulated Electronic and Structural Properties of <111> Si Nanowires [J]. The Journal of Physical Chemistry C, 2009, 113: 10384-10389.
    [111] ZHANG R Q, Tunable optical and electronic properties of Si nanowires by electric bias [J]. Journal of Applied Physics, 2011, 109: 083106.
    [112] WU F, KAN E, WU X, Site-selected doping in silicon nanowires by an external electric field [J]. Nanoscale, 2011, 3: 3620-3622.
    [113] ZWANENBURG F A, VAN DER MAST D W, HEERSCHE H B, KOUWENHOVEN L P, BAKKERS E P A M, Electric Field Control of Magnetoresistance in InP Nanowires with Ferromagnetic Contacts [J]. Nano Letters, 2009, 9: 2704-2709.
    [114] ZHANG X, High and electric field tunable Curie temperature in diluted magnetic semiconductor nanowires and nanoslabs [J]. Applied Physics Letters, 2007, 90: 253110.
    [115] ZHU J, CUI Y, Photovoltaics: More solar cells for less [J]. Nature Materials, 2010, 9: 183-184.
    [116] LEWIS N S, Toward Cost-Effective Solar Energy Use [J]. Science, 2007, 315: 798-801.
    [117] NOZIK A J, Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion? [J]. Inorganic Chemistry, 2005, 44: 6893-6899.
    [118] BARTH S, HERNANDEZ-RAMIREZ F, HOLMES J D, ROMANO-RODRIGUEZ A, Synthesis and applications of one-dimensional semiconductors [J]. Progress in Materials Science, 2010, 55: 563-627.
    [119] TSAKALAKOS L, BALCH J, FRONHEISER J, KOREVAAR B A, SULIMA O, RAND J, Silicon nanowire solar cells [J]. Applied Physics Letters, 2007, 91: 233117.
    [120] PENG K, XU Y, WU Y, YAN Y, LEE S-T, ZHU J, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications [J]. Small, 2005, 1: 1062-1067.
    [121] PENG K, WANG X, LEE S-T, Silicon nanowire array photoelectrochemical solar cells [J]. Applied Physics Letters, 2008, 92: 163103.
    [122] STELZNER T, ET AL., Silicon nanowire-based solar cells [J]. Nanotechnology, 2008, 19: 295203.
    [123] KELZENBERG M D, BOETTCHER S W, PETYKIEWICZ J A, TURNER-EVANS D B, PUTNAM M C, WARREN E L, SPURGEON J M, BRIGGS R M, LEWIS N S, ATWATER H A, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications [J]. Nature Materials, 2010, 9: 239-244.
    [124] GARNETT E, YANG P, Light Trapping in Silicon Nanowire Solar Cells [J]. Nano Letters, 2010, 10: 1082-1087.
    [125] TIAN B, ZHENG X, KEMPA T J, FANG Y, YU N, YU G, HUANG J, LIEBER C M, Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J]. Nature, 2007, 449: 885-889.
    [126] KELZENBERG M D, TURNER-EVANS D B, KAYES B M, FILLER M A, PUTNAM M C, LEWIS N S, ATWATER H A, Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells [J]. Nano Letters, 2008, 8: 710-714.
    [127] GARNETT E C, YANG P, Silicon Nanowire Radial p?n Junction Solar Cells [J]. Journal of the American Chemical Society, 2008, 130: 9224-9225.
    [128] LU S, LINGLEY Z, ASANO T, HARRIS D, BARWICZ T, GUHA S, MADHUKAR A, Photocurrent Induced by Nonradiative Energy Transfer from Nanocrystal Quantum Dots to Adjacent Silicon Nanowire Conducting Channels: Toward a New Solar Cell Paradigm [J]. Nano Letters, 2009, 9: 4548-4552.
    [129] SIVAKOV V, ANDR G, GAWLIK A, BERGER A, PLENTZ J, FALK F, CHRISTIANSEN S H, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters [J]. Nano Letters, 2009, 9: 1549-1554.
    [130] ZHANG Y, STURGE M D, KASH K, VAN DER GAAG B P, GOZDZ A S, FLOREZ L T, HARBISON J P, Temperature dependence of luminescence efficiency,exciton transfer, and exciton localization in GaAs/Al_xGa_(1-x)As quantum wires and quantum dots [J]. Physical Review B, 1995, 51: 13303.
    [131] YABLONOVITCH E, Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J]. Physical Review Letters, 1987, 58: 2059.
    [132] KUMAR S, JONES M, LO S, SCHOLES G, Nanorod Heterostructures Showing Photoinduced Charge Separation [J]. Small, 2007, 3: 1633-1639.
    [133] FRANCESCHETTI A, WANG L W, BESTER G, ZUNGER A, Confinement-Induced versus Correlation-Induced Electron Localization and Wave Function Entanglement in Semiconductor Nano Dumbbells [J]. Nano Letters, 2006, 6: 1069-1074.
    [134] PIRYATINSKI A, IVANOV S A, TRETIAK S, KLIMOV V I, Effect of Quantum and Dielectric Confinement on the Exciton-Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals [J]. Nano Letters, 2007, 7: 108-115.
    [135] SCHOLES G D, Insights into Excitons Confined to Nanoscale Systems: Electron–Hole Interaction, Binding Energy, and Photodissociation [J]. ACS Nano, 2008, 2: 523-537.
    [136] ADACHI M, MURATA Y, TAKAO J, JIU J, SAKAMOTO M, WANG F, Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the“Oriented Attachment”Mechanism [J]. Journal of the American Chemical Society, 2004, 126: 14943-14949.
    [137] KANG Y, PARK N-G, KIM D, Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer [J]. Applied Physics Letters, 2005, 86: 113101.
    [138] LAW M, GREENE L E, JOHNSON J C, SAYKALLY R, YANG P, Nanowire dye-sensitized solar cells [J]. Nature Materials, 2005, 4: 455-459.
    [139] ZHANG Y, WANG, MASCARENHAS A,“Quantum Coaxial Cables”for Solar Energy Harvesting [J]. Nano Letters, 2007, 7: 1264-1269.
    [140] SCHRIER J, DEMCHENKO D O, WANG, ALIVISATOS A P, Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications [J]. Nano Letters, 2007, 7: 2377-2382.
    [141] WANG K, CHEN J, ZHOU W, ZHANG Y, YAN Y, PERN J, MASCARENHAS A, Direct Growth of Highly Mismatched TypeⅡZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications [J]. Advanced Materials, 2008, 20: 3248-3253.
    [142] IVANOV S A, PIRYATINSKI A, NANDA J, TRETIAK S, ZAVADIL K R, WALLACE W O, WERDER D, KLIMOV V I, Type-ⅡCore/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures, and Spectroscopic Properties [J]. Journal of the American Chemical Society, 2007, 129: 11708-11719.
    [143] DONG Y, TIAN B, KEMPA T J, LIEBER C M, Coaxial Group III?Nitride Nanowire Photovoltaics [J]. Nano Letters, 2009, 9: 2183-2187.
    [144] ZOU Z, YE J, SAYAMA K, ARAKAWA H, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature, 2001, 414: 625-627.
    [145] MAEDA K, TERAMURA K, LU D, TAKATA T, SAITO N, INOUE Y, DOMEN K, Photocatalyst releasing hydrogen from water [J]. Nature, 2006, 440: 295-295.
    [146] KUDO A, MISEKI Y, Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38: 253-278.
    [147] YANG X, WOLCOTT A, WANG G, SOBO A, FITZMORRIS R C, QIAN F, ZHANG J Z, LI Y, Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting [J]. Nano Letters, 2009, 9: 2331-2336.
    [148] SILVA C U G, BOUIZI Y S, FORNéS V, GARCíA H, Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water [J]. Journal of the American Chemical Society, 2009, 131: 13833-13839.
    [149] MAEDA K, DOMEN K, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light? [J]. Chemistry of Materials, 2009, 22: 612-623.
    [150] LIU M, DE LEON SNAPP N, PARK H, Water photolysis with a cross-linked titanium dioxide nanowire anode [J]. Chemical Science, 2011, 2: 80-87.
    [151] WANG G, YANG X, QIAN F, ZHANG J Z, LI Y, Double-Sided CdS and CdSeQuantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation [J]. Nano Letters, 2010, 10: 1088-1092.
    [152] WU N, WANG J, TAFEN D N, WANG H, ZHENG J-G, LEWIS J P, LIU X, LEONARD S S, MANIVANNAN A, Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts [J]. Journal of the American Chemical Society, 2010, 132: 6679-6685.
    [153] HOCHBAUM A I, YANG P, Semiconductor Nanowires for Energy Conversion [J]. Chemical Reviews, 2009, 110: 527-546.
    [154] DING Q-P, YUAN Y-P, XIONG X, LI R-P, HUANG H-B, LI Z-S, YU T, ZOU Z-G, YANG S-G, Enhanced Photocatalytic Water Splitting Properties of KNbO3 Nanowires Synthesized through Hydrothermal Method [J]. The Journal of Physical Chemistry C, 2008, 112: 18846-18848.
    [155] LUO W, LIU B, LI Z, XIE Z, CHEN D, ZOU Z, ZHANG R, Stable response to visible light of InGaN photoelectrodes [J]. Applied Physics Letters, 2008, 92: 262110.
    [156] JUNG H S, HONG Y J, LI Y, CHO J, KIM Y-J, YI G-C, Photocatalysis Using GaN Nanowires [J]. ACS Nano, 2008, 2: 637-642.
    [157] MAEDA K, TAKATA T, HARA M, SAITO N, INOUE Y, KOBAYASHI H, DOMEN K, GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting [J]. Journal of the American Chemical Society, 2005, 127: 8286-8287.
    [158] MAEDA K, TERAMURA K, TAKATA T, HARA M, SAITO N, TODA K, INOUE Y, KOBAYASHI H, DOMEN K, Overall Water Splitting on (Ga_(1-x)Zn_x)(N_(1-x)O_x) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity [J]. The Journal of Physical Chemistry B, 2005, 109: 20504-20510.
    [159] DI VALENTIN C, Electronic Structure of (Ga(1-x)Zn_x)N_(1-x)O_x Photocatalyst for Water Splitting by Hybrid Hartree-Fock Density Functional Theory Methods [J]. The Journal of Physical Chemistry C, 2010, 114: 7054-7062.
    [160] DEUTSCH T G, KOVAL C A, TURNER J A,Ⅲ-ⅤNitride Epilayers for Photoelectrochemical Water Splitting: GaPN and GaAsPN [J]. The Journal of Physical Chemistry B, 2006, 110: 25297-25307.
    [161] MOSES P G, VAN DE WALLE C G, Band bowing and band alignment in InGaN alloys [J]. Applied Physics Letters, 2010, 96: 021908.
    [162] SHEN X, SMALL Y A, WANG J, ALLEN P B, FERNANDEZ-SERRA M V, HYBERTSEN M S, MUCKERMAN J T, Photocatalytic Water Oxidation at the GaN (10ī0)?Water Interface [J]. The Journal of Physical Chemistry C, 2010, 114: 13695-13704.
    [163] WANG D, PIERRE A, KIBRIA M G, CUI K, HAN X, BEVAN K H, GUO H, PARADIS S, HAKIMA A-R, MI Z, Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy [J]. Nano Letters, 2011, 11: 2353-2357.
    [164] WANG Q, SUN Q, JENA P, Ferromagnetism in Mn-Doped GaN Nanowires [J]. Physical Review Letters, 2005, 95: 167202.
    [165] XIANG H J, WEI S-H, Enhanced Ferromagnetic Stability in Cu Doped Passivated GaN Nanowires [J]. Nano Letters, 2008, 8: 1825-1829.
    [166] FU H-K, CHENG C-L, WANG C-H, LIN T-Y, CHEN Y-F, Selective Angle Electroluminescence of Light-Emitting Diodes based on Nanostructured ZnO/GaN Heterojunctions [J]. Advanced Functional Materials, 2009, 19: 3471-3475.
    [167] WOLFGANG A, Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap [J]. Materials Science and Engineering: B, 2006, 134: 104-108.
    [168] PEERCY P S, The drive to miniaturization [J]. Nature, 2000, 406: 1023.
    [169] FIKS V B, On the mechanism of the mobility of ions in metals [J]. Sov. Phys. Solid State, 1959, 1: 14.
    [170] LEE K-D, OGAWA E T, MATSUHASHI H, JUSTISON P R, KO K-S, HO P S, BLASCHKE V A, Electromigration critical length effect in Cu/oxide dual-damascene interconnects [J]. Applied Physics Letters, 2001, 79: 3236.
    [171] LAU J, In situ electron microscopy studies of electromigration in stacked Al(Cu)/TiN interconnects [J]. Applied Physics Letters, 2000, 76: 164.
    [172] LLOYD J R, CLEMENS J, SNEDE R, Copper metallization reliability [J]. Microelectronics Reliability, 1999, 39: 1595-1602.
    [173] HU C-K, ROSENBERG R, LEE K Y, Electromigration path in Cu thin-film lines [J]. Applied Physics Letters, 1999, 74: 2945.
    [174] TOMAR V, GUNGOR M R, MAROUDAS D, Effects of surface diffusional anisotropy on the current-driven surface morphological response of stressed solids [J]. Journal of Applied Physics, 2010, 107: 093527.
    [175] BEVAN K H, ZHU W, GUO H, ZHANG Z, Terminating Surface Electromigration at the Source [J]. Physical Review Letters, 2011, 106: 156404.
    [176] LEE Y, Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection [J]. Journal of Applied Physics, 1999, 85: 1927.
    [177] ZHAO Y, LU G, First-principles simulations of copper diffusion in tantalum and tantalum nitride [J]. Physical Review B, 2009, 79: 214104.
    [178] LEE H, LOPATIN S D, The influence of barrier types on the microstructure and electromigration characteristics of electroplated copper [J]. Thin Solid Films, 2005, 492: 279-284.
    [179] HU C K, HARPER J M E, Copper interconnections and reliability [J]. Materials Chemistry and Physics, 1998, 52: 5-16.
    [180] MORAND Y, Copper metallization for advanced IC: requirements and technological solutions [J]. Microelectronic Engineering, 2000, 50: 391-401.
    [181] HAYASHI M, NAKANO S, WADA T, Dependence of copper interconnect electromigration phenomenon on barrier metal materials [J]. Microelectronics Reliability, 2003, 43: 1545-1550.
    [182] NAZON J, FRAISSE B, SARRADIN J, FRIES S G, TEDENAC J C, FR TY N, Copper diffusion in TaN-based thin layers [J]. Applied Surface Science, 2008, 254: 5670-5674.
    [183] HASHIBON A, ELS SSER C, MISHIN Y, GUMBSCH P, First-principles study of thermodynamical and mechanical stabilities of thin copper film on tantalum [J]. Physical Review B, 2007, 76: 245434.
    [184] TSAI M H, SUN S C, TSAI C E, CHUANG S H, CHIU H T, Comparison of the diffusion barrier properties of chemical?vapor?deposited TaN and sputtered TaN betweenCu and Si [J]. Journal of Applied Physics, 1996, 79: 6932.
    [185] LEE K, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects [J]. Journal of Applied Physics, 1995, 78: 4428.
    [186] KOIKE J, Self-forming diffusion barrier layer in Cu?Mn alloy metallization [J]. Applied Physics Letters, 2005, 87: 041911.
    [187] FREDERICK M, Kinetics of interfacial reaction in Cu?Mg alloy films on SiO2 [J]. Journal of Applied Physics, 2004, 95: 363.
    [188] ZHU Y F, LU H M, JIANG Q, MIMURA K, ISSHIKI M, Effect of Alloying Mg on Corrosion Resistance of Cu at High Temperature [J]. Journal of the Electrochemical Society, 2007, 154: C153-C158.
    [189] WANG X, DONG X, WU J, Effects of Cr dopant on the microstructure and electromigration performance of Cu interconnects [J]. Applied Surface Science, 2009, 255: 9273-9278.
    [190] YOKOGAWA S, TSUCHIYA H, Effects of Al doping on the electromigration performance of damascene Cu interconnects [J]. Journal of Applied Physics, 2007, 101: 013513.
    [191] MAEKAWA K, MORI K, SUZUMURA N, HONDA K, HIROSE Y, ASAI K, UEDONO A, KOJIMA M, Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities [J]. Microelectronic Engineering, 2008, 85: 2137-2141.
    [192] ZHU Y F, Self-formation of nanocomposite Cu/Al_2O_3 thin films on CuAl dilute alloys by annealing in inert atmospheres [J]. Journal of Applied Physics, 2011, 110: 023525.
    [193] PERNG D-C, YEH J-B, HSU K-C, TSAI S-W, Self-forming AlOx layer as Cu diffusion barrier on porous low-k film [J]. Thin Solid Films, 2010, 518: 1648-1652.
    [194] SASAKI T, MATSUNAGA K, OHTA H, HOSONO H, YAMAMOTO T, IKUHARA Y, Atomic and electronic structures of Cu/α-Al_2O_3 interfaces prepared by pulsed-laser deposition [J]. Science and Technology of Advanced Materials, 2003, 4: 575-584.
    [195] SASAKI T, MIZOGUCHI T, MATSUNAGA K, TANAKA S, YAMAMOTO T,KOHYAMA M, IKUHARA Y, HRTEM and EELS characterization of atomic and electronic structures in Cu/α-Al_2O_3 interfaces [J]. Applied Surface Science, 2005, 241: 87-90.
    [196] SCHEU C, OH S, WAGNER T, R HLE M, New Methods to Modify Epitaxy at Cu-Aumina Interfaces [J]. Microscopy and Microanalysis, 2003, 9: 298-299.
    [197] HASHIBON A, ELS SSER C, R HLE M, Structure at abrupt copper-alumina interfaces: An ab initio study [J]. Acta Materialia, 2005, 53: 5323-5332.
    [198] MIZOGUCHI T, SASAKI T, TANAKA S, MATSUNAGA K, YAMAMOTO T, KOHYAMA M, IKUHARA Y, Chemical bonding, interface strength, and oxygen K electron-energy-loss near-edge structure of the Cu/Al_2O_3 interface [J]. Physical Review B, 2006, 74: 235408.
    [199] DELLEY B, An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics, 1990, 92: 508-517.
    [200] DELLEY B, From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics, 2000, 113: 7756-7764.
    [201] PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64: 1045.
    [202] PERDEW J P, WANG Y, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 1992, 45: 13244.
    [203] WILSON E B, DECIUS J C, CROSS P C, Molecular Vibrations [J]. Dover: New York, 1980,
    [204] PERDEW J P, BURKE K, ERNZERHOF M, Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77: 3865.
    [205] HAMMER B, HANSEN L B, OSLASH, RSKOV J K, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59: 7413.
    [206] BOESE A D, HANDY N C, A new parametrization of exchange-correlationgeneralized gradient approximation functionals [J]. The Journal of Chemical Physics, 2001, 114: 5497-5503.
    [207] BECKE A D, A multicenter numerical integration scheme for polyatomic molecules [J]. The Journal of Chemical Physics, 1988, 88: 2547-2553.
    [208] LEE C, YANG W, PARR R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37: 785.
    [209] TSUNEDA T, SUZUMURA T, HIRAO K, A new one-parameter progressive Colle-Salvetti-type correlation functional [J]. The Journal of Chemical Physics, 1999, 110: 10664-10678.
    [210] KOELLING D D, HARMON B N, A technique for relativistic spin-polarised calculations [J]. Journal of Physics C: Solid State Physics, 1977, 10: 3107.
    [211] DOLG M, WEDIG U, STOLL H, PREUSS H, Energy-adjusted ab initio pseudopotentials for the first row transition elements [J]. The Journal of Chemical Physics, 1987, 86: 866-872.
    [212] DELLEY B, Hardness conserving semilocal pseudopotentials [J]. Physical Review B, 2002, 66: 155125.
    [213] CEPERLEY D M, ALDER B J, Ground State of the Electron Gas by a Stochastic Method [J]. Physical Review Letters, 1980, 45: 566.
    [214] PERDEW J P, ZUNGER A, Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23: 5048.
    [215] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46: 6671.
    [216] WU Z, COHEN R E, More accurate generalized gradient approximation for solids [J]. Physical Review B, 2006, 73: 235116.
    [217] PERDEW J P, RUZSINSZKY A, CSONKA G, AACUTE, BOR I, VYDROV O A, SCUSERIA G E, CONSTANTIN L A, ZHOU X, BURKE K, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [J]. Physical ReviewLetters, 2008, 100: 136406.
    [218] VANDERBILT D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41: 7892.
    [219] HAMANN D R, SCHL, UUML, TER M, CHIANG C, Norm-Conserving Pseudopotentials [J]. Physical Review Letters, 1979, 43: 1494.
    [220] RAMER N J, RAPPE A M, Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1-xTix)O3 [J]. Physical Review B, 2000, 62: R743.
    [221] KRESSE G, FURTHM, UUML, LLER J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54: 11169.
    [222] MONKHORST H J, PACK J D, Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13: 5188.
    [223] HEDIN L, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem [J]. Physical Review, 1965, 139: A796.
    [224] HYBERTSEN M S, LOUIE S G, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies [J]. Physical Review B, 1986, 34: 5390.
    [225] ONIDA G, REINING L, RUBIO A, Electronic excitations: density-functional versus many-body Green's-function approaches [J]. Reviews of Modern Physics, 2002, 74: 601.
    [226] RINKE P, ET AL., Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors [J]. New Journal of Physics, 2005, 7: 126.
    [227] STAMPFL C, VAN DE WALLE C G, Density-functional calculations forⅢ-Ⅴnitrides using the local-density approximation and the generalized gradient approximation [J]. Physical Review B, 1999, 59: 5521.
    [228] RINKE P, SCHEFFLER M, QTEISH A, WINKELNKEMPER M, BIMBERG D, NEUGEBAUER J, Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory [J]. Applied Physics Letters, 2006, 89: 161919.
    [229] SVANE A, CHRISTENSEN N E, GORCZYCA I, VAN SCHILFGAARDE M,CHANTIS A N, KOTANI T, Quasiparticle self-consistent GW theory ofⅢ-Ⅴnitride semiconductors: Bands, gap bowing, and effective masses [J]. Physical Review B, 2010, 82: 115102.
    [230] LESZCZYNSKI M, Lattice parameters of gallium nitride [J]. Applied Physics Letters, 1996, 69: 73.
    [231] ZORODDU A, BERNARDINI F, RUGGERONE P, FIORENTINI V, First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory [J]. Physical Review B, 2001, 64: 045208.
    [232] SPECHT P, HO J C, XU X, ARMITAGE R, WEBER E R, ERNI R, KISIELOWSKI C, Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy [J]. Solid State Communications, 2005, 135: 340-344.
    [233] PERDEW J P, LEVY M, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities [J]. Physical Review Letters, 1983, 51: 1884.
    [234] LANNOO M, SCHL, UUML, TER M, SHAM L J, Calculation of the Kohn-Sham potential and its discontinuity for a model-semiconductor [J]. Physical Review B, 1985, 32: 3890.
    [235] AMATO M, OSSICINI S, RURALI R, Band-Offset Driven Efficiency of the Doping of SiGe Core?Shell Nanowires [J]. Nano Letters, 2011, 11: 594-598.
    [236] DEGOLI E, GUERRA R, IORI F, MAGRI R, MARRI I, PULCI O, BISI O, OSSICINI S, Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures [J]. Comptes Rendus Physique, 2009, 10: 575-586.
    [237] NIQUET Y M, LHERBIER A, QUANG N H, FERN NDEZ-SERRA M V, BLASE X, DELERUE C, Electronic structure of semiconductor nanowires [J]. Physical Review B, 2006, 73: 165319.
    [238] ECHENIQUE P M, BERNDT R, CHULKOV E V, FAUSTER T, GOLDMANN A, H FER U, Decay of electronic excitations at metal surfaces [J]. Surface Science Reports, 2004, 52: 219-317.
    [239] LAUHON L J, GUDIKSEN M S, WANG D, LIEBER C M, Epitaxial core-shell andcore-multishell nanowire heterostructures [J]. Nature, 2002, 420: 57-61.
    [240] NDUWIMANA A, MUSIN R N, SMITH A M, WANG X-Q, Spatial Carrier Confinement in Core-Shell and Multishell Nanowire Heterostructures [J]. Nano Letters, 2008, 8: 3341-3344.
    [241] STEINER D, DORFS D, BANIN U, DELLA SALA F, MANNA L, MILLO O, Determination of Band Offsets in Heterostructured Colloidal Nanorods Using Scanning Tunneling Spectroscopy [J]. Nano Letters, 2008, 8: 2954-2958.
    [242] PISTOL M E, PRYOR C E, Band structure of core-shell semiconductor nanowires [J]. Physical Review B, 2008, 78: 115319.
    [243] XIANG J, LU W, HU Y, WU Y, YAN H, LIEBER C M, Ge/Si nanowire heterostructures as high-performance field-effect transistors [J]. Nature, 2006, 441: 489-493.
    [244] CHANG Y M, LIOU S C, CHEN C H, LEE H M, GWO S, The electrostatic coupling of longitudinal optical phonon and plasmon in wurtzite InN thin films [J]. Applied Physics Letters, 2010, 96: 041908.
    [245] QIAN F, LI Y, GRADE(?)AK S, WANG D, BARRELET C J, LIEBER C M, Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics [J]. Nano Letters, 2004, 4: 1975-1979.
    [246] QIAN F, GRADE(?)AK S, LI Y, WEN C-Y, LIEBER C M, Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes [J]. Nano Letters, 2005, 5: 2287-2291.
    [247] LI Y, QIAN F, XIANG J, LIEBER C M, Nanowire electronic and optoelectronic devices [J]. Materials Today, 2006, 9: 18-27.
    [248] DELIMITIS A, KOMNINOU P, DIMITRAKOPULOS G P, KEHAGIAS T, KIOSEOGLOU J, KARAKOSTAS T, NOUET G, Strain distribution of thin InN epilayers grown on (0001) GaN templates by molecular beam epitaxy [J]. Applied Physics Letters, 2007, 90: 061920.
    [249] WANG K, LIAN C, SU N, JENA D, TIMLER J, Conduction band offset at the InN/GaN heterojunction [J]. Applied Physics Letters, 2007, 91: 232117.
    [250] PEK Z R, MALCO(?)(?)LU O B, RATY J Y, First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires [J]. Physical Review B, 2011, 83: 035317.
    [251] YANG L, MUSIN R N, WANG X-Q, CHOU M Y, Quantum confinement effect in Si/Ge core-shell nanowires: First-principles calculations [J]. Physical Review B, 2008, 77: 195325.
    [252] BALET L P, IVANOV S A, PIRYATINSKI A, ACHERMANN M, KLIMOV V I, Inverted Core/Shell Nanocrystals Continuously Tunable between Type-I and Type-II Localization Regimes [J]. Nano Letters, 2004, 4: 1485-1488.
    [253] SHU H, CHEN X, ZHOU X, LU W, Spatial confinement of carriers and tunable band structures in InAs/InP-core-shell nanowires [J]. Chemical Physics Letters, 2010, 495: 261-265.
    [254] XIE Z, MARKUS T Z, GOTESMAN G, DEUTSCH Z, ORON D, NAAMAN R, How Isolated Are the Electronic States of the Core in Core/Shell Nanoparticles? [J]. ACS Nano, 2011, 5: 863-869.
    [255] CARTER D J, PUCKERIDGE M, DELLEY B, STAMPFL C, Quantum confinement effects in gallium nitride nanostructures: ab initio investigations [J]. Nanotechnology, 2009, 20: 425401.
    [256] LUO Y, WANG L-W, Electronic Structures of the CdSe/CdS Core-Shell Nanorods [J]. ACS Nano, 2010, 4: 91-98.
    [257] HUANG X, LINDGREN E, CHELIKOWSKY J R, Surface passivation method for semiconductor nanostructures [J]. Physical Review B, 2005, 71: 165328.
    [258] JANOTTI A, SEGEV D, VAN DE WALLE C G, Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors [J]. Physical Review B, 2006, 74: 045202.
    [259] MUSIN R N, WANG X Q, Quantum size effect in core-shell structured silicon-germanium nanowires [J]. Physical Review B, 2006, 74: 165308.
    [260] WEI S-H, ZUNGER A, Valence band splittings and band offsets of AlN, GaN, and InN [J]. Applied Physics Letters, 1996, 69: 2719.
    [261] SK LD N, KARLSSON L S, LARSSON M W, PISTOL M-E, SEIFERT W, TR G RDH J, SAMUELSON L, Growth and Optical Properties of Strained GaAs-Ga_xIn_(1-x)P Core?Shell Nanowires [J]. Nano Letters, 2005, 5: 1943-1947.
    [262] WANG Z, FAN Y, ZHAO M, Natural charge spatial separation and quantum confinement of ZnO/GaN-core/shell nanowires [J]. Journal of Applied Physics, 2010, 108: 123707.
    [263] GOEBL J A, BLACK R W, PUTHUSSERY J, GIBLIN J, KOSEL T H, KUNO M, Solution-BasedⅡ-ⅣCore/Shell Nanowire Heterostructures [J]. Journal of the American Chemical Society, 2008, 130: 14822-14833.
    [264] YANG M, SHI J-J, ZHANG M, Electronic Structures and Optical Properties of Ga-Rich In_xGa_(1-x)N Nanotubes [J]. The Journal of Physical Chemistry C, 2010, 114: 21943-21947.
    [265] ZHU Y F, LANG X Y, JIANG Q, The Effect of Alloying on the Bandgap Energy of Nanoscaled Semiconductor Alloys [J]. Advanced Functional Materials, 2008, 18: 1422-1429.
    [266] WU C-L, LEE H-M, KUO C-T, CHEN C-H, GWO S, Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of ''intrinsic'' band lineup [J]. Applied Physics Letters, 2008, 92: 162106.
    [267] HUANG Q J, LILLEY C M, BODE M, DIVAN R, Surface and size effects on the electrical properties of Cu nanowires [J]. Journal of Applied Physics, 2008, 104: 023709.
    [268] HAU-RIEGE C S, THOMPSON C V, Electromigration in Cu interconnects with very different grain structures [J]. Applied Physics Letters, 2001, 78: 3451.
    [269] VAIRAGAR A V, MHAISALKAR S G, KRISHNAMOORTHY A, TU K N, GUSAK A M, MEYER M A, ZSCHECH E, In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures [J]. Applied Physics Letters, 2004, 85: 2502.
    [270] LANE M W, LINIGER E G, LLOYD J R, Relationship between interfacial adhesion and electromigration in Cu metallization [J]. Journal of Applied Physics, 2003, 93: 1417.
    [271] HU C-K, GIGNAC L M, LINIGER E, DETAVERNIER C, MALHOTRA S G,SIMON A, Effect of metal liner on electromigration in Cu Damascene lines [J]. Journal of Applied Physics, 2005, 98: 124501.
    [272] HU C-K, GIGNAC L, LINIGER E, HERBST B, RATH D L, CHEN S T, KALDOR S, SIMON A, TSENG W-T, Comparison of Cu electromigration lifetime in Cu interconnects coated with various caps [J]. Applied Physics Letters, 2003, 83: 869.
    [273] WEI F L, GAN C L, TAN T L, HAU-RIEGE C S, MARATHE A P, VLASSAK J J, THOMPSON C V, Electromigration-induced extrusion failures in Cu/low-k interconnects [J]. Journal of Applied Physics, 2008, 104: 023529.
    [274] STICKNEY J L, VILLEGAS I, EHLERS C B, In situ restoration of atomically well-ordered copper single-crystal electrode surfaces [J]. Journal of the American Chemical Society, 1989, 111: 6473-6474.
    [275] OH S H, SCHEU C, WAGNER T, TCHERNYCHOVA E, R HLE M, Epitaxy and bonding of Cu films on oxygen-terminatedα-Al_2O_3(0 0 0 1) surfaces [J]. Acta Materialia, 2006, 54: 2685-2696.
    [276] HASHIBON A, ELS SSER C, R HLE M, Ab initio study of electronic densities of states at copper-alumina interfaces [J]. Acta Materialia, 2007, 55: 1657-1665.
    [277] SEGALL M D, LINDAN P L D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C, First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14: 2717.
    [278] STRAUMANIS M E, YU L S, Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In phase [J]. Acta Crystallographica. Section A, Foundations of Crystallography, 1969, 25: 676-682.
    [279] NEWNHAM R E, DEHAAN Y M, Refinement of theα-Al_2O_3, Ti_2O_3, V_2O_3 and Cr_2O_3 structures [J]. Zeitschrift fuer Kristallographie, 1962, 117: 235.
    [280] HE C, ZHANG P, ZHU Y F, JIANG Q, Structures and Quantum Conduction of Copper Nanowires under Electric Fields Using First Principles [J]. The Journal of Physical Chemistry C, 2008, 112: 9045-9049.
    [281] FINNIS M W, The theory of metal - ceramic interfaces [J]. Journal of Physics: Condensed Matter, 1996, 8: 5811.
    [282] BATYREV I G, KLEINMAN L, In-plane relaxation of Cu(111) and Al(111)/ alpha -Al_2O_3 (0001) interfaces [J]. Physical Review B, 2001, 64: 033410.
    [283] ZHANG W, SMITH J R, EVANS A G, The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al_2O_3 and Cu/Al_2O_3 [J]. Acta Materialia, 2002, 50: 3803-3816.
    [284] (?)ODZIANA Z, N RSKOV J K, Adsorption of Cu and Pd onα-Al_2O_3(0001) surfaces with different stoichiometries [J]. The Journal of Chemical Physics, 2001, 115: 11261-11267.
    [285] LIDE D R, CRC Handbook of Chemistry and Physics [M]. Taylor and Francis, Boca Taton, 2007, p54.
    [286] BENEDEK R, ALAVI A, SEIDMAN D N, YANG L H, MULLER D A, WOODWARD C, First Principles Simulation of a Ceramic /Metal Interface with Misfit [J]. Physical Review Letters, 2000, 84: 3362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700