PdZn合金催化甲醇水蒸气重整反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源的日益匮乏,可再生能源越来越引起人们的注意。作为一种极具前景的有效替代能源,氢能具有高效、高密度和零排放等优点。甲醇作为一种理想的能源载体可为车(船、飞机等)的燃料电池提供现场的氢气来源。其中一种制氢的方法即是甲醇水蒸气催化重整反应(MSR, CH3OH+H2O→CO2+H2)。
     Iwasa等发现Pd/ZnO催化剂表现出很好的热稳定性,且对MSR具有相当高的活性和选择性。相当有趣的是,在纯Pd表面,MSR反应却基本上仅产生CO。为了深入理解Zn添加导致选择性的这一差异,有必要弄清MSR在PdZn合金上的反应机理。传统的观点认为1:1PdZn合金是这一体系的活性相。然而,近来有人认为1:1PdZn可能对MSR不具有活性,掺入0.03-0.06ML Zn的Pd(111)可能最具活性。这一推测使得我们在机理研究之前,首要任务是研究Zn对Pd表面活性的影响并评估低Zn浓度下的Zn/Pd(111)体系是否对MSR具有催化活性。
     水是MSR过程的主角之一,彻底弄清楚水在PdZn合金表面的行为是全面认识MSR反应的前提。过去的理论研究曾报道,水在PdZn(111)体相合金表面的吸附能仅为23kJ/mol.如此小的吸附能预示着水在PdZn(111)表面的解离非常困难或PdZn(111)表面不是水解离的活性相。近来的实验研究指出1:1PdZn单层合金不能活化水而1:1多层合金可有效的活化。这一实验结论看起来与上述理论结果相矛盾。我们不禁会问,在PdZn合金上水能解离这一结论对吗?如果是对的,为什么多层和单层合金表现出如此大的差异?如果不对,水到底是在什么地方活化的?
     带着这些疑问,在本论文中我们主要运用密度泛函理论(DFT)结合蒙特卡罗(MC)技术研究Zn对Pd(111)表面吸附和反应的影响,评估低Zn浓度的Pd(111)表面对MSR的活性并最终揭示MSR过程的微观机理。
     论文的主要内容简要地介绍如下。
     首先我们考察了CO在PdZn表面合金上的吸附,对Zn的掺入如何影响Pd表面的性质作了系统的研究。结果表明,位于表层的Zn对CO吸附的影响远小于在次表层的Zn。这一现象在CO位于穴位吸附时尤为明显。引起这一现象的原因源于Zn的引入导致合金表面出现两种作用相反的效应:有利于CO吸附的应变效应和不利于其吸附的电子效应。当Zn原子掺入表层时,应变效应基本上与电子效应相互抵消;当Zn原子位于次表层时,应变效应很弱,不能有效地抵消电子效应。
     为进一步弄清Zn对Pd(111)表面化学性质的影响,我们系统地研究了甲醇在系列Pd-Zn表面合金模型上的解离。结果表明,吸附能在不同底物的变化规律可以归结为Zn在不同位置的分布。即表层Zn有利于增强依靠O与底物作用的物种,如CH3O等。随着表层Zn浓度的增加,这类物种的吸附能增大;对于那些主要通过C-Pd作用在表面吸附的物种,如CH2O、CHO等,其吸附能随次表层Zn的增加而减小。添加Zn减小了CH3OH/CHO的O-H/C-H键断裂的活化能,增加了CH3O和CH2O的脱氢能垒。与过去的DFT结果比较,第三层Zn对表面的吸附和反应影响甚微。
     Jeroro等在TDP实验中观察到甲醛在沉积有0.03-0.06ML Zn浓度Pd(111)表面有两个脱附峰,其中一个峰中心位于210K,另一个位于360K。根据Redhead公式,后者对应的吸附能约为1.0eV。我们首先采用了MC模拟,结果表明,当沉积少量Zn时,Pd(111)表面形成含3-5个原子的表面团簇。随着沉积量的增加,这种小团簇数量急剧减少。基于MC的结果,我们构建了系列表面团簇模型并考察了作为“机理指示剂”的甲醛在其上的吸附和化学行为。结果表明,360K脱附峰可能来源于CH2O吸附在Pd和(或)Zn形成的表面团簇。由于CH2O在Zn团簇上脱氢困难,预示着该结构可能会对MSR具有一定的选择性。另一方面,计算得到CH2O+O反应的活化能低于CH2O脱氢,因此,如果沉积有~0.05ML Zn的Pd(111)表确对MSR具有活性,那么表面Zn团簇将最有可能是MSR的活性相。但我们的计算和分析还表明,在这种团簇上不仅CH3O脱氢形成CH2O难于1:1合金,而且其热力学稳定性也很差,因此,这种结构即便在实际催化体系中存在,其对MSR的贡献也是很小的。
     对水的吸附和解离研究表明,不论多层还是单层PdZn合金均可以活化水。在平整的PdZn(111)表面,水形成六聚体时有利于解离;在(221)阶梯表面,水可以形成一维水链并易于在Zn暴露的阶梯处解离。我们的结果与文献的观点矛盾,值得进一步研究。此外,我们还发现在OH-H2O/PdZn(111)体系中,传统意义上共价键与氢键的区别变得模糊,这一重要发现仍有待于进一步探讨。
     基于上述研究和相关的实验,我们采用1:1PdZn合金模型模拟Pd/ZnO催化剂并据此系统地研究了MSR反应机理。结果显示,CH3OH先逐步脱氢得到CH2O,随后CH2O可以和表面OH或O反应生成H2COOH或H2COO物种。这些产物再经逐步脱氢产生CO2。整个过程的决速步骤是CH3O的C-H断裂。OH的参与在热力学上对C-H和O-H断裂均有利,但在动力学上共存的OH只有利于O-H断裂而对C-H键断裂不仅没有促进作用反而抑制其发生。这些结果清楚地给出了在MSR过程的微观图像,提供了MSR过程详细的热力学和动力学参数,对解释实验现象、优化MSR反应条件和设计催化剂具有一定的参考价值。
     总之,本论文阐述了Zn对Pd(111)表面化学的影响;提出低Zn浓度的Zn/Pd(111)体系对催化MSR反应并不重要;水在单层表面合金上的分解比多层合金更有利;并最终给出MSR反应在PdZn(111)表面的完整机理。
With fossil fuels becoming rare everyday, renewable energy attracts more and more attention. As one of the most promising substitutions, hydrogen energy has many merits such as high-efficiency, condensed-density and zero-emission etc. Methanol is an ideal energy carrier which can produce hydrogen in situ for on-board fuel cells. One proposed method is the methanol steam reforming (MSR, CH3OH+H2O→CO2+H2).
     Iwasa et al. discovered that Pd/ZnO catalyst displays good stability and exhibits high activity and selectivity towards MSR reaction. Quite interesting, on pure Pd metal, MSR produces exclusively CO. To gain insight into understanding the selectivity difference with Zn modification, it is necessary to make clear the reaction mechanism of MSR on PdZn alloy. Traditional point of view believed that1:1Pd-Zn alloy is the active components. However, recent study proposed that the1:1PdZn alloy might have no activity toward MSR, whereas Pd(111) surface deposited with0.03-0.06ML Zn may be most active. This speculation makes us before MSR reaction mechanism exploration, primary task is to investigate the effect of Zn on the activity of Pd(111) surface and evaluate the activity of Pd(111) surface with low Zn deposition towards MSR.
     As a participator among the MSR process, a thorough understanding of the behavior of water on PdZn alloy is a prerequisite for obtaining comprehensive knowledge of MSR. Previous theoretical study reported an adsorption energy of water to be only23kJ/mol on the (111) surface of PdZn bulk alloy. Such small adsorption energy implies that water dissociation is difficult on the PdZn(111) or the PdZn(111) is not the active sites for water activation. Recent experiments demonstrate that while water keeps intact on1:1PdZn monolayer alloy, dissociation of water takes place on multilayer of1:1PdZn alloy actively. This experimental conclusion seems to contradict the abovementioned theoretical predictions. We cannot help but asking:is the conclusion that water dissociation occurs on PdZn multilayer correct? If yes, why the multilayer and monolayer PdZn display such striking different behavior toward H2O activation? If not, where can H2O be activated?
     With these questions in mind, in this dissertation we mainly use density functional theory (DFT) combined with Monte-Carlo (MC) technique to investigate the effect of Zn on the adsorption and reaction of Pd(111), to evaluate the activity on Pd(111) surface with low Zn deposition towards MSR and finally to reveal the microcosmic mechanism of the MSR process.
     The primary investigation contents are briefly introduced as follows.
     Firstly we present a systematic theoretical study of the change of surface reactivity induced by incorporation of Zn by examining the CO adsorption on PdZn surface alloy. The results show that Zn atoms in the topmost layer have smaller effect on CO adsorption than the Zn in the second layer, especially for hollow sites. The reason for this phenomenon originates from the strain effect and ligand effect that have different influences on CO adsorption. When Zn atoms are doped on the topmost layer of Pd(111), the strain effect that favors the bonding of CO to the surface alloy offsets almost completely the ligand effect which is unfavorable for CO adsorption. At variance, when Zn atoms are deposited on the subsurface, the strain effect is much weak and cannot standoffs the ligand effect which, in this case, dominates the CO adsorption.
     To further understand the modification of Zn on the reactivity of Pd(111), we carried out a systematic study of methanol dehydrogenation on a series of Pd-Zn surface alloys using DFT. We find that the variation of binding energy on different substrates can be well rationalized with distribution of Zn:the top-layer Zn enhances the interaction of species like CH3O that binds to the substrate via the oxygen atom. For such species the binding energy increases with the increase of the surface Zn content. For those adsorbates that adsorb on the substrate mainly through the C-Pd interaction, the binding energy decreases with the increase of subsurface Zn concentration. Addition of Zn reduces the activation energy of O-H/C-H bond breaking of CH3OH/CHO whereas it raises the energy barriers of dehydrogenation of CH3O and CH2O. Compared with previous DFT results, we suggest that Zn atoms beyond the third layer have essentially no influence on the adsorption and reaction at the surface.
     Jeroro et al. observed in the TPD experiment two desorption peaks of CH2O on Pd(111) surface on which low Zn is deposited. One peak centers at210K which is derived from CH2O adsorbed on Pd(111) or normal PdZn alloy surface, and the other at360K. The latter peak corresponds to a binding energy of1.0eV estimated with Redhead formula. To gain the knowledge of surface structure, we performed MC simulation. The results demonstrated that at very low zinc coverage, small surface ensembles of3to5atoms exist preferentially on the surface. Based on these findings, we constructed a series of surface cluster models to mimic the adsorption and reaction of CH2O,"an indicator of MSR mechanism". The results reveal that the360K desorption peak is originated from the formaldehyde adsorbed on the small surface clusters with Pd and/or Zn content. Investigations of CH2O dehydrogenation to CHO and formation of H2COO from CH2O and O show that the supported Zn clusters (very likely as well as clusters dominated with Zn) are most likely the speculated active phases if the Pd(111) surface deposited with0.03to0.06ML Zn is really active for MSR reaction. However, on the surface Zn clusters dehydrogenation of CH3O to CH2O is harder than on1:1alloy surface. Further, the stability of such surface clusters is much lower. Hence, surface Zn clusters, even though they exist in realistic catalysis system, they will not contribute significantly to MSR reaction
     Investigations of water adsorption and dissociation in various aggregation forms on multi-and monolayer surface alloy of both flat and stepped surfaces reveal that both the PdZn multi-and mono-layer can activate H2O. On multi-flat PdZn(111) surface, aggregation favors H2O dissociation. In most cases, monolayer surface alloy is more active for water dissociation than the multilayer. On stepped PdZn(221) surfaces, H2O is favorably dissociated on exposed Zn step. Contrary to the point of view of the Austria research groups that the PdZn monolayer cannot activate H2O, our first-principles results clearly demonstrate that as long as the multilayer surfaces are able to dissociate water, water dissociate can take place on the monolayer surface without question. This discrepancy needs further studies from both experimental and theoretical sides. Furthermore, we find that the traditional distinction between covalent and hydrogen bonds is faint in OH-H2O overlayers on PdZn substrate which we have highlighted.
     Based on the above theoretical studies and the pertinent experiments, we employed the1:1PdZn alloy model to mimic Pd/ZnO catalyst and explored systematically the MSR mechanism. Calculations show that the MSR reaction proceeds from dehydrogenation of CH3OH to CH2O via CH3O, subsequently CH2O facilely reacts with OH or O to yield H2COOH or H2COO species. The yielded products experience stepwise dehydrogenation to produce CO2. The rate-determining step is the dehydrogenation of CH3O. The presence of OH always makes the C-H and O-H bond breaking more exothermic or less endothermic. However, kinetically, the coadsorbed OH reduces the O-H scission barrier, but does not facilitate or even inhibits the C-H rupture. Our results present a vivid microscopic picture of the MSR reaction. They are deemed to shed light on experimental observations, provide detailed thermodynamic and kinetic parameters for further microkinetic simulation of MSR process, and are informative for optimizing the MSR reaction condition and for designing new MSR catalysts of high quality.
     To recap, this dissertation elucidates the modification of Zn on the chemistry of Pd(111). The Pd(111) surface modified with low Zn concentration is demonstrated to be unimportant for MSR reaction. We show that monolayer surface alloy is more active for water dissociation than the multilayer alloy surface. Finally we furnished a complete energy profile of the MSR process on PdZn(111) surface.
引文
1. Ogden, J. M., Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment 1999,24 (1),227-279.
    2. 解东来,城市燃气在氢能及燃料电池的应用.煤气与热力2007,27(004),38-40.
    3. 张晓阳,甲醇水蒸汽重整制氢催化剂的研究.天然气化工:C1化学与化工2007,32(001),10-13.
    4. Naidja, A.; Krishna, C. R.; Butcher, T.; Mahajan, D. Oxidation of Fuels in the Cool Flame Regime for Combustion and Reforming for Fuel Cells; Brookhaven National Lab., Upton, NY (US):2002.
    5. Jiangong, S.; Minhong, Z.; Guiliang, Z.; Yi, Z.; Zhijian, L., Advances in Technology for Recycling Waste Methanol Catalyst. Sino-Global Energy 2009,12.
    6. Browning, D.; Jones, P.; Packer, K., An investigation of hydrogen storage methods for fuel cell operation with man-portable equipment. Journal of Power Sources 1997,65 (1-2),187-195.
    7. Conant, T.; Karim, A. M.; Lebarbier, V.; Wang, Y.; Girgsdies, F.; Schlogl, R.; Datye, A., Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol. Journal of Catalysis 2008,257 (1),64-70.
    8. Choudhary, T. V.; Goodman, D. W., CO-free fuel processing for fuel cell applications. Catalysis Today 2002,77(1-2),65-78.
    9. Lee, S. J.; Mukerjee, S.; Ticianelli, E. A.; McBreen, J., Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochimica Acta 1999,44 (19),3283-3293.
    10. Iwasa, N.; Takezawa, N., New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Topics in Catalysis 2003,22 (3-4),215-224.
    11. Jiang, C. J.; Trimm, D. L.; Wainwright, M. S.; Cant, N. W., Kinetic Mechanism for the Reaction between Methanol and Water over a Cu-Zno-Al2o3 Catalyst. Applied Catalysis a-General 1993,97 (2), 145-158.
    12. Dagle, R. A.; Platon, A.; Palo, D. R.; Datye, A. K.; Vohs, J. M.; Wang, Y, PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift. Applied Catalysis a-General 2008,342 (1-2),63-68.
    13. Kratzer, M.; Tamtogl, A.; Killmann, J.; Schennach, R.; Winkler, A., Preparation and calibration of ultrathin Zn layers on Pd(111). Applied Surface Science 2009,255 (11),5755-5759.
    14. Weirum, G.; Kratzer, M.; Koch, H. P.; Tamtogl, A.; Killmann, J.; Bako, I.; Winkler, A.; Surnev, S.; Netzer, F. P.; Schennach, R., Growth and Desorption Kinetics of Ultrathin Zn Layers on Pd(111). Journal of Physical Chemistry C 2009,113 (22),9788-9796.
    15. Takezawa, N.; Iwasa, N., Steam reforming and dehydrogenation of methanol:Difference in the catalytic functions of copper and group Ⅷ metals. Catalysis Today 1997,36 (1),45-56.
    16. Gunter, M. M.; Ressler, T.; Jentoft, R. E.; Bems, B., Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy. Journal of Catalysis 2001,203(1),133-149.
    17. Dagle, R. A.; Chin, Y. H.; Wang, Y., The effects of PdZn crystallite size on methanol steam reforming. Topics in Catalysis 2007,46 (3-4),358-362.
    18. Karim, A.; Conant, T.; Datye, A., The roie of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. Journal of Catalysis 2006,243 (2),420-427.
    19. Rameshan, C.; Stadlmayr, W.; Weilach, C.; Penner, S.; Lorenz, H.; Havecker, M.; Blume, R.; Rocha, T.; Teschner, D.; Knop-Gericke, A.; Schlogl, R.; Memmel, N.; Zemlyanov, D.; Rupprechter, G.; Klotzer, B., Subsurface-Controlled CO2 Selectivity of PdZn Near-Surface Alloys in H-2 Generation by Methanol Steam Reforming. Angewandte Chcmie-International Edition 2010,49 (18),3224-3227.
    20. Amphlett, J. C.; Creber, K. A. M.; Davis, J. M.; Mann, R. F.; Peppley, B. A.; Stokes, D. M., Hydrogen-Production by Steam Reforming of Methanol for Polymer Electrolyte Fuel-Cells. International Journal of Hydrogen Energy 1994,19(2),131-137.
    21. Jones, S. D.; Neal, L. M.; Hagelin-Weaver, H. E., Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina. Applied Catalysis B-Environmental 2008,84 (3-4),631-642.
    22. Peppley, B. A.; Amphlett, J. C.; Keams, L. M.; Mann, R. F., Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1:The reaction network. Applied Catalysis a-General 1999,179 (1-2),21-29.
    23. Peppley, B. A.; Amphlett, J. C.; Keams, L. M.; Mann, R. F., Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Applied Catalysis a-General 1999,179 (1-2),31-49.
    24. Cao, C. S.; Xia, G.; Holladay, J.; Jones, E.; Wang, Y., Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor. Applied Catalysis a-General 2004,262 (1),19-29.
    25. Chin, Y. H.; Dagle, R.; Hu, J. L.; Dohnalkova, A. C.; Wang, Y., Steam reforming of methanol over highly active Pd/ZnO catalyst. Catalysis Today 2002,77 (1-2),79-88.
    26. Chin, Y. H.; Wang, Y.; Dagle, R. A.; Li, X. H. S., Methanol steam reforming over Pd/ZnO:Catalyst preparation and pretreatment studies. Fuel Processing Technology 2003,83 (1-3),193-201.
    27. Iwasa, N.; Masuda, S.; Ogawa, N.; Takezawa, N., Steam Reforming of Methanol over Pd/Zno-Effect of the Formation of Pdzn Alloys Upon the Reaction. Applied Catalysis a-General 1995,125 (1),145-157.
    28. Lebarbier, V.; Dagle, R.; Conant, T.; Vohs, J. M.; Datye, A. K.; Wang, Y., CO/FTIR spectroscopic characterization of Pd/ZnO/A12O3 catalysts for methanol steam reforming. Catalysis Letters 2008,122 (3-4), 223-227.
    29. Ranganathan, E. S.; Bej, S. K.; Thompson, L. T, Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Applied Catalysis a-General 2005,289 (2),153-162.
    30. Suwa, Y.; Ito, S. I.; Kameoka, S.; Tomishige, K.; Kunimori, K., Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Applied Catalysis a-General 2004,267 (1-2),9-16.
    31. Wang, Y. H.; Zhang, J. C.; Xu, H. Y., Interaction between Pd and ZnO during reduction of Pd/ZnO catalyst for steam reforming of methanol to hydrogen. Chinese Journal of Catalysis 2006,27 (3),217-222.
    32. Wang, Y. H.; Zhang, J. C.; Xu, H. Y.; Bai, X. F., Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol. Chinese Journal of Catalysis 2007,28 (3),234-238.
    33. Holladay, J. D.; Wang, Y.; Jones, E., Review of developments in portable hydrogen production using microreactor technology. Chemical Reviews 2004,104 (10),4767-4789.
    34. Jeroro, E.; Vohs, J. M., Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. Journal of the American Chemical Society 2008,130 (31),10199-10207.
    35. Costamagna, P.; Srinivasan, S., Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000-Part I. Fundamental scientific aspects. Journal of Power Sources 2001,102(1),242-252.
    36. Bera, P.; Vohs, J. M., Growth and structure of Pd films on ZnO(0001). Journal of Chemical Physics 2006,125(16),164713.
    37. Iwasa, N.; Mayanagi, T.; Masuda, S.; Takezawa, N., Steam reforming of methanol over Pd-Zn catalysts. Reaction Kinetics and Catalysis Letters 2000,69 (2),355-360.
    38. Davis, J. L.; Barteau, M. A., Polymerization and Decarbonylation Reactions of Aldehydes on the Pd(111) Surface. Journal of the American Chemical Society 1989,111(5),1782-1792.
    39. Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Norskov, J. K., Catalyst design by interpolation in the periodic table:Bimetallic ammonia synthesis catalysts. Journal of the American Chemical Society 2001,123(34),8404-8405.
    40. Linic, S.; Barteau, M. A., Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. Journal of Catalysis 2003,214 (2),200-212.
    41. Linic, S.; Jankowiak, J.; Barteau, M. A., Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. Journal of Catalysis 2004,226 (1),245-246.
    42. Sabatier, P.; Senderens, J. B., New methane synthesis. Compte Rendu Acad. Sci. Paris 1902,134, 514-516.
    43. Andersson, M. P.; Bligaard, T.; Kustov, A.; Larsen, K. E.; Greeley, J.; Johannessen, T.; Christensen, C. H.; Norskov, J. K., Toward computational screening in heterogeneous catalysis:Pareto-optimal methanation catalysts. Journal of Catalysis 2006,239 (2),501-506.
    44. Ferrin, P.; Nilekar, A. U.; Greeley, J.; Mavrikakis, M.; Rossmeisl, J., Reactivity descriptors for direct methanol fuel cell anode catalysts. Surface Science 2008,602 (21),3424-3431.
    45. Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H.; Kroes, G. J.; Luppi, M.; Manthe, U.; Norskov, J. K.; Olsen, R. A.; Rossmeisl, J.; Skulason, E.; Tautermann, C. S.; Varandas, A. J. C.; Vincent, J. K., Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B 2006, 110(36),17719-17735.
    46. Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Norskov, J. K., Ammonia synthesis from first-principles calculations. Science 2005,307 (5709),555-558.
    47. Xu, Y.; Ruban, A. V.; Mavrikakis, M., Adsorption and dissociation of O-2 on Pt-Co and Pt-Fe alloys. Journal of the American Chemical Society 2004,126 (14),4717-4725.
    48. Greeley, J.; Mavrikakis, M., Alloy catalysts designed from first principles. Nature Materials 2004,3 (11),810-815.
    49. Greeley, J.; Norskov, J. K.; Mavrikakis, M., Electronic structure and catalysis on metal surfaces. Annual Review of Physical Chemistry 2002,53,319-348.
    50. Nilekar, A. U.; Mavrikakis, M., Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surface Science 2008,602 (14), L89-L94.
    51. Sabatier, P., Hydrogenations et deshydrogenations par catalyse. Ber. Deulsch. Chem. Gesellshaft 1911, 44,1984-2001.
    52. Hensen, E. J. M.; Brans, H. J. A.; Lardinois, G. M. H. J.; de Beer, V. H. J.; van Veen, J. A. R.; van Santen, R. A., Periodic trends in hydrotreating catalysis:Thiophene hydrodesulfurization over carbon-supported 4d transition metal sulfides. Journal of Catalysis 2000,192 (1),98-107.
    53. Liu, P.; Rodriguez, J. A.; Muckerman, J. T., Sulfur adsorption and sulfidation of transition metal carbides as hydrotreating catalysts. Journal of Molecular Catalysis a-Chemical 2005,239 (1-2),116-124.
    54. Hammer, B.; Norskov, J. K., Theoretical surface science and catalysis-Calculations and concepts. Advances in Catalysis, Vol 45 2000,45,71-129.
    55. Liu, P.; Norskov, J. K., Ligand and ensemble effects in adsorption on alloy surfaces. Physical Chemistry Chemical Physics 2001, 3 (17),3814-3818.
    56. Bligaard, T.; Norskov, J. K., Ligand effects in heterogeneous catalysis and electrochemistry. Electrochimica Acta 2007,52 (18),5512-5516.
    57. Fouda-Onana, F.; Savadogo, O., Study of O-2 and OH adsorption energies on Pd-Cu alloys surface with a quantum chemistry approach. Electrochimica Acta 2009,54 (6),1769-1776.
    58. Hammer, B.; Morikawa, Y.; Norskov, J. K., CO chemisorption at metal surfaces and overlayers. Physical Review Letters 1996,76 (12),2141-2144.
    59. Hammer, B.; Norskov, J. K., Electronic factors determining the reactivity of metal surfaces. Surface Science 1995,343 (3),211-220.
    60. Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G., Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. Journal of Chemical Physics 2004,120 (21),10240-10246.
    61. Mavrikakis, M.; Hammer, B.; Norskov, J. K., Effect of strain on the reactivity of metal surfaces. Physical Review Letters 1998,81 (13),2819-2822.
    62. Bronsted, J. N., Acid and basic catalysis. Chemical Reviews 1928,5 (3),231-338.
    63. Evans, M. G.; Polanyi, M., Inertia and driving force of chemical reactions. Transactions of the Faraday Society 1938,34 (1),0011-0023.
    64. Ferrin, P.; Simonetti, D.; Kandoi, S.; Kunkes, E.; Dumesic, J. A.; Norskov, J. K.; Mavrikakis, M., Modeling Ethanol Decomposition on Transition Metals:A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations. Journal of the American Chemical Society 2009,131 (16),5809-5815.
    65. Loffreda, D.; Delbecq, F.; Vigne, F.; Sautet, P., Fast Prediction of Selectivity in Heterogeneous Catalysis from Extended Bronsted-Evans-Polanyi Relations:A Theoretical Insight. Angewandte Chemie-International Edition 2009,48 (47),8978-8980.
    66. Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M., Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. Journal of Physical Chemistry C 2008,112 (5),1308-1311.
    67. Logadottir, A.; Rod, T. H.; Norskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H., The Bronsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. Journal of Catalysis 2001,197 (2),229-231.
    68. Ferrin, P.; Mavrikakis, M., Structure Sensitivity of Methanol Electrooxidation on Transition Metals. Journal of the American Chemical Society 2009,131 (40),14381-14389.
    69. Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M., On the mechanism of low-temperature water gas shift reaction on copper. Journal of the American Chemical Society 2008,130 (4),1402-1414.
    70. Greeley, J.; Mavrikakis, M., Competitive paths for methanol decomposition on Pt(111). Journal of the American Chemical Society 2004,126 (12),3910-3919.
    71. Greeley, J.; Mavrikakis, M., A first-principles study of methanol decomposition on Pt(111). Journal of the American Chemical Society 2002,124 (24),7193-7201.
    72. Greeley, J.; Mavrikakis, M., Methanol decomposition on Cu(111):A DFT study. Journal of Catalysis 2002,205 (2),291-300.
    73. Kandoi, S.; Greeley, J.; Sanchez-Castillo, M. A.; Evans, S. T.; Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M., Prediction of experimental methanol decomposition rates on platinum from first principles. Topics in Catalysis 2006,37(1),17-28.
    74. Mavrikakis, M.; Greeley, J., Methanol chemistry on platinum surfaces:A first-principles analysis. Abstracts of Papers of the American Chemical Society 2003,225, U775-U775.
    75. Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M., Mechanisms of methanol decomposition on platinum:A combined experimental and ab initio approach. Journal of Physical Chemistry B2005,109(23),11622-11633.
    76. Cheng, H.; Mitchell, J. W.; Hayes, K. S.; Neurock, M.; Smead, C.; Ma, Q. S.; Klier, K., First-principles studies on heterogeneous catalysis of amination:Mechanisms and support effects. Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals 2002,68, 385-403.
    77. Ciobica, I. M.; Kramer, G. J.; Ge, Q.; Neurock, M.; van Santen, R. A., Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001). Journal of Catalysis 2002,212 (2),136-144.
    78. Desai, S. K.; Neurock, M.; Kourtakis, K., A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). Journal of Physical Chemistry B 2002,106 (10),2559-2568.
    79. Chen, Z. X.; Lim, K. H.; Neyman, K. M.; Rosch, N., Effect of steps on the decomposition of CH3O at PdZn alloy surfaces. Journal of Physical Chemistry B 2005,109(10),4568-4574.
    80. Chen, Z. X.; Neyman, K. M.; Lim, K. H.; Rosch, N., CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Langmuir 2004,20 (19),8068-8077.
    81. Lim, K. H.; Chen, Z. X.; Neyman, K. M.; Rosch, N., Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. Journal of Physical Chemistry B 2006,110 (30),14890-14897.
    82. Neyman, K. M.; Lim, K. H.; Chen, Z. X.; Moskaleva, L. V.; Bayer, A.; Reindl, A.; Borgmann, D.; Denecke, R.; Steinruck, H. P.; Rosch, N., Microscopic models of PdZn alloy catalysts:structure and reactivity in methanol decomposition. Physical Chemistry Chemical Physics 2007,9 (27),3470-3482.
    83. Jiang, C. J.; Trimm, D. L.; Wainwright, M. S.; Cant, N. W., Kinetic study of steam reforming of methanol over copper-based catalysts. Applied Catalysis A:General 1993,93 (2),245-255.
    84. Takahashi, K.; Takezawa, N.; Kobayashi, H., The Mechanism of Steam Reforming of Methanol over a Copper-Silica Catalyst. Applied Catalysis 1982,2 (6),363-366.
    85. Breen, J. P.; Ross, J. R. H., Methanol reforming for fuel-cell applications:development of zirconia-containing Cu-Zn-Al catalysts. Catalysis Today 1999,51 (3-4),521-533.
    86. Shishido, T.; Yamamoto, Y.; Morioka, H.; Takehira, K., Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A:Chemical 2007,268 (1-2),185-194.
    87. Hu, Z. M.; Nakatsuji, H., Active sites for methanol synthesis on a Zn/Cu(100) catalyst. Chemical Physics Letters 1999,313 (1-2),14-18.
    88. Jeroro, E.; Vohs, J. M., Reaction of Formic Acid on Zn-Modified Pd(111). Catalysis Letters 2009,130 (3-4),271-277.
    89. Jeroro, E.; Vohs, J. M., Exploring the Role of Zn in PdZn Reforming Catalysts:Adsorption and Reaction of Ethanol and Acetaldehyde on Two-dimensional PdZn Alloys. Journal of Physical Chemistry C 2009,113(4),1486-1494.
    90. Henderson, M. A., The interaction of water with solid surfaces:fundamental aspects revisited. Surface Science Reports 2002,46 (1-8),5-308.
    91. Thiel, P. A.; Madey, T. E., The Interaction of Water with Solid-Surfaces-Fundamental-Aspects. Surface Science Reports 1987,7 (6-8),211-385.
    92. Hodgson, A.; Haq, S., Water adsorption and the wetting of metal surfaces. Surface Science Reports 2009, 64 (9),381-451.
    93. Phatak, A. A.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F., Density Functional Theory Comparison of Water Dissociation Steps on Cu, Au, Ni, Pd, and Pt. Journal of Physical Chemistry C 2009,113 (17), 7269-7276.
    94. Lim, K. H.; Moskaleva, L. V.; Rosch, N., Surface composition of materials used as catalysts for methanol steam reforming:A theoretical study. Chemphyschem 2006,7(8),1802-1812.
    95. Michaelides, A.; Ranea, V. A.; de Andres, P. L.; King, D. A., General model for water monomer adsorption on close-packed transition and noble metal surfaces. Physical Review Letters 2003,90 (21), 126102.
    96. Bedurftig, K.; Volkening, S.; Wang, Y.; Wintterlin, J.; Jacobi, K.; Ertl, G., Vibrational and structural properties of OH adsorbed on Pt(111). Journal of Chemical Physics 1999,111(24),11147-11154.
    97. Feibelman, P. J., Partial Dissociation of Water on Ru(0001). Science 2002,295 (5552),99-102.
    98. Karlberg, G. S.; Olsson, F. E.; Persson, M.; Wahnstrom, G., Energetics, vibrational spectrum, and scanning tunneling microscopy images for the intermediate in water production reaction on Pt(111) from density functional calculations. Journal of Chemical Physics 2003,119 (9),4865-4872.
    99. Karlberg, G. S.; Wahnstrom, G., Density-functional based modeling of the intermediate in the water production reaction on Pt(111). Physical Review Letters 2004,92 (13),136103.
    100. Michaelides, A.; Hu, P., Catalytic water formation on platinum:A first-principles study. Journal of the American Chemical Society2001,123 (18),4235-4242.
    101. Michaelides, A.; Hu, P., A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt. Journal of Chemical Physics 2001,114 (1),513-519.
    102. Sholl, D.; Steckel, J. A., Density Functional Theory:A Practical Introduction. John Wiley and Sons, Inc.:Hoboken,2009.
    103. Thomas, L. H., The calculation of atomic fields. Proceedings of the Cambridge Philosophical Society 1927,23,542-548.
    104. Fermi, E., Un Metodo Statistico per la Deterninazione di alcune priorieta dell'Atome. Rend. Accad. Naz. Lincei.1927,6,602-607.
    105. Fermi, E., Statistical method of investigating electrons in atom. Z. Phys.1928,48,73-79.
    106. Dirac, P. A. M., Note on exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society 1930,26,376-385.
    107. Slater, J. C., A Simplification of the Hartree-Fock Method. Physical Review 1951,81 (3),385.
    108. Gaspar, R., Uber Eine Approximation Des Hartreefogkschen Potentials Durch Eine Universelle Potentialfunktion. Acta Physica Academiae Scientiarum Hungaricae 1954,3 (3-4),263-286.
    109. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review B 1964,136 (3B), B864-&.
    110. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965,140 (4A),1133-&.
    111. Ceperley, D. M.; Alder, B. J., Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters 1980,45 (7),566.
    112. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis. Can. J. Phys./Rev. can. phys.1980,58 (8),1200-1211.
    113. Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 1992,45 (23),13244.
    114. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C, Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 1992,46 (11),6671.
    115. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical Review Letters 1996,77 (18),3865-3868.
    116. Wang, Y.; Perdew, J. P., Correlation Hole of the Spin-Polarized Electron-Gas, with Exact Small-Wave-Vector and High-Density Scaling. Physical Review B 1991,44 (24),13298-13307.
    117. Becke, A. D., Density-Functional Thermochemistry.1. The Effect of the Exchange-Only Gradient Correction. Journal of Chemical Physics 1992,96 (3),2155-2160.
    118. Mattsson, A. E., In pursuit of the "divine" functional. Science 2002,298 (5594),759-760.
    119. Perdew, J. P.; Wang, Y., Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B 1986,33,8800-8802.
    120. Becke, A. D., A New Mixing of Hartree-Fock and Local Density-Functional Theories. Journal of Chemical Physics 1993,98(2),1372-1377.
    121. Becke, A. D., Density-Functional Thermochemistry.3. The Role of Exact Exchange. Journal of Chemical Physics 1993,98 (7),5648-5652.
    122. Filippi, C.; Umrigar, C. J.; Taut, M., Comparison of Exact and Approximate Density Functionals for an Exactly Soluble Model. Journal of Chemical Physics 1994,100 (2),1290-1296.
    123. Perdew, J. P.; McMullen, E. R.; Zunger, A., Density-functional theory of the correlation energy in atoms and ions:A simple analytic model and a challenge. Physical Review A 1981,23 (6),2785.
    124. Gronbeck, H., First principles studies of metal-oxide surfaces. Topics in Catalysis 2004,28 (1-4),59-69.
    125. Knickelbein, M. B., Reactions of Transition Metal Clusters with Small Molecules. Annu. Rev. Phys. Chem.1999,50,79-115.
    126. Panas, I.; Schule, J.; Siegbahn, P.; Wahlgren, U., On the Cluster Convergence of Chemisorption Energies. Chem. Phys. Lett.1998,149 265-272.
    127. Pacchioni, G.; Ferrari, A. M.; Marquez, A. M.; Illas, F., Importance of Madelung potential in quantum chemical modeling of ionic surfaces. Journal of Computational Chemistry 1997,18 (5),617-628.
    128. Yudanov, I. V.; Vent, S.; Neyman, K..; Pacchioni, G.; Rosch, N., Adsorption of Pd atoms and Pd-4 clusters on the MgO(001) surface:A density functional study. Chemical Physics Letters 1997,275 (3-4), 245-252.
    129. Barandiaran, Z.; Seijo, L., The Abinitio Model Potential Representation of the Crystalline Environment-Theoretical-Study of the Local Distortion on Nacl-Cu+. Journal of Chemical Physics 1988,89 (9), 5739-5746.
    130. Bloch, F., Uber die Quantenmechanik der Elektronen in Kristallgittern. Z Phys 1928,52,555-600.
    131. Phillips, J. C.; Kleinman, L., New Method for Calculating Wave Functions in Crystals and Molecules. Physical Review 1959,116 (2),287.
    132. Karhanek, D., Self-Assembled Monolayers Studied by Density-Functional Theory. Doctoral Dissertation 2010, University of Vienna, Austia.
    133. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999,59 (3),1758.
    134. Martin, R. M., Electronic Structure:Basic Theory and Practical Methods. Cambridge University Press: Cambridge,2004.
    135. Jepson, O.; Anderson, O. K.., The electronic structure of h.c.p. Ytterbium Solid State Communications 1971,9(20),1763-1767
    136. Blochl, P. E.; Jepsen, O.; Andersen, O. K., Improved Tetrahedron Method for Brillouin-Zone Integrations. Physical Review B 1994,49 (23),16223-16233.
    137. Methfessel, M.; Paxton, A. T., High-precision sampling for Brillouin-zone integration in metals. Physical Review B 1989,40 (6),3616.
    138. Wimmer, E.; Freeman, A. J., Fundamentals of the electronic structure of surfaces,Handbook of Surface Science Vol.2:Electronic structure. Elsevier:Amsterdam,2000.
    139. Mills, G.; oacute; nsson, H., Quantum and thermal effects in H_{2} dissociative adsorption:Evaluation of free energy barriers in multidimensional quantum systems. Physical Review Letters 1994,72 (7),1124.
    140. Henkelman, G.; Jonsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics 2000,113 (22),9978-9985.
    141. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics 2000,113 (22),9901-9904.
    142. Gao, F.; Henkelman, G.; Weber, W. J.; Corrales, L. R.; Jonsson, H., Finding possible transition states of defects in silicon-carbide and alpha-iron using the dimer method. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2003,202,1-7.
    143. Henkelman, G.; Jonsson, H., Dimer method long time scale simulations of surface growth. Iccn 2002: International Conference on Computational Nanoscience and Nanotechnology 2002,136-139
    144. Henkelman, G.; Jonsson, H., A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. Journal of Chemical Physics 1999,111 (15),7010-7022.
    145. Henkelman, G.; Uberuaga, B.; Dunham, S.; Jonsson, H., Simulations of dopant clustering in silicon: Dimer calculations using DFT forces. Iccn 2002:International Conference on Computational Nanoscience and Nanotechnology 2002,144-146
    146. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., Long time scale dynamics using DFT and the Dimer method:Application to boron clustering in silicon. Abstracts of Papers of the American Chemical Society 2001,222, U204-U204.
    147. Mei, D. H.; Xu, L.; Henkelman, G., Dimer saddle point searches to determine the reactivity of formate on Cu(111). Journal of Catalysis 2008,258 (1),44-51.
    148. Shang, C.; Liu, Z. P., Constrained Broyden Minimization Combined with the Dimer Method for Locating Transition State of Complex Reactions. Journal of Chemical Theory and Computation 2010,6 (4), 1136-1144.
    149. Ahmed, S.; Krumpelt, M., Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy 2001,26 (4),291-301.
    150. Brown, L. F., A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy 2001,26 (4),381-397.
    151. Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J., High capacity hydrogen storage materials:attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews 2010,39 (2), 656-675.
    152. Trimm, D. L.; Onsan, Z.I., Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catalysis Reviews-Science and Engineering 2001,43 (1-2),31-84.
    153. Chen, J. J.; Jiang, Z. C.; Zhou, Y.; Chakraborty, B. R.; Winograd, N., Spectroscopic Studies of Methanol Decomposition on Pd(111). Surface Science 1995,328 (3),248-262.
    154. Davis, J. L.; Barteau, M. A., Spectroscopic Identification of Alkoxide, Aldehyde, and Acyl Intermediates in Alcohol Decomposition on Pd(111). Surface Science 1990,235 (2-3),235-248.
    155. de la Fuente, O. R.; Borasio, M.; Galletto, P.; Rupprechter, G.; Freund, H. J., The influence of surface defects on methanol decomposition on Pd(111) studied by XPS and PM-IRAS. Surface Science 2004,566, 740-745.
    156. Kruse, N.; Rebholz, M.; Matolin, V.; Chuah, G. K.; Block, J. H., Methanol Decomposition on Pd(111) Single-Crystal Surfaces. Surface Science 1990,238 (1-3), L457-L462.
    157. Levis, R. J.; Jiang, Z. C.; Winograd, N., Thermal-Decomposition of Ch3oh Adsorbed on Pd(111)-a New Reaction Pathway Involving Ch3 Formation. Journal of the American Chemical Society 1989,111(13), 4605-4612.
    158. Mehmood, F.; Greeley, J.; Curtiss, L. A., Density Functional Studies of Methanol Decomposition on Subnanometer Pd Clusters. Journal of Physical Chemistry C 2009,113 (52),21789-21796.
    159. Rebholz, M.; Kruse, N., Mechanisms of Methanol Decomposition on Pd (111). Journal of Chemical Physics 1991,95 (10),7745-7759.
    160. Schennach, R.; Eichler, A.; Rendulic, K. D., Adsorption and desorption of methanol on Pd (111) and on a Pd/V surface alloy. Journal of Physical Chemistry B 2003,707(11),2552-2558.
    161. Jeroro, E.; Lebarbler, V.; Datye, A.; Wang, Y.; Vohs, J. M., Interaction of CO with surface PdZn alloys. Surface Science 2007,601 (23),5546-5554.
    162. Perdew, J. P.; Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Physical Review B 1992,45 (23),13244-13249.
    163. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996,54 (16),11169-11186.
    164. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996,6(1),15-50.
    165. Kresse, G.; Hafner, J., Abinitio Molecular-Dynamics for Liquid-Metals. Physical Review B 1993,47 (1), 558-561.
    166. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, Molecules, Solids, and Surfaces-Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992,46 (11),6671-6687.
    167. White, J. A.; Bird, D. M., Implementation of Gradient-Corrected Exchange-Correlation Potentials in Car-Parrinello Total-Energy Calculations. Physical Review B 1994, 50(7),4954-4957.
    168. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical Review B 1976, 13(12),5188-5192.
    169. Methfessel, M.; Paxton, A. T., High-Precision Sampling for Brillouin-Zone Integration in Metals. Physical Review B 1989,40 (6),3616-3621.
    170. Chen, Z. X.; Neyman, K. M.; Gordienko, A. B.; Rosch, N., Surface structure and stability of PdZn and PtZn alloys:Density-functional slab model studies. Physical Review B 2003,68 (7),075417.
    171. Chen, Z. X.; Neyman, K. M.; Rosch, N., Theoretical study of segregation of Zn and Pd in Pd-Zn alloys. Surface Science 2004,548 (1-3),291-300.
    172. Bayer, A.; Flechtner, K.; Denecke, R.; Steinruck, H. P.; Neyman, K. M.; Rosch, N., Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surface Science 2006,600 (1),78-94.
    173. Stadlmayr, W.; Penner, S.; Klotzer, B.; Memmel, N., Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surface Science 2009,603 (1),251-255.
    174. Giessel, T.; Schaff, O.; Hirschmugl, C. J.; Fernandez, V.; Schindler, K. M.; Theobald, A.; Bao, S.; Lindsay, R.; Berndt, W.; Bradshaw, A. M.; Baddeley, C.; Lee, A. F.; Lambert, R. M.; Woodruff, D. P., A photoelectron diffraction study of ordered structures in the chemisorption system Pd{111}-CO. Surface Science 1998,406 (1-3),90-102.
    175. Sautet, P.; Rose, M. K.; Dunphy, J. C.; Behler, S.; Salmeron, M., Adsorption and energetics of isolated CO molecules on Pd(111). Surface Science 2000,453 (1-3),25-31.
    176. Surnev, S.; Sock, M.; Ramsey, M. G.; Netzer, F. P.; Wiklund, M.; Borg, M.; Andersen, J. N., CO adsorption on Pd(111):a high-resolution core level photoemission and electron energy loss spectroscopy study. Surface Science 2000,470 (1-2),171-185.
    177. Neyman, K. M.; Sahnoun, R.; Inntam, C.; Hengrasmee, S.; Rosch, N., Computational study of model Pd-Zn nanoclusters and their adsorption complexes with CO molecules. Journal of Physical Chemistry B 2004,108(17),5424-5430.
    178. Huang, Y. C.; Chen, Z. X., Density Functional Investigations of Methanol Dehydrogenation on Pd-Zn Surface Alloy. Langmuir 2010,26 (13),10796-10802.
    179. Ponec, V., Alloy catalysts:the concepts. Applied Catalysis a-General 2001,222 (1-2),31-45.
    180. Sakong, S.; Mosch, C.; Gross, A., CO adsorption on Cu-Pd alloy surfaces:ligand versus ensemble effects. Physical Chemistry Chemical Physics 2007,9(18),2216-2225.
    181. Schneider, U.; Busse, H.; Linke, R.; Castro, G. R.; Wandelt, K., Interaction Properties of Molecules with Binary Alloy Surfaces. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1994,12 (4), 2069-2073.
    182.Gross, A., Reactivity of bimetallic systems studied from first principles. Topics in Catalysis 2006,37 (1), 29-39.
    183. Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G., Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters 2004, 93 (15),156801.
    184. Shao, M. H.; Huang, T.; Liu, P.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Adzic, R. R., Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 2006,22 (25),10409-10415.
    185. Wang, L. L.; Johnson, D. D., Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT:CO and H adsorption. Journal of Physical Chemistry C 2008,112 (22),8266-8275.
    186. Dewar, M. J. S.; Ford, G. P., Relationship between Olefinic Pi-Complexes and 3-Membered Rings. Journal of the American Chemical Society 1979,101 (4),783-791.
    187. Hirschl, R.; Hafner, J., First-principles study of Pd-V surface alloys I. Electronic structure of clean surfaces. Surface Science 2002,498 (1-2),21-36.
    188. Roudgar, A.; Gross, A., Local reactivity of supported metal clusters:Pd-n on Au(111). Surface Science 2004,559(2-3), L180-L186.
    189. Yuan, D. W.; Gong, X. G.; Wu, R. Q., Atomic configurations of Pd atoms in PdAu(111) bimetallic surfaces investigated using the first-principles pseudopotential plane wave approach. Physical Review B 2007, 75 (8),233401.
    190. Sakong, S.; Gross, A., Dissociative adsorption of hydrogen on strained Cu surfaces. Surface Science 2003,525(1-3),107-118.
    191. Sljivancanin, Z.; Hammer, B., H-2 dissociation at defected Cu:Preference for reaction at vacancy and kink sites. Physical Review B 2002,65 (8),085414.
    192. Xin, H. L.; Linic, S., Communications:Exceptions to the d-band model of chemisorption on metal surfaces:The dominant role of repulsion between adsorbate states and metal d-states. Journal of Chemical Physics 2010,132 (22),221101.
    193. Henkelman, G.; Arnaldsson, A.; Jonsson, H., A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006,36 (3),354-360.
    194. Ge, Q.; Desai, S.; Neurock, M.; Kourtakis, K., CO adsorption on Pt-Ru surface alloys and on the surface of Pt-Ru bulk alloy. Journal of Physical Chemistry B 2001,105 (39),9533-9536.
    195. Blyholder, G., Molecular Orbital View of Chemisorbed Carbon Monoxide. Journal of Physical Chemistry 1964,68 (10),2772-&.
    196. Carlsson, A. F.; Bauumer, M.; Risse, T.; Freund, H. J., Surface structure of Co-Pd bimetallic particles supported on Al2O3 thin films studied using infrared reflection absorption spectroscopy of CO. Journal of Chemical Physics 2003,119(20),10885-10894.
    197. Fukutani, K.; Magkoev, T. T.; Murata, Y.; Matsumoto, M.; Kawauchi, T.; Magome, T.; Tezuka, Y.; Shin, S., Electronic structure of a Pt(111)-Ge surface alloy and adsorbed CO. Journal of Electron Spectroscopy and Related Phenomena 1998,88,597-601.
    198. Fukutani, K.; Murata, Y.; Brillo, J.; Kuhlenbek, H.; Freund, H. J.; Taguchi, M., Electronic structure of a Pt-Ge surface alloy. Surface Science 2000,464 (2-3),48-56.
    199. Alejo, L.; Lago, R.; Pena, M. A.; Fierro, J. L. G., Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts. Applied Catalysis a-General 1997,162 (1-2),281-297.
    200. Liu, S. T.; Takahashi, K.; Uematsu, K.; Ayabe, M., Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of the addition of a third metal component. Applied Catalysis a-General 2004,277 (1-2),265-270.
    201. Barros, R. B.; Garcia, A. R.; Ilharco, L. M., Effect of oxygen precoverage on the reactivity of methanol on Ru(001) surfaces. Journal of Physical Chemistry B 2004,108 (15),4831-4839.
    202. Fukui, K.; Motoda, K.; Iwasawa, Y., Selective oxidation of methanol by extra oxygen species on one-dimensional Mo rows of a Mo(112)-(1×2)-O surface. Journal of Physical Chemistry B 1998,102 (44), 8825-8833.
    203. Houtman, C.; Barteau, M. A., Reactions of Methanol on Rh(111) and Rh(111)-(2×2)O Surfaces-Spectroscopic Identification of Adsorbed Methoxide and Eta-1-Formaldehyde. Langmuir 1990,6 (10), 1558-1566.
    204. Kerkar, M.; Hayden, A. B.; Woodruff, D. P.; Kadodwala, M.; Jones, R. G., An Unusual Adsorption Site for Methoxy on Al(111) Surfaces. Journal of Physics-Condensed Matter 1992,4 (22),5043-5052.
    205. Outka, D. A.; Madix, R. J., Bronsted Basicity of Atomic Oxygen on the Au(110) Surface-Reactions with Methanol, Acetylene, Water, and Ethylene. Journal of the American Chemical Society 1987,109 (6), 1708-1714.
    206. Wachs, I. E.; Madix, R. J., Oxidation of Methanol on a Silver (110) Catalyst. Surface Science 1978,76 (2),531-558.
    207. Wang, G. C.; Zhou, Y. H.; Morikawa, Y.; Nakamura, J.; Cai, Z. S.; Zhao, X. Z., Kinetic mechanism of methanol decomposition on Ni(111) surface:A theoretical study. Journal of Physical Chemistry B 2005,109 (25),12431-12442.
    208. Hofmann, P.; Schindler, K. M.; Bao, S.; Fritzsche, V.; Ricken, D. E.; Bradshaw, A. M.; Woodruff, D. P., The Geometric Structure of the Surface Methoxy Species on Cu(111). Surface Science 1994,304 (1-2), 74-84.
    209. Hartmann, N.; Esch, F.; Imbihl, R., Steady-State Kinetics of the Decomposition and Oxidation of Methanol on Pd(110). Surface Science 1993,297 (2),175-185.
    210. Jiang, R. B.; Guo, W. Y.; Li, M.; Fu, D. L.; Shan, H. H., Density Functional Investigation of Methanol Dehydrogenation on Pd(111). Journal of Physical Chemistry C 2009,113 (10),4188-4197.
    211. Zhang, C. J.; Hu, P., A first principles study of methanol decomposition on Pd(111):Mechanisms for O-H bond scission and C-O bond scission. Journal of Chemical Physics 2001,115 (15),7182-7186.
    212. Christmann, K.; Demuth, J. E., The Adsorption and Reaction of Methanol on Pd(100).1. Chemisorption and Condensation. Journal of Chemical Physics 1982,76 (12),6308-6317.
    213. Neurock, M., First-principles analysis of the hydrogenation of carbon monoxide over palladium. Topics in Catalysis 1999,9(3-4),135-152.
    214. Yudanov, I. V.; Matveev, A. V.; Neyman, K. M.; Rosch, N., How the C-O bond breaks during methanol decomposition on nanocrystallites of palladium catalysts. Journal of the American Chemical Society 2008, 130 (29),9342-9352.
    215. Karim, A. M.; Conant, T.; Datye, A. K., Controlling ZnO morphology for improved methanol steam reforming reactivity. Physical Chemistry Chemical Physics 2008,10 (36),5584-5590.
    216. Huang, Y. C.; Ding, W. P.; Chen, Z. X., Effect of Zn on the adsorption of CO on Pd(111). Journal of Chemical Physics 2010,133 (21),214702.
    217. Koch, H. P.; Bako, I.; Weirum, G.; Kratzer, M.; Schennach, R., A theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surface Science 2010,604 (11-12),926-931.
    218. Kresse, G.; Hafner, J., Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994,49 (20),14251-14269.
    219. Bowker, M.; Madix, R. J., Xps, Ups and Thermal-Desorption Studies of Alcohol Adsorption on Cu(110).1. Methanol. Surface Science 1980,95 (1),190-206.
    220. Mavrikakis, M.; Barteau, M. A., Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis a-Chemical 1998,131 (1-3),135-147.
    221. Sexton, B. A.; Hughes, A. E., A Comparison of Weak Molecular Adsorption of Organic-Molecules on Clean Copper and Platinum Surfaces. Surface Science 1984,140 (1),227-248.
    222. Redhead, P. A., Thermal desorption of gases. Vacuum 1962,12 (4),203-211.
    223. Gates, J. A.; Kesmodel, L. L., Methanol Adsorption and Decomposition on Clean and Oxygen Precovered Palladium (111). Journal of Catalysis 1983,83 (2),437-445.
    224. Yang, H.; Whitten, J. L., Adsorption of Formyl on Ni(100). Langmuir 1995,11 (3),853-859.
    225. Ni, Z. M.; Mao, J. H.; Pan, G. X.; Xu, Q.; Li, X. N., Mechanism of Palladium-Catalyzed Methanol Decomposition for Hydrogen Production. Acta Physico-Chimica Sinica 2009,25 (5),876-882.
    226. Iwasa, N.; Mayanagi, T.; Nomura, W.; Arai, M.; Takezawa, N., Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Applied Catalysis a-General 2003,248(1-2),153-160.
    227. Gabasch, H.; Knop-Gericke, A.; Schlogl, R.; Penner, S.; Jenewein, B.; Hayek, K.; Klotzer, B., Zn adsorption on pd(111):ZnO and PdZn alloy formation. Journal of Physical Chemistry B 2006,110 (23), 11391-11398.
    228. Chen, D. Q.; Wang, Y. S., Simulation of clusters formation in Al-Cu based and Al-Zn based alloys. Journal of Materials Science 2005,40 (13),3461-3466.
    229. Balzer, R.; Sigvaldason, H., Equilibrium Vacancy Concentration Measurements on Zinc Single-Crystals. Journal of Physics F-Metal Physics 1979,9 (2),171-178.
    230. Mattsson, T. R.; Mattsson, A. E., Calculating the vacancy formation energy in metals:Pt, Pd, and Mo. Physical Review B 2002,66 (21),214110.
    231. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999,59 (3),1758-1775.
    232. Koch, H. P.; Bako,I.; Schennach, R., Adsorption of small molecules on a (2×1) PdZn surface alloy on Pd(111). Surface Science 2010,604 (5-6),596-608.
    233. Hammer, B.; Hansen, L. B.; Norskov, J. K., Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 1999,59 (11),7413-7421.
    234. Lide, D. R., Handbook of Chemistry and Physics. CRC Press:Boca Raton,2000.
    235. He, X.; Huang, Y. C.; Chen, Z. X., zinc coverage dependent structure of PdZn surface alloy. Physical Chemistry Chemical Physics 2011,13 (1),107-109.
    236. Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews 1988,88 (6),899-926.
    237. Jiang, Y. S., Structural Chemistry. Higher Education Press:Beijing 1997.
    238. Morikawa, Y.; Iwata, K.; Nakamura, J.; Fujitani, T.; Terakura, K., Ab initio study of surface structural changes during methanol synthesis over Zn/Cu(111). Chemical Physics Letters 1999,304 (1-2),91-97.
    239. Morikawa, Y.; Iwata, K.; Terakura, K., Theoretical study of hydrogenation process of formate on clean and Zn deposited Cu(111) surfaces. Applied Surface Science 2001,169,11-15.
    240. Zhou, Y. H.; Lv, P. H.; Wang, G. C., DFT studies of methanol decomposition on Ni(100) surface: Compared with Ni(111) surface. Journal of Molecular Catalysis α-Chemical 2006,258 (1-2),203-215.
    241. Richter, L. J.; Ho, W., Kinetics of Unimolecular Decomposition on Surfaces-Methanol on Ni(110). Journal of Chemical Physics 1985,83 (5),2569-2582.
    242. Lee, J. K.; Ko, J. B.; Kim, D. H., Methanol steam reforming over Cu/ZnO/Al2O3 catalyst:kinetics and effectiveness factor. Applied Catalysis α-General 2004,278 (1),25-35.
    243. Gabasch, H.; Knop-Gericke, A.; Schlogl, R.; Penner, S.; Jenewein, B.; Hayek, K.; Klotzer, B., Zn Adsorption on Pd(111):ZnO and PdZn Alloy Formation. The Journal of Physical Chemistry B 2006,110 (23), 11391-11398.
    244. Tamtogl, A.; Kratzer, M.; Killman, J.; Winkler, A., Adsorption/desorption of H-2 and CO on Zn-modified Pd(111). Journal of Chemical Physics 2008,129 (22),224706.
    245. Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Mann, R. F., Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Applied Catalysis A:General 1999,179 (1-2),31-49.
    246. Giordano, L.; Goniakowski, J.; Suzanne, J., Partial Dissociation of Water Molecules in the (3 x 2) Water Monolayer Deposited on the MgO (100) Surface. Physical Review Letters 1998,81 (6),1271.
    247. Tsuzuki, S.; Luthi, H. P., Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory:Assessing the PW91 model. The Journal of Chemical Physics 2001,114 (9), 3949-3957.
    248. Nakamura, M.; Shingaya, Y.; Ito, M., The vibrational spectra of water cluster molecules on Pt(111) surface at 20 K. Chemical Physics Letters 1999,309 (1-2),123-128.
    249. Nakamura, M.; Ito, M., Monomer and tetramer water clusters adsorbed on Ru(0001). Chemical Physics Letters 2000,325(1-3),293-298.
    250. Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M., Water Diffusion and Clustering on Pd(111). Science 2002,297 (5588),1850-1852.
    251. Morgenstern, K.; Nieminen, J., Intermolecular Bond Length of Ice on Ag(111). Physical Review Letters 2002,88 (6),066102.
    252. Michaelides, A.; Morgenstern, K., Ice nanoclusters at hydrophobic metal surfaces. Nat Mater 2007,6 (8),597-601.
    253. Meng, S.; Wang, E. G.; Gao, S., Water adsorption on metal surfaces:A general picture from density functional theory studies. Physical Review B 2004,69 (19),195404.
    254. Ren, J.; Meng, S., First-principles study of water on copper and noble metal (110) surfaces. Physical Review B 2008,77 (5),054110.
    255. Michaelides, A., Simulating ice nucleation, one molecule at a time, with the 'DFT microscope'. Faraday Discussions 2007,136,287-297.
    256. Morgenstern, K., Scanning tunnelling microscopy investigation of water in submonolayer coverage on Ag(111). Surface Science 2002,504,293-300.
    257. Morgenstern, M.; Muller, J.; Michely, T.; Comsa, G, The ice bilayer on Pt(111):Nucleation, structure and melting. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics 1997,198,43-72.
    258. Morgenstern, K.; Rieder, K.-H., Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. The Journal of Chemical Physics 2002,116 (13), 5746-5752.
    259. Held, G.; Menzel, D., Isotope effects in structure and kinetics of water adsorbates on Ru(001). Surface Science 1995,327(3),301-320.
    260. Weissenrieder, J.; Mikkelsen, A.; Andersen, J. N.; Feibelman, P. J.; Held, G., Experimental Evidence for a Partially Dissociated Water Bilayer on Ru{0001}. Physical Review Letters 2004,93 (19),196102.
    261. Tatarkhanov, M.; Ogletree, D. F.; Rose, F.; Mitsui, T; Fomin, E.; Maier, S.; Rose, M.; Cerda, J. I.; Salmeron, M., Metal- and Hydrogen-Bonding Competition during Water Adsorption on Pd(111) and Ru(0001). Journal of the American Chemical Society 2009,131 (51),18425-18434.
    262. Michaelides, A.; Alavi, A.; King, D. A., Different Surface Chemistries of Water on Ru{0001}:From Monomer Adsorption to Partially Dissociated Bilayers. Journal of the American Chemical Society 2003,125 (9),2746-2755.
    263. Michaelides, A.; Alavi, A.; King, D. A., Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Physical Review B 2004,69 (11),113404.
    264. Cerd; aacute; J.; Michaelides, A.; Bocquet, M. L.; Feibelman, P. J.; Mitsui, T.; Rose, M.; Fomin, E.; Salmeron, M., Novel Water Overlayer Growth on Pd(111) Characterized with Scanning Tunneling Microscopy and Density Functional Theory. Physical Review Letters 2004,93 (11),116101.
    265. Li, X.-Z.; Probert, M. I. J.; Alavi, A.; Michaelides, A., Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces. Physical Review Letters 2010,104 (6),066102.
    266. Zambelli, T; Wintterlin, J.; Trost, J.; Ertl, G., Identification of the "active sites" of a surface-catalyzed reaction. Science 1996,273 (5282),1688-1690.
    267. Vang, R. T.; Honkala, K.; Dahl, S.; Vestergaard, E. K.; Schnadt, J.; Laegsgaard, E.; Clausen, B. S.; Norskov, J. K.; Besenbacher, F., Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Materials 2005,4 (2),160-162.
    268. Hendriksen, B. L. M.; Ackermann, M. D.; van Rijn, R.; Stoltz, D.; Popa, I.; Balmes, O.; Resta, A.; Wermeille, D.; Felici, R.; Ferrer, S.; Frenken, J. W. M., The role of steps in surface catalysis and reaction oscillations. Nature Chemistry 2010,2 (9),730-734.
    269. Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.; Hamada, I., Water clusters on Cu(110):Chain versus cyclic structures. Journal of Chemical Physics 2011,134 (2),024703.
    270. Mann, D. J.; Halls, M. D., Water Alignment and Proton Conduction inside Carbon Nanotubes. Physical Review Letters 2003,90 (19),195503.
    271. Rameshan, C.; Weilach, C.; Stadlmayr, W.; Penner, S.; Lorenz, H.; Havecker, M.; Blume, R.; Rocha, T; Teschner, D.; Knop-Gericke, A.; Schlogl, R.; Zemlyanov, D.; Memmel, N.; Rupprechter, G.; Klotzer, B., Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS. Journal of Catalysis 2010,276(1),101-113.
    272. Stadlmayr, W.; Rameshan, C.; Weilach, C.; Lorenz, H.; Havecker, M.; Blume, R.; Rocha, T.; Teschner, D.; Knop-Gericke, A.; Zemlyanov, D.; Penner, S.; Schlogl, R.; Rupprechter, G.; Klotzer, B.; Memmel, N., Temperature-Induced Modifications of PdZn Layers on Pd(111). The Journal of Physical Chemistry C 2010, 114(24),10850-10856.
    273. Cao, Y. L.; Chen, Z. X., Theoretical studies on the adsorption and decomposition of H2O on Pd(111) surface. Surface Science 2006,600 (19),4572-4583.
    274. Huang, Y. C.; He, X.; Chen, Z. X., First-principles study towards the reactivity of the Pd(111) surface with low Zn deposition. The Journal of Chemical Physics 2011,134 (18),184702.
    275. Agrell, J.; Birgersson, H.; Boutonnet, M., Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources 2002,106 (1-2), 249-257.
    276. Papavasiliou, J.; Avgouropoulos, G.; Ioannides, T., Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Applied Catalysis B-Environmental 2009,88 (3-4), 490-496.
    277. Frank, B.; Jentoft, F. C.; Soerijanto, H.; Krohnert, J.; Schlogl, R.; Schomacker, R., Steam reforming of methanol over copper-containing catalysts:Influence of support material on microkinetics. Journal of Catalysis 2007,246 (1),177-192.
    278. Mastalir, A.; Frank, B.; Szizybalski, A.; Soerijanto, H.; Deshpande, A.; Niederberger, M.; Schomacker, R.; Schlogl, R.; Ressler, T., Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts:a kinetic study. Journal of Catalysis 2005,230 (2),464-475.
    279. Turco, M.; Bagnasco, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Ramis, G.; Busca, G., Production of hydrogen from oxidative steam reforming of methanol-Ⅱ. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. Journal of Catalysis 2004,228 (1),56-65.
    280. Dagle, R. A.; Wang, Y.; Xia, G. G.; Strohm, J. J.; Holladay, J.; Palo, D. R., Selective CO methanation catalysts for fuel processing applications. Applied Catalysis a-General 2007,326 (2),213-218.
    281. Tang, Q. L.; Chen, Z. X.; He, X., A theoretical study of the water gas shift reaction mechanism on Cu(111) model system. Surface Science 2009,603 (13),2138-2144.
    282. Kresse, G.; Hafner, J., Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition-Elements. Journal of Physics-Condensed Matter 1994,6 (40),8245-8257.
    283. Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jonsson, H., Comparison of methods for finding saddle points without knowledge of the final states. Journal of Chemical Physics 2004,121 (20), 9776-9792.
    284. Henkelman, G.; Jonsson, H., Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. Journal of Chemical Physics 2001,115 (21),9657-9666.
    285. Tang, Q. L.; Hong, Q. J.; Liu, Z. P., CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. Journal of Catalysis 2009,263 (1),114-122.
    286. Liu, Z. P.; Hu, P., An insight into alkali promotion:A density functional theory study of CO dissociation on K/Rh(111). Journal of the American Chemical Society 2001,123 (50),12596-12604.
    287. Hammer, B., Bond activation at monatomic steps:NO dissociation at corrugated Ru(0001). Physical Review Letters 1999,83 (18),3681-3684.
    288. Somorjai, G. A., Molecular concepts of heterogeneous catalysis. Journal of Molecular Structure-Theochem 1998,424 (1-2),101-117.
    289. Tang, Q. L.; Chen, Z. X., Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface:A theoretical study. Journal of Chemical Physics 2007,127 (10),104707.
    290. Nakano, H.; Nakamura,I.; Fujitani, T.; Nakamura, J., Structure-dependent kinetics for synthesis and decomposition of formate species over Cu(111) and Cu(110) model catalysts. Journal of Physical Chemistry B 2001,105(7),1355-1365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700