以氨硼烷为先驱体制备BN微纳米材料及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为C微纳米材料的类似物,BN微纳米材料具有低密度、耐高温、抗氧化、生物相容性好等一系列优点,在紫外激光器件、生物传感器、复合材料增强体、储氢材料等诸多领域具有广阔的应用前景。但是与C微纳米材料相比,BN微纳米材料的制备却面临着许多困难,如对反应条件要求苛刻,产物的产量低、纯度差等。主要的原因在于适合于制备BN微纳米材料的先驱体材料极其有限,因此找到合适的BN先驱体是解决上述问题的关键。氨硼烷(BH_3NH_3)是一种只含有B,N和H元素的固体物质,虽然早在1955年即被首次合成,人们对这种物质的高温分解行为以及能否用它来制备BN微纳米材料的认识还非常有限。本文较为系统地研究了氨硼烷的热分解过程,并且以氨硼烷为先驱体,采用化学气相反应法,在气氛压力反应炉中成功制备出了多种BN微纳米材料。证明了氨硼烷是一种优秀的制备BN微纳米材料的先驱体。本文所取得的主要研究成果概括如下。
     通过第一原理计算研究了氨硼烷的电子结构和成键特征。计算表明,B原子和N原子分别与H原子形成共价键,而B原子和N原子之间由配位键连接;电子从N原子转移到B原子导致了BH_3NH_3单元之间的氢键相互作用和偶极相互作用,BH_3NH_3单元之间的相互作用能为15.1kJ/mol,这是维持氨硼烷结构稳定性的根本原因。TG-DSC-MS分析表明,在1000°C以前,氨硼烷有50%以上的质量损失,损失的这部分氨硼烷转变为硼烷、硼吖嗪以及氨气等多种含有B元素和N元素的气体,而氨硼烷分解所剩余的固体物质为BN纳米晶片,对其进行阴极荧光分析表明,BN纳米晶片的发射谱带处于200-400nm的紫外区,可作为紫外发光材料使用。
     以氨硼烷作为BN先驱体成功制备了BN纳米管。详细地表征了纳米管的结构、磁学性能以及光学性能;系统地研究了催化剂、反应温度、气压等工艺条件对氮化硼纳米管生长的影响;阐述了纳米管的生长机制。BN纳米管的形貌分为两种,一种为竹节状,另一种为圆柱状。铁粉、氧化铁、四氧化三铁和二茂铁等含铁物质在适当的工艺条件下都可以作为BN纳米管的催化剂,二茂铁的催化效果最佳;在适当的工艺条件下,BN纳米管转变为BN晶须。根据热力学理论并结合VLS生长机制,建立了BN纳米管及BN晶须的生长模型,从理论上对BN纳米管的形貌随工艺条件的变化规律给予了合理的解释。理论分析表明,催化剂粒子太小或太大均不利于BN层片的析出。对BN纳米管磁学性能的研究表明,氮化硼纳米管对其包覆的磁性纳米粒子能起到有效的保护作用。光致发光光谱和阴极荧光光谱的研究表明,BN纳米管以及BN晶须均为发光性能优异的紫外发光材料。
     以氨硼烷为原料,在石墨纸衬底上制备了碗状和鸟巢状BN微米空心球。对BN微米空心球的结构进行了详细表征,研究了反应温度、气压、气氛等工艺参数对BN微米空心球的结构的影响,提出了生长模型,研究了BN微米空心球的阴极荧光性能。结果表明,BN微米空心球的平均直径为3.4μm,壁厚约为200nm,随着温度的升高,碗状BN微米空心球逐渐转变为鸟巢状。气压对BN微米空心球的影响不显著。碗状BN微米空心球表现出特别的拉曼散射性质,本文在共振拉曼的理论框架下给予了解释。BN微米空心球的阴极荧光发射谱带在200-400nm的紫外区域,表明它们可作为紫外发光器件的候选材料。
     以氨硼烷和SiC/SiO_2纳米电缆为原料,制备了SiC/SiO_2/BN纳米电缆。对纳米电缆的结构进行了详细表征,探讨了其光致发光性能,研究了反应气氛浓度对SiC/SiO_2/BN纳米电缆结构的影响,阐述了纳米电缆的生长机制。研究结果表明,纳米电缆的直径约为100nm,SiO_2和BN层的厚度分别为10nm和5nm。SiC/SiO_2/BN纳米电缆的光致发光谱与原始SiC/SiO_2纳米电缆的基本相同,但488.5nm处的发射峰发生了一定程度的蓝移。当通过提高氨硼烷用量来提高反应气氛浓度时,原始的SiC/SiO_2纳米电缆转变为BN纳米管,这表明在高温条件下,SiC和SiO_2能被氢气所分解。以氨硼烷和Sialon纳米带为原料,制备了多晶BN纳米带,对其结构进行了详细表征,并讨论了其生长机制。
As analogues of carbon micro/nanomaterials, BN micro/nanomaterials have low density, high-temperature stablity, oxidation resistance, good biocompatibility and a series of other advantages, which promises broad applications as UV laser devices, biosensors, composite materials, reinforcements and hydrogen storage materials. But compared with the carbon counterparts, the preparation of BN micro/nanomaterials are facing many difficulties such as demanding reaction conditions, low product yield, and poor purity. The main reason is that BN precursors which are suitable for the preparation of BN micro/nanomaterials is extremely limited, so finding the right BN precursor is the key to solving these problems. Ammonia borane (AB, BH_3NH_3) is a solid-state material and only contains B, N and H elements. Although it has been first synthesized in 1955, knowledge concerning the pyrolysis behavior of this substance and whether they can be used to prepare BN micro/nanomaterials are very limited. The thermal decomposition of AB, and preparation of BN micro/nanomaterials from AB have been systematically studied. It is proved that AB is an promising precursor for BN micro/nanomaterials. The main results obtained in this paper are summarized below.
     First-principles calculations show that B atoms and N atoms form covalent bonds with H atoms, while the B atoms and N atoms are connected by coordination bonds; The transfer of electrons from the N atom to B atom is confirmed, which led to the hydrogen bond interactions and dipole-dipole interactions among BH_3NH_3 units, The interaction energy was calculated to be 15.1kJ/mol, which is important for the structural stability of AB. TG-DSC-MS analysis show that prior to 1000°C, AB almost loss 50% of the initial mass, the lost part are converted to boranes, borazine, ammonia and other N and/or B containing small molecules, The remaining part was transformed to BN nanoplates, the fluorescent analysis showed that the emission bands of the BN nanoplates is in the 200-400nm region.
     Using AB as a precursor, BN nanotubes (BNNTs) have been successfully fabricated. The structure, magnetic property and optical properties of the BNNTs, and the effect of the catalyst, reaction temperature, pressure and other processing conditions on the growth of the BNNTs were investigated. The morphologies of the BNNTs can be divided into two kinds, one is the bamboo shaped, the other is cylindrical shaped. Studies on the growth process shows that iron, iron oxide, and ferrocene can be used as a catalyst for the fabrication of BNNTs under appropriate conditions. The catalytic effect of ferrocene is the best. Under appropriate conditions, BNNTs can be transformed into BN whiskers.
     According to thermodynamic theory and the VLS growth mechanism, the growth model for both BNNTs and whiskers is established. The morphology variations of the BNNTs along with the process conditions could be reasonably explained. Theoretical analysis shows that whether the catalyst particles are too small or too large is not conducive to the precipitation of BN layers. The magnetic properties of the BNNTs which encapsulate magnetic nanoparticles are investigated. It is shown that boron nitride nanotubes can effectively protect the metal nanoparticles in them. PL and CL spectra show that the BNNTs and BN whiskers are ultraviolet light emitting materials with excellent performance.
     Using AB and graphite paper, we prepared bowl-shaped and nest-shaped BN hollow microspheres. The structure, and the effects of the reaction temperature, pressure, atmosphere and other parameters on the growth of the BN microspheres are investigated. The growth mechanism of the BN microspheres was revealed. the average diameter of the BN hollow spheres is 3.4μm, and the thicknesses were about 200nm. Upon increasing the reaction temperature, the bowl-shaped BN hollow spheres gradually changes into nest-shaped BN microspheres. The effect of pressure on the growth of BN hollow microspheres was not significant. The bowl-shaped BN hollow microspheres show special resonance Raman spectroscopy. The CL emission bands of the BN hollow microspheres are in the region of 200-400nm, indicating that they are promising candidate for UV light-emitting devices.
     AB can be employed to form BN coatings via CVD method by which SiC/SiO_2/BN three-layered nanocables were prepared from SiC/SiO_2 two-layered nanocables. SiC/SiO_2/BN three-layered nanocables The structure, photoluminescence properties and the effects of vapour concentration on structure of SiC/SiO_2/BN nanocables are investigated. A growth model was proposed. The nanocables are about 100nm in diameter, the thicknesses of the SiO_2 and BN layers were 10nm and 5nm, respectively. The photoluminescence spectra of the original SiC/SiO_2 nanocables and that of the SiC/SiO_2/BN nanocables are basically the same, with only the 488.5nm emission peak blue shifting. Upon increase the concentration of reaction vapours, the original SiC/SiO_2 nanocables are transformed into nanotubes due to the etching of SiC and SiO_2 by hydrogen.
引文
1冯端,师昌绪,刘志国.材料科学导论.化学工业出版社,2002:1~10
    2 R. S. Wagner,W. C. Ellis. Vapor-liquid-solid Mechanism of Single Crystal Growth. Applied Physics Letters. 1964, 4(5): 89~90
    3 P. B. Wheelock,B. C. Cook,J. L. Harringa,A. M. Russell. Phase Changes Induced in Hexagonal Boron Nitride by High Energy Mechanical Milling. Journal of Materials Science. 2004, 39(1): 343~347
    4 V. L. Solozhenko,V. Z. Turkevich,W. B. Holzapfel. Refined Phase Diagram of Boron Nitride. The Journal of Physical Chemistry B. 1999, 103(15): 2903~2905
    5 R. Zedlitz,M. Heintze,M. B. Schubert. Properties of Amorphous Boron Nitride Thin Films. Journal of Non-Crystalline Solids. 1996, 198-200(Part 1): 403~406
    6 J. C. H. Henager,W. T. Pawlewicz. Thermal Conductivities of Thin, Sputtered Optical Films. Applied Optics. 1993, 32(1): 91~101
    7 S. Weissmantel , G. Reisse , B. Keiper , S. Schulze. Microstructure and Mechanical Properties of Pulsed Laser Deposited Boron Nitride Films. Diamond and Related Materials. 1999, 8(2~5): 377~381
    8 B. Toury,P. Miele,D. Cornu,H. Vincent,J. Bouix. Boron Nitride Fibers Prepared from Symmetric and Asymmetric Alkylaminoborazines. Advanced Functional Materials. 2002, 12(3): 228~234
    9 J. Economy,R. V. Anderson. Boron Nitride Fibers. Journal of Polymer Science Part C: Polymer Symposia. 1967, 19(1): 283~297
    10 R. T. Paine,C. K. Narula. Synthetic Routes to Boron Nitride. Chemical Reviews. 1990, 90(1): 73~91
    11 S. Bernard,F. Chassagneux,M.-P. Berthet,D. Cornu,P. Miele. Crystallinity, Crystalline Quality, and Microstructural Ordering in Boron Nitride Fibers. Journal of the American Ceramic Society. 2005, 88(6): 1607~1614
    12 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(7): 56~58
    13 A. Rubio,J. L. Corkill,M. L. Cohen. Theory of Graphitic Boron Nitride Nanotubes. Physical Review B. 1994, 49(7): 5081~5084
    14 X. Blase,A. Rubio,S. G. Louie,M. L. Cohen. Stability and Band-gap
    Constancy of Boron-nitride Nanotubes. Europhysics Letters. 1994, 28(5): 335~340
    15 N. G. Chopra,R. J. Luyken,K. Cherrey,V. H. Crespi,M. L. Cohen,S. G. Louie,A. Zettl. Boron-nitride Nanotubes. Science. 1995, 269(5226): 966~967
    16 M. Terrones,W. K. Hsu,H. Terrones,J. P. Zhang,S. Ramos,J. P. Hare,R. Castillo,K. Prassides,A. K. Cheetham,H. W. Kroto,D. R. M. Walton. Metal Particle Catalysed Production of Nanoscale BN Structures. Chemical Physics Letters. 1996, 259(5~6): 568~573
    17 A. Loiseau,F. Willaime,N. Demoncy,G. Hug,H. Pascard. Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge. Physical Review Letters. 1996, 76(25): 4737~4740
    18 D. Golberg,Y. Bando,C. C. Tang,C. Y. Zhi. Boron Nitride Nanotubes. Advanced Materials. 2007, 19(18): 2413~2432
    19 D. Golberg,Y. Bando,M. Eremets,K. Takemura,K. Kurashima,H. Yusa. Nanotubes in Boron Nitride Laser Heated at High Pressure. Applied Physics Letters. 1996, 69(14): 2045~2047
    20 O. R. Lourie,C. R. Jones,B. M. Bartlett,P. C. Gibbons,R. S. Ruoff,W. E. Buhro. CVD Growth of Boron Nitride Nanotubes. Chemistry of Materials. 2000, 12(7): 1808~1810
    21 R. Z. Ma,Y. Bando,T. Sato,K. Kurashima. Growth, Morphology, and Structure of Boron Nitride Nanotubes. Chemistry of Materials. 2001, 13(9): 2965~2971
    22 C. C. Tang,Y. Bando,G. Z. Shen,C. Y. Zhi,D. Golberg. Single-source Precursor for Chemical Vapour Deposition of Collapsed Boron Nitride Nanotubes. Nanotechnology. 2006, 17(23): 5882~5888
    23 Y. Chen,L. T. Chadderton,J. F. Gerald,J. S. Williams. A Solid-state Process for Formation of Boron Nitride Nanotubes. Applied Physics Letters. 1999, 74(20): 2960~2962
    24 J. Dai,L. Xu,Z. Fang,D. Sheng,Q. Guo,Z. Ren,K. Wang,Y. Qian. A Convenient Catalytic Approach to Synthesize Straight Boron Nitride Nanotubes Using Synergic Nitrogen Source. Chemical Physics Letters. 2007, 440(4-6): 253~258
    25 W. Han,Y. Bando,K. Kurashima,T. Sato. Synthesis of Boron Nitride Nanotubes from Carbon Nanotubes by a Substitution Reaction. Applied Physics Letters. 1998, 73(21): 3085~3087
    26 C. Zhi,Y. Bando,C. Tan,D. Golberg. Effective Precursor for High YieldSynthesis of Pure BN Nanotubes. Solid State Communications. 2005, 135(1~2): 67~70
    27 C. Tang,Y. Bando,T. Sato,K. Kurashima. A Novel Precursor for Synthesis of Pure Boron Nitride Nanotubes. Chemical Communications. 2002, (12): 1290~1291
    28 C. W. Chang,A. M. Fennimore,A. Afanasiev,D. Okawa,T. Ikuno,H. Garcia,D. Y. Li,A. Majumdar,A. Zettl. Isotope Effect on The Thermal Conductivity of Boron Nitride Nanotubes. Physical Review Letters. 2006, 97(8): 085901-1~085901-4
    29 Hern,aacute,E. ndez,C. Goze,P. Bernier,A. Rubio. Elastic Properties of C and BxCyNz Composite Nanotubes. Physical Review Letters. 1998, 80(20): 4502~4505
    30 K. N. Kudin,G. E. Scuseria,B. I. Yakobson. C2F, BN, and C Nanoshell Elasticity from Ab initio Computations. Physical Review B. 2001, 64(23): 235406-1~235406-10
    31 A. P. Suryavanshi,M. F. Yu,J. G. Wen,C. C. Tang,Y. Bando. Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes. Applied Physics Letters. 2004, 84(14): 2527~2529
    32 W.-Q. Han,H.-G. Yu,C. Zhi,J. Wang,Z. Liu,T. Sekiguchi,Y. Bando. Isotope Effect on Band Gap and Radiative Transitions Properties of Boron Nitride Nanotubes. Nano Letters. 2008, 8(2): 491~494
    33 C. Y. Zhi,Y. Bando,C. C. Tang,R. G. Xie,T. Sekiguchi,D. Golberg. Perfectly Dissolved Boron Nitride Nanotubes Due to Polymer Wrapping. Journal of the American Chemical Society. 2005, 127(46): 15996~15997
    34 C. Tang,Y. Bando,Y. Huang,S. Yue,C. Gu,F. Xu,D. Golberg. Fluorination and Electrical Conductivity of BN Nanotubes. Journal of the American Chemical Society. 2005, 127(18): 6552~6553
    35 M. Ishigami,J. D. Sau,S. Aloni,M. L. Cohen,A. Zettl. Observation of the Giant Stark Effect in Boron-nitride Nanotubes. Physical Review Letters. 2005, 94(5): 056804-1~056804-4
    36 X. D. Bai,D. Golberg,Y. Bando,C. Y. Zhi,C. C. Tang,M. Mitome,K. Kurashima. Deformation-driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Letters. 2007, 7(3): 632~637
    37 D. Golberg,X. D. Bai,M. Mitome,C. C. Tang,C. Y. Zhi,Y. Bando. Structural Peculiarities of In Situ Deformation of a Multi-walled BN Nanotube inside a High-resolution Analytical Transmission Electron Microscope. ActaMaterialia. 2007, 55(4): 1293~1298
    38 J. Wu,W. Zhang. Tuning the Magnetic and Transport Properties of Boron-nitride Nanotubes via Oxygen-doping. Solid State Communications. 2009, 149(11-12): 486~490
    39 R. Q. Wu,L. Liu,G. W. Peng,Y. P. Feng. Magnetism in BN Nanotubes Induced by Carbon Doping. Applied Physics Letters. 2005, 86(12): 122510-1~122510-3
    40 F. Li,Z. Zhu,X. Yao,G. Lu,M. Zhao,Y. Xia,Y. Chen. Fluorination-induced Magnetism in Boron Nitride Nanotubes from Ab initio Calculations. Applied Physics Letters. 2008, 92(10): 102515-1~102515-3
    41 C. C. Tang,Y. Bando. Effect of BN Coatings on Oxidation Resistance and Field Emission of SiC Nanowires. Applied Physics Letters. 2003, 83(4): 659~661
    42 C. Zhi,Y. Bando,C. Tang,D. Golberg. Boron Nitride Nanotubes. Materials Science and Engineering: R: Reports. 2010, 70(3~6): 92~111
    43 J. S. Lauret,R. Arenal,F. Ducastelle,A. Loiseau,M. Cau,B. Attal-Tretout,E. Rosencher,L. Goux-Capes. Optical Transitions in Single-wall Boron Nitride Nanotubes. Physical Review Letters. 2005, 94(3): 037405-1~037405~4
    44 G. Mpourmpakis , G. E. Froudakis. Why Boron Nitride Nanotubes are Preferable to Carbon Nanotubes for Hydrogen Storage? An Ab initio Theoretical Study. Catalysis Today. 2007, 120(3-4): 341~345
    45 G. Ciofani,V. Raffa,A. Menciassi,A. Cuschieri. Boron Nitride Nanotubes: An Innovative Tool for Nanomedicine. Nano Today. 2009, 4(1): 8~10
    46 X. Chen,P. Wu,M. Rousseas,D. Okawa,Z. Gartner,A. Zettl,C. R. Bertozzi. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. Journal of the American Chemical Society. 2009, 131(3): 890~891
    47 V. Raffa , G. Ciofani , A. Cuschieri. Enhanced Low Voltage Cell Electropermeabilization by Boron Nitride Nanotubes. Nanotechnology. 2009, 20(7): 075104-1~075104-5
    48 A. Maguer,E. Leroy,L. Bresson,E. Doris,A. Loiseau,C. Mioskowski. A Versatile Strategy for the Functionalization of Boron Nitride Nanotubes. Journal of Materials Chemistry. 2009, 19(9): 1271~1275
    49 C. Y. Zhi,Y. Bando,T. Terao,C. C. Tang,H. Kuwahara,D. Golberg. Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Advanced Functional Materials. 2009,19(12): 1857~1862
    50 C. Y. Zhi,Y. Bando,C. C. Tang,Q. Huang,D. Golberg. Boron Nitride Nanotubes: Functionalization and Composites. Journal of Materials Chemistry. 2008, 18(33): 3900~3908
    51 R. Ma,Y. Bando,H. Zhu,T. Sato,C. Xu,D. Wu. Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature. Journal of the American Chemical Society. 2002, 124(26): 7672~7673
    52 C. Zhi,Y. Bando,C. Tang,H. Kuwahara,D. Golberg. Grafting Boron Nitride Nanotubes: From Polymers to Amorphous and Graphitic Carbon. The Journal of Physical Chemistry C. 2006, 111(3): 1230~1233
    53 Q. Huang,Y. Bando,A. Sandanayaka,C. Tang,J. Wang,T. Sekiguchi,C. Zhi,D. Golberg,Y. Araki,O. Ito,F. Xu,L. Gao. Photoinduced Charge Injection and Bandgap-engineering of High-specific-surface-area BN Nanotubes using a Zinc Phthalocyanine Monolayer. Small. 2007, 3(8): 1330~1335
    54 N. P. Bansal,J. B. Hurst,S. R. Choi. Boron Nitride Nanotubes-reinforced Glass Composites. Journal of the American Ceramic Society. 2006, 89(1): 388~390
    55 G. Ciofani , V. Raffa , A. Menciassi , A. Cuschieri. Cytocompatibility, Interactions, and Uptake of Polyethyleneimine-coated Boron Nitride Nanotubes by Living Cells: Confirmation of Their Potential for Biomedical Applications. Biotechnology and Bioengineering. 2008, 101(4): 850~858
    56 J. C. Yong,Z. Z. Hong,C. Ying. Pure Boron Nitride Nanowires Produced From Boron Triiodide. Nanotechnology. 2006, 17(3): 786~789
    57 Y.-C. Zhu,Y. Bando,D.-F. Xue,T. Sekiguchi,D. Golberg,F.-F. Xu,Q.-L. Liu. New Boron Nitride Whiskers: Showing Strong Ultraviolet and Visible Light Luminescence. Journal of Physical Chemistry B. 2004, 108(20): 6193~6196
    58 K. Saulig-Wenger,D. Cornu,F. Chassagneux,G. Ferro,T. Epicier,P. Miele. Direct Synthesis ofβ-SiC and h-BN Coatedβ-SiC Nanowires. Solid State Communications. 2002, 124(4): 157~161
    59 C. Y. Zhi,Y. Bando,C. C. Tang,H. Kuwahara,D. Golberg. Large-scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials. 2009, 21(28): 2889~2893
    60 L. Q. Xu,J. H. Zhan,J. Q. Hu,Y. Bando,X. L. Yuan,T. Sekiguchi,M. Mitome,D. Golberg. High-yield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. Advanced Materials. 2007, 19(16): 2141~2144
    61 R. Gao,L. Yin,C. Wang,Y. Qi,N. Lun,L. Zhang,Y.-X. Liu,L. Kang,X. Wang. High-yield Synthesis of Boron Nitride Nanosheets with Strong Ultraviolet Cathodoluminescence Emission. The Journal of Physical Chemistry C. 2009, 113(34): 15160~15165
    62 S. J. Clark,M. D. Segall,C. J. Pickard,P. J. Hasnip,M. J. Probert,K. Refson,M. C. Payne. First Principles Methods Using CASTEP. Zeitschrift Fur Kristallographie. 2005, 220(5~6): 567~570
    63 D. Vanderbilt. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B. 1990, 41(11): 7892~7895
    64 D. M. Ceperley,B. J. Alder. Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters. 1980, 45(7): 566~569
    65 J. P. Perdew,A. Zunger. Self-interaction Correction to Density-functional Approximations for Many-electron Systems. Physical Review B. 1981, 23(10): 5048~5079
    66 J. P. Perdew,K. Burke,M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996, 77(18): 3865~3868
    67 Z. G. Wu,R. E. Cohen. More Accurate Generalized Gradient Approximation for Solids. Physical Review B. 2006, 73(23): 235116-1~235116-6
    68 P. V. Ramachandran,P. D. Gagare. Preparation of Ammonia Borane in High Yield and Purity, Methanolysis, and Regeneration. Inorganic Chemistry. 2007, 46(19): 7810~7817
    69 J. Baumann,E. Baitalow,G. Wolf. Thermal Decomposition of Polymeric Aminoborane (H2BNH2)x under Hydrogen Release. Thermochimica Acta. 2005, 430(1-2): 9~14
    70 W. T. Klooster,T. F. Koetzle,P. E. M. Siegbahn,T. B. Richardson,R. H. Crabtree. Study of the N?H···H?B Dihydrogen Bond Including the Crystal Structure of BH_3NH_3 by Neutron Diffraction. Journal of the American Chemical Society. 1999, 121(27): 6337~6343
    71 M. J. van Setten,G. A. de Wijs,G. Brocks. First-principles Calculations of the Crystal Structure, Electronic Structure, and Thermodynamic Stability of Be(BH4)2. Physical Review B. 2008, 77(16): 165115-1~165115-7
    72 K. Miwa,N. Ohba,S. Towata,Y. Nakamori,A. Zuttel,S. Orimo. First-principles Study on Thermodynamical Stability of Metal Borohydrides: Aluminum Borohydride Al(BH4)3. Journal of Alloys and Compounds. 2007, 446(Sp. Iss.): 310~314
    73 C. R. Miranda , G. Ceder. Ab initio Investigation of Ammonia-boraneComplexes for Hydrogen Storage. Journal of Chemical Physics. 2007, 126(18): 184703
    74 A. Peles,J. A. Alford,Z. Ma,L. Yang,M. Y. Chou. First-principles Study of NaAlH4 and Na3AlH6 Complex Hydrides. Physical Review B. 2004, 70(16): 165105-1~165105-7
    75 C. A. Morrison , M. M. Siddick. Dihydrogen Bonds in Solid BH_3NH_3. Angewandte Chemie-international Edition. 2004, 43(36): 4780~4782
    76 Z. G. Chen,J. Zou,F. Li,G. Liu,D. M. Tang,D. Li,C. Liu,X. L. Ma,H. M. Cheng,G. Q. Lu,Z. D. Zhang. Growth of Magnetic Yard-glass Shaped Boron Nitride Nanotubes with Periodic Iron Nanoparticles. Advanced Functional Materials. 2007, 17(16): 3371~3376
    77 K. Watanabe , T. Taniguchi , H. Kanda. Direct-bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nature Materials. 2004, 3(6): 404~409
    78 Y. Kubota,K. Watanabe,O. Tsuda,T. Taniguchi. Deep Ultraviolet Light-emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science. 2007, 317(5840): 932~934
    79 J. Wu,W.-Q. Han,W. Walukiewicz,J. W. Ager,W. Shan,E. E. Haller,A. Zettl. Raman Spectroscopy and Time-resolved Photoluminescence of BN and BxCyNz Nanotubes. Nano Letters. 2004, 4(4): 647~650
    80 C. H. Lee,J. S. Wang,V. K. Kayatsha,J. Y. Huang,Y. K. Yap. Effective Growth of Boron Nitride Nanotubes by Thermal Chemical Vapor Deposition. Nanotechnology. 2008, 19(45): 455605-1~455605-5
    81 J. F. Moulder.Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data.Perkin-Elmer,1992:1~20
    82 V. L. Kuznetsov,I. N. Mazov,A. I. Delidovich,E. D. Obraztsova,A. Loiseau. Thermodynamic Analysis of Nucleation of Boron Nitride Nanotubes on Metal Particles. Physica Status Solidi B-Basic Solid State Physics. 2007, 244(11): 4165~4169
    83 A. Barreiro,S. Hampel,M. H. Rummeli,C. Kramberger,A. Gruneis,K. Biedermann,A. Leonhardt,T. Gemming,B. Buchner,A. Bachtold,T. Pichler. Thermal Decomposition of Ferrocene as a Method for Production of Single-walled Carbon Nanotubes without Additional Carbon Sources. Journal of Physical Chemistry B. 2006, 110(42): 20973~20977
    84 D. Sanchez-Portal,E. Artacho,J. M. Soler,A. Rubio,P. Ordejon. Ab initioStructural, Elastic, and Vibrational Properties of Carbon Nanotubes. Physical Review B. 1999, 59(19): 12678~12688
    85 V. L. Kuznetsov,A. N. Usoltseva,A. L. Chuvilin,E. D. Obraztsova,J.-M. Bonard. Thermodynamic Analysis of Nucleation of Carbon Deposits on Metal Particles and Its Implications for the Growth of Carbon Nanotubes. Physical Review B. 2001, 64(23): 235401-1~235401-7
    86 L. Wirtz , A. Marini , A. Rubio. Excitons in Boron Nitride Nanotubes: Dimensionality Effects. Physical Review Letters. 2006, 96(12): 126104-1~126104-4
    87 R. Arenal,O. Stéphan,M. Kociak,D. Taverna,A. Loiseau,C. Colliex. Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-walled and Multiwalled Nanotubes. Physical Review Letters. 2005, 95(12): 127601-1~127601-4
    88 C. C. Tang,Y. Bando,C. Y. Zhi,D. Golberg. Boron-oxygen Luminescence Centres in Boron-nitrogen Systems. Chemical Communications. 2007, (44): 4599~4601
    89 C. Y. Su,W. Y. Chu,Z. Y. Juang,K. F. Chen,B. M. Cheng,F. R. Chen,K. C. Leou,C. H. Tsai. Large-scale Synthesis of Boron Nitride Nanotubes with Iron-supported Catalysts. Journal of Physical Chemistry C. 2009, 113(33): 14732~14738
    90 A. H. Lu,E. L. Salabas,F. Schuth. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie-international Edition. 2007, 46(8): 1222~1244
    91 B. David,O. Schneeweiss,M. Mashlan,E. Santava,I. Morjan. Low-temperature Magnetic Properties of Fe3C/iron Oxide Nanocomposite. Journal of Magnetism and Magnetic Materials. 2007, 316(2): 422~425
    92 E. P. Sajitha,V. Prasad,S. V. Subramanyam,A. K. Mishra,S. Sarkar,C. Bansal. Size-dependent Magnetic Properties of Iron Carbide Nanoparticles Embedded in a Carbon Matrix. Journal of Physics-Condensed Matter. 2007, 19(4): 046214
    93 C. Y. Zhi,Y. Bando,C. C. Tang,S. Honda,K. Sato,H. Kuwahara,D. Golberg. Purification of Boron Nitride Nanotubes Through Polymer Wrapping. Journal of Physical Chemistry B. 2006, 110(4): 1525~1528
    94 C. Y. Zhi,Y. Bando,C. C. Tang,D. Golberg,R. G. Xie,T. Sekigushi. Phonon Characteristics and Cathodolumininescence of Boron Nitride Nanotubes. Applied Physics Letters. 2005, 86(21): 213110-1~213110-3
    95 C. Zhi,Y. Bando,C. Tang,D. Golberg,R. Xie,T. Sekiguchi. Large-scale Fabrication of Boron Nitride Nanohorn. Applied Physics Letters. 2005, 87(6): 063107-1~063107-3
    96 Z.-G. Chen,J. Zou,G. Liu,F. Li,H.-M. Cheng,T. Sekiguchi,M. Gu,X.-D. Yao,L.-Z. Wang,G. Q. Lu. Long Wavelength Emissions of Periodic Yard-glass Shaped Boron Nitride Nanotubes. Applied Physics Letters. 2009, 94(2): 023105-1~023105-3
    97 S. Xu,Y. Fan,J. Luo,L. Zhang,W. Wang,B. Yao,L. An. Phonon Characteristics and Photoluminescence of Bamboo Structured Silicon-doped Boron Nitride Multiwall Nanotubes. Applied Physics Letters. 2007, 90(1): 013115-1~013115-3
    98 H. Chen,Y. Chen,C. Li,H. Zhang,J. Williams,Y. Liu,Z. Liu,S. Ringer. Eu-doped Boron Nitride Nanotubes as a Nanometer-sized Visible-light Source. Advanced Materials. 2007, 19(14): 1845~1848
    99 Y.-H. Tseng,B.-S. Chiou,C.-C. Peng,L. Ozawa. Spectral Properties of Eu3+-Activated Yttrium Oxysulfide Red Phosphor. Thin Solid Films. 1998, 330(2): 173~177
    100 V. Kuznetsov,A. Usol'tseva,Y. Butenko. Mechanism of Coking on Metal Catalyst Surfaces: I. Thermodynamic Analysis of Nucleation. Kinetics and Catalysis. 2003, 44(5): 726~734
    101张福范.弹性薄板(第二版).科学出版社,1984:1~10
    102 Q. Zhang,W. Wang,J. Goebl,Y. Yin. Self-templated Synthesis of Hollow Nanostructures. Nano Today. 2009, 4(6): 494~507
    103 H. P. Cong,S. H. Yu. Hybrid ZnO-dye Hollow Spheres with New Optical Properties from a Self-assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide. Advanced Functional Materials. 2007, 17(11): 1814~1820
    104 W. W. Wang, Y. J. Zhu, L. X. Yang. ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties. Advanced Functional Materials. 2007, 17(1): 59~64
    105 J. K. Yuan,K. Laubernds,Q. H. Zhang,S. L. Suib. Self-assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres. Journal of the American Chemical Society. 2003, 125(17): 4966~4967
    106 W. M. Zhang,J. S. Hu,Y. G. Guo,S. F. Zheng,L. S. Zhong,W. G. Song,L. J. Wan. Tin-nanoparticles Encapsulated in Elastic Hollow Carbon Spheres forHigh-performance Anode Material in Lithium-ion Batteries. Advanced Materials. 2008, 20(6): 1160~1165
    107 Y. F. Zhu,J. L. Shi,W. H. Shen,X. P. Dong,J. W. Feng,M. L. Ruan,Y. S. Li. Stimuli-responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/polyelectrolyte Multilayer Core-shell Structure. Angewandte Chemie-international Edition. 2005, 44(32): 5083~5087
    108 P. R. Leduc,M. S. Wong,P. M. Ferreira,R. E. Groff,K. Haslinger,M. P. Koonce,W. Y. Lee,J. C. Love,J. A. McCammon,N. A. Monteiro-Riviere,V. M. Rotello,G. W. Rubloff,R. Westervelt,M. Yoda. Towards an In Vivo Biologically Inspired Nanofactory. Nature Nanotechnology. 2007, 2(1): 3~7
    109 A. Dudia,A. Kocer,V. Subramaniam,J. S. Kanger. Biofunctionalized Lipid-polymer Hybrid Nanocontainers with Controlled Permeability. Nano Letters. 2008, 8(4): 1105~1110
    110 T. Shimizu. Self-assembled Organic Nanotubes: Toward Attoliter Chemistry. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(8): 2601~2611
    111 P. Anzenbacher,M. A. Palacios. Polymer Nanofibre Junctions of Attolitre Volume Serve as Zeptomole-scale Chemical Reactors. Nature Chemistry. 2009, 1(1): 80~86
    112 Q. H. Yang,D. F. Han,H. Q. Yang,C. Li. Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry-an Asian Journal. 2008, 3(8-9): 1214~1229
    113 D. Golberg,Y. Bando,M. Mitome,K. Fushimi,C. Tang. Boron Nitride Nanotubes as Nanocrucibles for Morphology and Phase Transformations in Encapsulated Nanowires of the Mg-O System. Acta Materialia. 2004, 52(11): 3295~3303
    114 J. G. Wang,Q. Xiao,H. J. Zhou,P. C. Sun,Z. Y. Yuan,B. H. Li,D. T. Ding,A. C. Shi,T. H. Chen. Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-assembly. Advanced Materials. 2006, 18(24): 3284~3288
    115 Q. Zhang,T. R. Zhang,J. P. Ge,Y. D. Yin. Permeable Silica Shell Through Surface-protected Etching. Nano Letters. 2008, 8(9): 2867~2871
    116 W. S. Wang,L. Zhen,C. Y. Xu,W. Z. Shao. Aqueous Solution Synthesis of Cd(OH)2 Hollow microspheres via Ostwald Ripening and Their Conversion to CdO Hollow Microspheres. Journal of Physical Chemistry C. 2008, 112(37): 14360~14366
    117 H. C. Zeng. Synthetic Architecture of Interior Space for InorganicNanostructures. Journal of Materials Chemistry. 2006, 16(7): 649~662
    118 Y. G. Sun,B. T. Mayers,Y. N. Xia. Template-engaged Replacement Reaction: A One-step Approach to the Large-scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters. 2002, 2(5): 481~485
    119 L. Ge,X. Y. Jing,J. Wang,S. Jamil,Q. Liu,D. L. Song,J. Wang,Y. Xie,P. P. Yang,M. L. Zhang. Ionic Liquid-assisted Synthesis of CuS Nest like Hollow Spheres Assembled by Microflakes Using an Oil Water Interface Route. Crystal Growth & Design. 2010, 10(4): 1688~1692
    120 Y. C. Qiu,W. Chen,S. H. Yang,B. Zhang,X. X. Zhang,Y. C. Zhong,K. S. Wong. Hierarchical Hollow Spheres of ZnO and Zn1-xCoxO: Directed Assembly and Room-temperature Ferromagnetism. Crystal Growth & Design. 2010, 10(1): 177~183
    121 Z. J. Yang,D. Q. Han,D. L. Ma,H. Liang,L. Liu,Y. Z. Yang. Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-octahedra. Crystal Growth & Design. 2010, 10(1): 291~295
    122 L. Zhang,X. F. Cao,Y. L. Ma,X. T. Chen,Z. L. Xue. Microwave-assisted Solution-phase Preparation and Growth Mechanism of FeMoO4 Hierarchical Hollow Spheres. Crystengcomm. 2010, 12(1): 207~210
    123 T. Matsuda. Stability to Moisture for Chemically Vapour-deposited Boron Nitride Journal of Materials Science. 1988, 24: 2353~2357
    124 C. Guimon,D. Gonbeau,G. Pfister-Guillouzo,O. Dugne,A. Guette,R. Naslain,M. Lahaye. XPS Study of BN Thin Films Deposited by CVD on SiC Plane Substrates. Surface and Interface Analysis. 1990, 16(1~12): 440~445
    125 D. J. Joyner,D. M. Hercules. Chemical Bonding and Electronic Structure of B2O3, H3BO3, and BN: An ESCA, Auger, SIMS, and SXS Study. The Journal of Chemical Physics. 1980, 72(2): 1095~1108
    126 R. J. H. Clark,T. J. Dines. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods (27). Angewandte Chemie International Edition in English. 1986, 25(2): 131~158
    127 E. Smith,G. Dent.Modern Raman Spectroscopy: A Practical Approach.John Wiley & Sons,2005:50~100
    128 X. Li,Z. Huang. Unveiling the Formation Mechanism of Pseudo-single-crystal Aragonite Platelets in Nacre. Physical Review Letters. 2009, 102(7): 075502-1~075502-4
    129 C. Sanchez,H. Arribart,M. M. G. Guille. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems. Nature Materials.2005, 4(4): 277~288
    130 D. Losic , J. G. Mitchell , N. H. Voelcker. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials. 2009, 21(29): 2947~2958
    131 F. Xu,M. Dai,Y. N. Lu,L. T. Sun. Hierarchical ZnO Nanowire-nanosheet Architectures for High Power Conversion Efficiency in Dye-sensitized Solar Cells. Journal of Physical Chemistry C. 2010, 114(6): 2776~2782
    132 Z. L. Wang. Nanostructures of Zinc Oxide. Materials Today. 2004, 7(6): 26~33
    133 Q. Z. Wu,X. Chen,P. Zhang,Y. C. Han,X. M. Chen,Y. H. Yan,S. P. Li. Amino Acid-assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities. Crystal Growth & Design. 2008, 8(8): 3010~3018
    134 H. Xue,Z. H. Li,H. Dong,L. Wu,X. X. Wang,X. Z. Fu. 3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal Syntheses, Formation Mechanisms, and Application in Aqueous-Phase Photocatalysis. Crystal Growth & Design. 2008, 8(12): 4469~4475
    135 M. Yang,H. P. You,Y. H. Zheng,K. Liu,G. Jia,Y. H. Song,Y. J. Huang,L. H. Zhang,H. J. Zhang. Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere CePO4 Hierarchical Architectures. Inorganic Chemistry. 2009, 48(24): 11559~11565
    136 J. S. Na,B. Gong,G. Scarel,G. N. Parsons. Surface Polarity Shielding and Hierarchical ZnO Nano-architectures Produced Using Sequential Hydrothermal Crystal Synthesis and Thin Film Atomic Layer Deposition. Acs Nano. 2009, 3(10): 3191~3199
    137 F. Lu,W. P. Cai,Y. G. Zhang. ZnO Hierarchical Micro/nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance. Advanced Functional Materials. 2008, 18(7): 1047~1056
    138 H. G. Zhang,Q. S. Zhu,Y. Zhang,Y. Wang,L. Zhao,B. Yu. One-pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-composed Porous Multishell and Their Gas-sensing Properties. Advanced Functional Materials. 2007, 17(15): 2766~2771
    139 L. Ye,W. Guo,Y. Yang,Y. F. Du,Y. Xie. Directing the Architecture of Various MoS2 Hierarchical Hollow Cages Through the Controllable Synthesis of Surfactant/molybdate Composite Precursors. Chemistry of Materials. 2007, 19(25): 6331~6337
    140 Y. J. Zhang,S. W. Or,X. L. Wang,T. Y. Cui,W. B. Cui,Y. Zhang,Z. D.Zhang. Hydrothermal Synthesis of Three-dimensional Hierarchical CuO Butterfly-like Architectures. European Journal Of Inorganic Chemistry. 2009, (1): 168~173
    141 Y. B. Li,M. J. Zheng,L. Ma,M. Zhong,W. Z. Shen. Fabrication of Hierarchical ZnO Architectures and Their Superhydrophobic Surfaces with Strong Adhesive Force. Inorganic Chemistry. 2008, 47(8): 3140~3143
    142 R. S. Yuan,X. Z. Fu,X. C. Wang,P. Liu,L. Wu,Y. M. Xu,X. X. Wang,Z. Y. Wang. Template Synthesis of Hollow Metal Oxide Fibers with Hierarchical Architecture. Chemistry of Materials. 2006, 18(19): 4700~4705
    143 Y. T. Yu,H. B. Qiu,X. W. Wu,H. C. Li,Y. S. Li,Y. Sakamoto,Y. Inoue,K. Sakamoto,O. Terasaki,S. N. Che. Synthesis and Characterization of Silica Nanotubes with Radially Oriented Mesopores. Advanced Functional Materials. 2008, 18(4): 541~550
    144 K. Valle,P. Belleville,F. Pereira,C. Sanchez. Hierarchically Structured Transparent Hybrid Membranes by In Situ Growth of Mesostructured Organosilica in Host Polymer. Nature Materials. 2006, 5(2): 107~111
    145 L. Yang,P. W. May,Y. Huang,L. Yin. Hierarchical Architecture of Self-assembled Carbon Nitride Nanocrystals. Journal of Materials Chemistry. 2007, 17(13): 1255~1257
    146 W. S. Wang,L. Zhen,C. Y. Xu,L. Yang,W. Z. Shao. Room Temperature Synthesis of Hierarchical SrCO3 Architectures by a Surfactant-free Aqueous Solution Route. Crystal Growth & Design. 2008, 8(5): 1734~1740
    147 Y. Zhao,Y. Xie,S. Yan,Y. W. Dong. Photolysis-induced Mineralization of Self-assembled Witherite Hierarchical Architectures. Crystal Growth & Design. 2009, 9(7): 3072~3078
    148 F.-F. Cao,Y.-G. Guo,S.-F. Zheng,X.-L. Wu,L.-Y. Jiang,R.-R. Bi,L.-J. Wan , J. Maier. Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. Chemistry of Materials. 2010, 22(5): 1908~1914
    149 M. R. Gao,W. H. Xu,L. B. Luo,Y. J. Zhan,S. H. Yu. Coaxial Metal Nano-/Microcables with Isolating Sheath: Synthetic Methodology and Their Application as Interconnects. Advanced Materials. 2010, 22(17): 1977~1981
    150 L. J. Lauhon,M. S. Gudiksen,C. L. Wang,C. M. Lieber. Epitaxial Core-shell and Core-multishell Nanowire Heterostructures. Nature. 2002, 420(6911): 57~61
    151 W. H. Xu,S. H. Yu. Conducting Performance of Individual Ag@C CoaxialNanocables: Ideal Building Blocks for Interconnects in Nanoscale Devices. Small. 2009, 5(4): 460~465
    152 X. Fan,X. M. Meng,X. H. Zhang,M. L. Zhang,J. S. Jie,W. J. Zhang,C. S. Lee,S. T. Lee. Formation and Photoelectric Properties of Periodically Twinned ZnSe/SiO_2 Nanocables. The Journal of Physical Chemistry C. 2008,
    113(3): 834~838
    153 Y. Wu,J. Xiang,C. Yang,W. Lu,C. M. Lieber. Single-crystal Metallic Nanowires and Metal/semiconductor Nanowire Heterostructures. Nature. 2004, 430(6995): 61~65
    154 C. Y. Wang , N. W. Gong , L. J. Chen. High-sensitivity Solid-state Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method. Advanced Materials. 2008, 20(24): 4789~4792
    155 H. Wang,L. Lin,W. Yang,Z. Xie,L. An. Preferred Orientation of SiC Nanowires Induced by Substrates. The Journal of Physical Chemistry C. 2010, 114(6): 2591~2594
    156 G. Z. Yang,H. Cui,Y. Sun,L. Gong,J. Chen,D. Jiang,C. X. Wang. Simple Catalyst-free Method to the Synthesis ofβ-SiC Nanowires and Their Field Emission Properties. The Journal of Physical Chemistry C. 2009, 113(36): 15969~15973
    157 M. Bechelany,A. Brioude,P. Stadelmann,G. Ferro,D. Cornu,P. Miele. Very Long SiC-based Coaxial nanocables with Tunable Chemical Composition. Advanced Functional Materials. 2007, 17(16): 3251~3257
    158 Y. B. Li,A. Sinitskii,J. M. Tour. Electronic Two-terminal Bistable Graphitic Memories. Nature Materials. 2008, 7(12): 966~971
    159 X. J. Wang,J. F. Tian,L. H. Bao,C. Hui,T. Z. Yang,C. M. Shen,H. J. Gao , F. Liu , N. S. Xu. Large Scale SiC/SiOx Nanocables: Synthesis, Photoluminescence, and Field Emission Properties. Journal of Applied Physics. 2007, 102(1): 014309
    160 X. M. Liu,K. F. Yao. Large-scale Synthesis and Photoluminescence Properties of SiC/SiOx Nanocables. Nanotechnology. 2005, 16(12): 2932~2935
    161 W. Zhou,L. Yan,Y. Wang,Y. Zhang. SiC Nanowires: A Photocatalytic Nanomaterial. Applied Physics Letters. 2006, 89(1): 013105-1~013105-3
    162 H.-F. Zhang,C.-M. Wang,L.-S. Wang. Helical Crystalline SiC/SiO_2 Core?Shell Nanowires. Nano Letters. 2002, 2(9): 941~944
    163 Y. Ryu,Y. Tak,K. Yong. Direct Growth of Core-shell SiC-SiO_2 Nanowires and Field Emission Characteristics. Nanotechnology. 2005, 16(7): S370~S374
    164 H. Y. Kim,S. Y. Bae,N. S. Kim,J. Park. Fabrication of SiC-C Coaxial Nanocables: Thickness Control of C Outer Layers. Chemical Communications. 2003, (20): 2634~2635
    165 C. C. Tang,Y. Bando,T. Sato,K. Kurashima,X. X. Ding,Z. W. Gan,S. R. Qi. SiC and Its Bicrystalline Nanowires with Uniform BN Coatings. Applied Physics Letters. 2002, 80(24): 4641~4643
    166 Y. Li,P. Dorozhkin,Y. Bando,D. Golberg. Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes. Advanced Materials. 2005, 17(5): 545~549
    167 W. Yang,H. Araki,C. Tang,S. Thaveethavorn,A. Kohyama,H. Suzuki,T. Noda. Single-crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites. Advanced Materials. 2005, 17(12): 1519~1523
    168 Y. Zhang,K. Suenaga,C. Colliex,S. Iijima. Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon. Science. 1998, 281(5379): 973~975
    169 Y. Li,Y. Bando,D. Golberg. SiC–SiO_2–C Coaxial Nanocables and Chains of Carbon Nanotube–SiC Heterojunctions. Advanced Materials. 2004, 16(1): 93~96
    170 X. D. Zhang,X. X. Huang,G. W. Wen,X. Geng,J. D. Zhu,T. Zhang,H. W. Bai. Novel SiOC Nanocomposites for High-yield Preparation of Ultra-large-scale SiC Nanowires. Nanotechnology. 2010, 21(38): 385601-1~385601-8
    171 L. X. Lin,Y. Zheng,Z. H. Li,K. M. Wei. Synthesis of Novel Acetabuliform Boron Nitride Nanoparticles with High Surface Area. Scripta Materialia. 2008, 59(10): 1151~1154
    172 Z. J. Li,W. D. Gao,A. A. Meng,Z. D. Geng,L. Gao. Large-scale Synthesis and Raman and Photoluminescence Properties of Single Crystalline beta-SiC Nanowires Periodically Wrapped by Amorphous SiO_2 Nanospheres 2. Journal of Physical Chemistry C. 2009, 113(1): 91~96
    173 R. Kim,W. P. Qin,G. D. Wei,G. F. Wang,L. L. Wang,D. S. Zhang,K. Z. Zheng,N. Liu. A Simple Synthesis of Large-scale SiC-SiO_2 Nanocables by Using Thermal Decomposition of Methanol: Structure, FTIR, Raman and PL Characterization. Journal of Crystal Growth. 2009, 311(18): 4301~4305
    174 A. Sagar,C. D. Lee,R. M. Feenstra,C. K. Inoki,T. S. Kuan. Morphology and Effects of Hydrogen Etching of Porous SiC. Journal of Applied Physics. 2002, 92(7): 4070~4074
    175 S. Dogan,D. Johnstone,F. Yun,S. Sabuktagin,J. Leach,A. A. Baski,H. Morkoc,G. Li,B. Ganguly. The Effect of Hydrogen Etching on 6H-SiC Studied by Temperature-dependent Current-voltage and Atomic Force Microscopy. Applied Physics Letters. 2004, 85(9): 1547~1549
    176 E. J. Opila,J. L. Smialek,R. C. Robinson,D. S. Fox,N. S. Jacobson. SiC Recession Caused by SiO_2 Scale Volatility under Combustion Conditions: II, Thermodynamics and Gaseous-diffusion Model. Journal of the American Ceramic Society. 1999, 82(7): 1826~1834
    177 B. Ozturk,R. J. Fruehan. The Rate of Formation of Sio by the Reaction of Co or H-2 with Silica and Silicate Slags. Metallurgical Transactions B-Process Metallurgy. 1985, 16(4): 801~806
    178 J. Y. Fan,X. L. Wu,P. K. Chu. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Progress in Materials Science. 2006, 51(8): 983~1031
    179 H.-K. Seong,H.-J. Choi,S.-K. Lee,J.-I. Lee,D.-J. Choi. Optical and Electrical Transport Properties in Silicon Carbide Nanowires. Applied Physics Letters. 2004, 85(7): 1256~1258
    180 T. Gao,Q. Li,T. Wang. Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-type ZnO Nanorod/CdS Nanoparticle Composites. Chemistry of Materials. 2005, 17(4): 887~892
    181 L. Y. Chen,Y. L. Gu,L. Shi,Z. H. Yang,J. H. Ma,Y. T. Qian. A Room-temperature Approach to Boron Nitride Hollow Spheres. Solid State Communications. 2004, 130(8): 537~540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700