多孔金属氧化物半导体材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有较高的孔隙率和比表面积,多孔金属氧化物半导体材料如ZnO、SnO2、 MnO等因其优异的物理化学性质在气敏传感器、锂离子电池、光催化剂及太阳能电池等领域具有广泛的应用前景。对于表面电阻控制型气敏传感器,具有多孔结构的半导体材料可以为检测气体和半导体之间的反应提供更多的接触面积,这有利于提高器件的灵敏度。同时多孔结构还可以为气体在半导体层的扩散提供通道,有利于提高响应和恢复速率。对于锂离子电池电极而言,多孔结构有助于促进活性物质与锂离子之间的反应,对活性物质体积变化起到缓冲作用,从而提高材料的电化学性能。由此可见,氧化物半导体材料的结构和比表面积对其气敏和电化学性能具有很大影响。因此,设计和合成具有一定形貌的多孔氧化物半导体材料成为目前半导体材料研究领域的热点之一。
     本论文合成了具有多孔结构的ZnO、SnO2和MnO半导体材料,对合成机理和相关性能进行了探讨,具体研究内容如下:
     (1)以乙酸锌和碳酸铵为主要原料,采用水热法制备了Zn5(CO3)2(OH)6前驱体,通过煅烧前驱体制备了三维多孔ZnO鸟巢型结构。该鸟巢型结构具有很好的分散性和均匀性,尺寸约为1-3μm,比表面积为36.4m2g-1,每一个鸟巢型结构由二维纳米片状多孔ZnO组成,二维纳米片的厚度约为20nm,其表面具有许多不规则的孔隙结构。这种多孔鸟巢型结构为半导体材料和检测气体之间反应提供更多的反应场所,此外,鸟巢型多孔结构还可以为气体在半导体的吸附脱附提供通道。对制备的鸟巢型多孔ZnO材料进行气敏性能测试,结果表明三维鸟巢型多孔ZnO对乙醇和丙酮灵敏度高于二维纳米片状结构多孔ZnO材料。
     (2)以四氯化锡为主要原料,无水甲醇为溶剂,聚乙烯吡咯烷酮(PVP)为表面活性剂,采用溶剂热工艺制备了前驱体,通过对前驱体热处理制备出Sn02介孔球。前驱体和分解后产物的形貌和尺寸一致,所制备的Sn02介孔球具有很好的分散性和均匀性,直径约为500-700nm,比表面积为78.2m2g-1。对Sn02介孔球的生长机理进行了分析,对比实验表明,反应体系中表面活性剂PVP对Sn02介孔球的物相和孔结构没有明显影响,但对产物的分散性和均匀性起到关键作用。对SnO2介孔球进行气敏性能测试,结果表明SnO2介孔球对CO和H2气敏性能优异,灵敏度高于商业Sn02纳米颗粒。
     (3)以氯金酸为原料,对SnO2介孔球进行修饰,制备了Au修饰的SnO2介孔球。样品的整体形貌和尺寸在修饰前后没有发生明显的变化,比表面积由78.2m2g-1降为33.6m2g-1。测试结果表明,Au纳米颗粒沉积在SnO2表面和孔隙中,尺寸约为5nm。对Au修饰SnO2和SnO2介孔球的气敏性能进行测试,Au纳米颗粒修饰后样品的气敏性能在灵敏度和响应速率方面都有很大的提高。一方面是由于SnO2介孔球可以为气体和氧离子之间的反应提供更多的场所,另一方面是由于Au纳米颗粒对检测气体和氧离子之间的反应起到催化作用。
     (4)以乙酸锰和碳酸铵为原料,以PSS为表面活性剂,Na2SO4为静电稳定剂,甘氨酸为络合剂,室温条件下采用化学沉淀的方法制备了MnCO3前驱体,通过煅烧MnCO3前驱体制备了多孔Mn2O3微米球,再以吡咯为碳源,在真空条件下对Mn2O3多孔微球进行包碳处理,合成了MnO@C多孔微球。对比实验结果表明添加剂对MnCO3前驱体的分散性和均匀性有很大影响。对所制备的Mn203和MnO@C微球进行电化学性能测试,结果显示MnO@C的循环性能明显优于Mn2O3多孔微球。对于MnO@C电极材料,循环使用60次后其可逆容量依然可以保持在625mAhg-1而Mn203样品在循环20次后即降到355mAh g-1,此外,MnO@C还表现出良好的倍率性能,在电流密度为200,400and800mA g-1时,其可逆容量分别为560,422and308mAh g-1。
With the advantages of high porosity and specific surface area, porous metal oxide semiconductors usually exhibit unique physical and chemical properties different from solid structures, which make them have potential applications in various areas such as photocatalysts, gas sensors, Li-ion battery electrodes, solar cells and so on. For surface-resistance controlled type gas sensors, the voids and interspaces exiting among porous semiconductors facilitate the gas adsorption and desorption, and porous structures provided large contacting surface area for electrons, oxygen and target gas molecules. In addition, the network of interconnected pores and voids in sensor films fabricated from porous semiconductor provide abundant channels for gas diffusion and mass transport. Thus, porous structures with high porosity and large surface area are critically important to obtain superior gas sensing performance. For lithium ion batteries anode material, porous structures existing in semiconductor usually facilitate the diffusion of Li+and accommodate volume change. Thus, porous metal oxide semiconductors have attracted remarkable attentions.
     In this work, several mesoporous n-type metal oxide semiconductors have been synthesized successfully, e.g. ZnO, SnO2and MnO. The growth mechanisms have been proposed based on experimental evidence, and the related properties have been tested.
     The main content of this thesis is as follows:
     (1) Nestlike3D ZnO porous structures with size of1.0-3.0μm have been synthesized through annealing the zinc hydroxide carbonate precursor, which was obtained by a one-pot hydrothermal process with the assistance of glycine, Na2SO4, and polyvinyl pyrrolidone (PVP). The nestlike3D ZnO structures are built of2D nanoflakes with the thickness of ca.20nm, which exhibit the nanoporous wormhole-like characteristic. The measured surface area is36.4m2g-1and the pore size is ca.3-40nm. The unique nestlike3D ZnO porous structures provided large contacting surface area for electrons, oxygen and target gas molecules, and abundant channels for gas diffusion and mass transport. Gas sensing tests showed that the nestlike3D ZnO porous structures exhibit excellent gas sensing performances such as high sensitivity and fast response and recovery speed, suggesting the potential application as advanced gas sensing materials.
     (2) Mesoporous tin oxide (SnO2) spheres with a size of500-700nm have been successfully synthesized through annealing a tin hydroxide precursor was obtained by a one-pot solvothermal process from a methanol system containing the surfactant polyvinyl pyrrolidone (PVP). Experimental studies revealed that polyvinyl pyrrolidone plays a pivotal role in controlling the size and agglomeration of mesoporous spheres. The mesoporous SnO2spheres with a surface area of78.2m2g-1and an average pore size of ca.10nm are monodispersed and the mesoporous structure can be maintained even after annealing at500℃for2h in air. Gas sensing tests showed that the SnO2mesoporous spheres exhibit high sensitivity to H2, enhanced response to CO and also fast response and recovery rates, suggesting potential application as an advanced gas sensing material.
     (3) Au decorated mesoporous SnO2spheres with a size range of400-700nm have been synthesized for gas sensing. Specifically, the mesoporous SnO2spheres were fabricated through a solvothermal route followed by a thermal treatment process. The surface area of the mesoporous SnO2spheres is78.2m2g-1and the pore size is ca.10nm. After being decorated by Au, the Au nanoparticles with sizes of ca.5nm were deposited on the surface and the inner wall of pores. Gas sensing tests showed that the Au decorated SnO2mesoporous spheres exhibited superior gas sensing performances to CO and H2in terms of high sensitivity and fast response and recovery speed, mainly attributed to the facts that the SnO2mesoporous structure provides a high reaction surface area and abundant mesochannels for the probe gas and oxygen, and Au nanoparticles act as the catalyst to improve the reaction rate of the probe gas molecules with the oxygen ion.
     (4) Porous manganese oxide (Mn2O3) microspheres with a narrow size distribution have been successfully synthesized by the decomposition of a MnCO3precursor, which was obtained by a facile process with the assistance of glycine, Na2SO4and poly(sodium-p-styrenesulfonate)(PSS). Experimental evidence reveals that the additive agents are beneficial to control the size and agglomeration of microspheres. The growth mechanism has been proposed on the basis of control experiments. The porous MnO microspheres with carbon coating (MnO@C) were generated after a carbonization process using pyrrole as a carbon source. Electrochemical results showed that the as-prepared MnO@C achieves a reversible capacity of625mAh g-1after60cycles at a current density of100mA g-1and capacities of560,422and308mAh g"1at current densities of200,400and800mA g-1, respectively. Compared with porous Mn2O3, the enhanced cycling and rate performances are mainly attributed to the carbon coating, which could efficiently buffer the volume change during the lithiation/delithiation and improve the electronic conductivity among MnO particles.
引文
1 Bae Y.-S.; Snurr R. Q., Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed.2011,50(49):11586-11596.
    2 Seo J. S.; Whang D.; Lee H.; Jun S. I.; Oh J.; Jeon Y. J.; Kim K., A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000,404(6781),982-986.
    3 Rowsell J. L. G.; Yaghi O. M., Metal-organic frameworks:a new class of porous materials. Micropor. Mesopor. Mat.200473(1):3-14.
    4 Xia K.; Gao Q.; Jiang J.; Hu J., Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon,2008,46(13):1-718-1726.
    5 Vix-Guterl C.; Frackowiak F.; Jurewicz K.; Friebe M.; Parmentier J.; Beguin F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005,43(6):1293-1302.
    6 Stein A.; Wang Z.; Fierke M. A., Functionalization of porous carbon materials with designed pore architecture. Adv. Mater.2009,21(3):265-293.
    7 Wang D.-W.; Li F.; Liu M.; Lu G Q.; Cheng H.-M.,3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed.2008, 47(2),373-376.
    8 Kanemitsu Y, Light emission from porous silicon and related materials. Phys. Rep.1995,263 (1): 1-91.
    9 Ge M.; Fang X.; Rong J.; Zhou C., Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2003,24 (42):422001.
    10 Anglin E. J.; Cheng L.; Freeman W. R.; Sailor M. J., Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev.2008,60(11):1266-1277.
    11 Meng, Q.-B.; Fu C.-H.; Einaga Y; Gu Z.-Z.; Fujishima A.; Sato O., Assembly of highly ordered three-dimensional porous structure with Nanocrystalline TiO2 Semiconductors. Chem. Mater.2002, 14(1):83-88.
    12 Bayati M. R.; Golestani-Fard F.; Moshfegh A. Z.; Molaei R., A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current. Mater. Chem. Phys.2011,128 (3):427-432.
    13 Sayama K.; Hara K.; Ohga Y.; Shinpou A.; Suga S.; Arakawa H., Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes. New J. Chem.2001,25(2):200-202.
    14周小岩.纳米氧化锌的制备及其气敏、光催化性能研究.(博士论文)青岛:中国石油大学(华东),2011.
    15 Li J.; Fan H.; Jia X., Multilayered ZnO nanosheets with 3D porous architectures:synthesis and gas sensing application. J. Phys. Chem. C 2010,114(35):14684-14691.
    16 Wang C.; Yin L.; Zhang L.; Xiang D.; Gao R., Metal oxide gas sensor:Sensitivity and influenceing factors. Sensors 2010,10(3):2088-2106.
    17 Korotcenkov G, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensor. Mat. Sci. Eng. R 2008,61(1-6):1-39.
    18 Kanan S.M.; El-Kadri O. M.; Abu-Yousef I. A.; Kanan M. C., Sensors 2009,9(10):8158-8196.
    19 Sun Y.-F.; Liu S.-B.; Meng F.-L.; Liu J.-Y; Jin Z.; Kong L.-T.; Liu J.-H., Metal oxide nanostructures and their gas sensing properties:A Review. Sensors 2012,12(3):2610-2631.
    20 Xu C.; Tamaki, J.; Miura, N.; Yamazoe, N., Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 1991,3(2):147-155.
    21 Lu F.; Liu Y; Dong M.; Wang X., Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sens. Actuators, B 2000,66(1-3):225-227.
    22 Ansari S. G; Boroojerdian P.; Sainkar S. R.; Karekar R. N.; Aiyer R. C.; Kulkarni S. K., Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films.1997, 295(1-2):271-276.
    23 Rothschild A.; Komem Y, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensots.J. Appl. Phys.2004,95(11):6374-6380.
    24 Liu H.; Gong S.; Hu Y.; Liu J.; Zhou D., Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors. Sens. Actuators, B:Chemical 2009,140(1):190-195.
    25 Li G-J.; Zhang X.-H.; Kawi S., Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens. Actuators, B 1999,60(1):64-70.
    26 Rumyantseva M. N.; Gaskov A. M.; Rosman N.; Pagnier T.; Morante J. R., Raman surface vibration modes in nanocrystalline SnO2:Correlation with gas sensor performances. Chem. Mater.2005, 17(4),893-901.
    27 Zhang J.; Gao L., Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method. Mater. Res. Bull.2004,39(14-15):2249-2255.
    28 Sakai G; Matsunaga N.; Shimanoe K.; Yamazoe N., Theory of gas-diffusion controlled sensitivity forthin film semiconductor gas sensor. Sens. Actuators. B 2001,80(2):125-131.
    29 Matsunaga N.; Sakai G; Shimanoe K.; Yamazoe N., Formulation of gas diffusion dynamics forthin film semiconductor gas sensor based on simple reaction-diffusion equation. Sens. Actuators, B 2003, 96(1-2); 226-233.
    30 Qi Q.; Zhang T.; Zheng X.; Fan H.; Liu L.; Wang R.; Zeng Y, Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sens. Actuators, B 2008,134(l):36-42.
    31 Korotcenkov G; brinzari V; Schwank J.; Dibattista M.;Vasiliev A., Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens. Actuators, B 2001,77 (1):244-252.
    32 Moona S. E.; Lee H.-K.; Choi N.-J.; Lee J.; Choi C.A.; Yang W. S.; Kim J.; Jong J. J.; Yoo D.-J., Low power consumption micro G2H5OH gas sensor based on micro-heater and screen printing technique. Sens. Actuators, B 2013,187,598-603.
    33 Park Y.-H.; Choi K.-J.; Bae J.-Y; Yoon S.-K.; Jang H.-L.; Lee C.-S., Development of a detection sensor for mixed trimethylamine and ammonia gas. J. Ind. Eng. Chem.2013,19(5):1703-1707.
    34 Gebicki J.; Kloskowski A.; Chrzanowski W., Prototype of electrochemical sensor for measurements of volatile organic compounds in gases. Sens. Actuators,B2013,177,1173-1179.
    35 Yadav B. C.; Singh S.; Yadav A., Nanonails structured ferric oxide thick film as room temperature liquefied petroleumgas (LPG) sensor. Appl. Surf.Sci.2011,257(6):1960-1966.
    36 Mendoza F.; Hernandez D. M.; Makarov V; Febus E.; Weiner B. R.; Morell G, Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sens. Actuators, B 2014,190,227-233.
    37 Hussain S. T.; Bakar S. A.; Saim B.; Muhammad B., Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application. Appl. Surf. Sci.2012,258 (24):9610-9616.
    38 Stoychev T. T.; Vallejos S.; Pavelko R. G; Popov V. S.; Sevastyanov V G; Correig X., Aerosol-assisted CVD of SnO2 thin films for gas-sensor applications. Chem. Vap. Deposition 2011, 17(7-9):247-252.
    39 Lee Y. C.; Huang H.; Tan O. K.; Tse M. S., Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuators, B 2008,132(1):239-242.
    40 Madler L.; Roessler A.; Pratsinis S. E.; Sahm T.; Gurlo A.; Barsan N.; Weimar U., Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators, B 2006,114(1):283-295.
    41 Mariappan R.; Ponnuswamy V; Suresh R.; Suresh P.; Bose A. C.; Ragavendar M., Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique. J. Alloys Compd.2014,582,387-391.
    42 Mariappan R.; Ponnuswamy V.; Ragavendar M., Influence of molar concentration on the physical properties of nebulizer-sprayed ZnO thin films for ammonia gas sensor. Mater. Sci. Semicond. Process. 2013,16(5):1328-1335.
    43 Hazrab A.; Dasa S.; Kanungo J.; Sarkar C. K.; Basu S., Studies on a resistive gas sensor based on sol-gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators,B2013, 183,87-95.
    44 Aroutiounian V. M.; Adamyan A. Z.; Khachaturyan E. A.; Adamyan Z. N.; Hernadib K.; Pallai Z.; Nemeth Z.; Forro L.; Magrez A.; Horvath E.; Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors. Sens. Actuators,B2013,177,308-315.
    45 Renard L.; Babot O.; Saadaoui H.; Fuess H.; Joachim Brotz, Gurlo A.; Arveux E.; Klein A.; Toupance T., Nanoscaled tin dioxide films processed from organotin-based hybrid materials:an organometallic route toward metal oxide gas sensors. Nanoscale 2012,4(21):6806-6813.
    46 Shen Y.; Yamazaki T.; Liu Z.; Jin C.; Kikuta T.; Nakatani N., Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature. Thin Solid Films 2008,516(15):5111-5117.
    47 Jin C.; Yamazaki T.; Ito K..; Kikuta T.; Nakatani N., H2S sensing property of porous SnO2 sputtered films coated withvarious doping films. Vacinim 2006,80 (7):723-725.
    48 Triroj N.; Jaroenapibal P.; Beresford R., Gas-assisted focused ion beam fabrication of gold nanoelectrode arrays in electron-beam evaporated alumina films for microfluidic electrochemical sensors. Sens. Actuators,B2013,187,455-460.
    49 Iizuka K.; Kambara M.; Yoshida T., Highly sensitive SnO2 porous film gas sensors fabricated by plasma spray physical vapor deposition. Sens. Actuators,B2012,173,455-461.
    50 Choudhury S.; Betty C. A.; Girija K. G; Kulshreshtha S. K. Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors. Appl. Phys. Lett.2006,89 (7):071914.
    51 Choudhury S.; Betty C. A.; Girija K. G, On the preparation of uItrath in tin dioxide by Langmuir-Blodgett films deposition. Thin Solid Films 2008,517 (2):923-928.
    52 Betty C. A.; Choudhury S.; Girija K. G, Reliability studies ofhighly sensitive and specific multi-gas sensor based on nanocrystalline SnO2 film. Sens. Actuators, B:Chemical 2014,193,484-491.
    53 Lee J.-H.; Kang W.-S.; Najeeba C. K.; Choi B.-S., Choi S.-W.; Lee H. J.; Lee S. S.; Kim J.-H., A hydrogen gas sensor using single-walled carbon nanotube Langmuir-Blodgett films decorated with palladium nanoparticles. Sens. Actuators, B 2013,188,169-175.
    54 Glancane G;Valli L, State of art in porphyrin Langmuir-Blodgett films as chemical sensors. Adv. Colloid Interface Sci.2012,171-172,17-35.
    55 Zhang J.; Wang S.; Xu M.; Wang Y; Zhu B.; Zhang S.; Huang W.; Wu S., Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des.2009,9(8):3532-3537.
    56 Manjula P.; Satyanarayana L.; Swarnalatha Y; Manorama S. V., Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2. Sens. Actuators, B 2009,138,28-34.
    57 Nguyen H.; Quy C. T.; Hoa N. D.; Lam N. T.; Duy N. V; Quang V. V.; Hieu N. V, Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensois. Sens. Actuators, B 2014,193,888-894.
    58 Xing L.; Hu Y; Wang P.; Zhao Y; Nie Y; Deng P.; Xue X., Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett.2014,104(1):013109.
    59 Mun Y; Park S.; An S.; Lee C.; Kim H. W., NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int.2013,39(8):8615-8622.
    60 Phan D.-T.; Chung G-S., Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens. Actuators, B 2012,161,341-348.
    61 Tamaekong N.; Liewhiran C.; Wisitsoraat A.; Phanichphant S., Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators, B 2011,152,155-161.
    62 Kashif M.; Ali M. E.; Ali S. M. U.; Hashim U., Sol-gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications. Ceram. Int.2013,39 (6):6461-6466.
    63 Rashid T.-R.; Phan D.-T.; Chung. G-S., Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuators, B 2014,193,869-876.
    64 Kim B.; Lu Y.; Hannon A.; Meyyappan M.; Li J., Low temperature Pd/SnO2 sensor for carbon monoxide detection. Sens. Actuators, B 2013,177,770-775.
    65 Hyodo T.; Baba Y.; Wada K.; Shimizu Y.; Egashira M., Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane. Sens. Actuators, B 2000,64,175-181.
    66 Zhang J.; Liu X.; Wu S.; Xu M.; Guo X.; Wang S., Au nanoparticle-decorated porous SnO2 hollow spheres:a new model fora chemical sensor. J. Mater. Chem.2010,20(31):6453-6459.
    67 Kolmakov A.; Klenov D. O.; Lilach Y.; Stemmer S.; Moskovits M., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett.2005, 5(4):667-673.
    68 Tang W.; Wang J.; Yao P.; Li X., Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators, B 2014,192, 543-549.
    69 Ma X.; Song H.; Guan C., Enhanced ethanol sensing properties of ZnO-doped porous SnO2 hollow nanos pheres.Sens. Actuators,B2013,188,193-199.
    70 Nikan E.; Khodadadi A. A.; Mortazavi Y, Highly enhanced response and selectivity of electrospun ZnO-doped SnO2 sensors to ethanol and CO in presence of CH4. Sens. Actuators, B 2013,84,196-204.
    71 Li Y.; Hu Y.; Jiang H.; Hou X.; Li C., Construction of core-shell Fe2O3@SnO2 nanohybrids for gas sensors by a simple flame-as sis ted spray process. RSC Adv.,2013,3,22373-22379.
    72 Huang J.; Dai Y; Gu C.; Sun Y; Liu J., Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. J. Alloys Compd.2013,575,115-122.
    73 Wagh M.S.; Patil L. A.; Seth T.; Amalnerkar D. P., Surface cupricated SnO2-ZnO thick films as a H2S gas sensor. Mater. Chem. Phys.2004,84,228-233.
    74 Bagal L. K.; Patil J. Y.; Bagal K. N.; Mulla I. S.; Suryavanshi S. S., Acetone vapour sensing characteristics of undoped and Zn, Ce doped SnO2 thick film gas sensor. Mater. Res. Innovations 2013, 17(2):98-105.
    75 Korotcenkov G; Boris I.; Brinzari V.; Hand S.H.; Cho B. K.; The role of doping effect on the response of SnO2-based thin film gas sensors:Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis. Sens. Actuators, B 2013,182,112-124.
    76 Casas C. D. L.; Li W., A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012,208,74-85.
    77 Poizot P.; Grugeon S.; Dupont L.; Tarascon J. M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407,496.
    78 Hu L.; Qu B.; Li C.; Chen Y.; Mei L.; Lei D.; Chen L.; Li Q.; Wang T., Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A 2013,1,5596-5602.
    79 Yi R.; Feng J.; Lv D.; Gordin M.; Chen S.; Choi D.; Wang D., Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy 2013,2, 498-504.
    80 Rong A.; Gao X. P.; Li G R.; Yan T. Y; Zhu H. Y; Qu J. Q.; Song D. Y, Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 2006,110,14754-14760.
    81 Xiong Q. Q.; Xia X. H.; Tu J. P.; Chen J.; Zhang Y Q.; Zhou D.; Gu C. D.; Wang X. L., Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries. J. Power Sources 2013,240,344-350.
    82 Liu R.; Li D.; Tian D.; Xia G.; Wang C.; Xiao N.; Li N.; Mack N. H.; Li Q.; Wu G., Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries. J. Power Sources 2014, 279-286.
    83 Guo J.; Chen L.; Wang G.; Zhang X.; Li F.; In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. J. Power Sources 2014,246,862-867.
    84 Du N.; Chen Y.; Zhai C.; Zhang H.; Yang D., Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries. Nanoscale 2013,5, 4744.4750.
    85 Wang J.; Li L.; Wong C.; Sun L.; Shen Z.; Madhavi S., Controlled synthesis of a-FeOOH nanorods and their transformation to mesoporousa-Fe2O3, Fe3O4@C nanorods as anodes for lithium ion batteries. RSC Adv.2013,3,15316-15326.
    86 Su L.; Zhong Y.; Wei J.; Zhou Z., Preparation and electrochemical Li storage performance of MnO@C nanorods consisting of ultra small MnO nanocrystals. RSC Adv.2013,3,9035-9041.
    87 Song W.; Xie J.; Hu W.; Liu S.; Cao G.; Zhu T.; Zhao X., Facile synthesis of layered Z2SnO4graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries. J. Power Sources 2013,229,6-11.
    88 Kose H.; Aydin A. O.; Akbulut H., Sol-gel preparation and electrochemical characterization of SnO2/M WCNTs anode materials for Li-ion batteries. Appl. Surf. Sci.2013,275,160-167.
    89 Nam D.-H.; Lim S.-J.; Kim M.-J.; Kwon H.-S., Facile synthesis of SnO2-polypyrrole hybrid nanowiresby cathodic electrodeposition and their application to Li-ion battery anodes. RSC Adv.2013, 3,16102-16108.
    90 Wu J. B.; Guo R. Q.; Huang X. H.; Lin Y., Ternary core/shell structure of Co304/Ni0/C nanowire arrays as high-performance anode material for Li-ion battery. J. Power Sources 2014,248,115-121.
    91王玉新.功能性ZnO的调控制备、表征及其光催化性能研究.(博士论文)大连:大连理工大学,2008.
    92 Wang H.; Li G.; Jia L.; Wang G.; Tang C., Controllable preferential-etching synthesis and photocatalytic activity of porous ZnONanotubes. J. Phys. Chem. C 2008,112,11738-11743.
    93 Lei A.; Qu B.; Zhou W.; Wang Y; Zhang Q.; Zou B., Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Mater. Lett.2012,66,72-75.
    94 Wu X.; Li K.; Wang H., Facile fabrication of porous ZnO microspheres by thermal treatment of ZnS microspheres.J. Hazard. Mater.2010,174,573-580.
    95 Liu S.; Li C.; YuJ.; Xiang Q., Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm,2011,13,2533-2541.
    96 Hwang S. H.; Kim C.; Song H.; Son S.; Jang J., Designed architecture of multiscale porous TiO2 nanofibers for dye sensitized solar cells photoanode. ACS Appl. Mater. Interfaces 2012,4,5287-5292.
    97 Zeng H.; Duan G.; Li Y.; Yang S.; Xu X.; Cai W., Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls. Adv. Fund. Mater.2010,20,561-572.
    98 Yuan G; Zhu J.; Li G.; Gao X., Morphology-controllable electrochemical synthesis and photoluminescence properties of ZnO nanocrystals with porous structures. CrystEngComm,2012,14, 7450-7457.
    99 Li F.; Wilker M. B.; Stein A., Simulation-aided design and synthesis of hierarchically porous membranes. Langmuir 2012,28,7484-7491.
    100 Shon J. K.; Kim H.; Kong S. S.; Hwang S. H.; Han T. H.; Kim J. M.; Pak C.; Doo S.; Chang H., Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials. J. Mater. Chem.2009,19,6727-6732.
    101 Chen H. T.; Zhou X. M.; Zhu W. M.; Zhu J.; Fan L.; Chen X. B., A novel method to synthesize ordered porous SnO2 nanostructures and their optical properties. Appl. Phys. A 2012,108,143-147.
    102 Kim H.; Cho J.,. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem.2008,18,771-775.
    103 Fei L.; XuY; Chen Z.; Yuan B.; Wu X.; Hill J.; Lin Q.; Deng S.; Andersen P.; Lu Y; Luo H., Preparation of porous SnO2 helical nanotubes and SnO2 sheets. Mater. Chem. Phys.2013,140, 249-254.
    104 Huang J.; Wang L.; Gu C.; Zhai M.; Liu J., Preparation of hollow porous Co-doped SnO2 microcubes and their enhanced gas sensing property. CrystEngComm 2013,15,7515-7521.
    105 Zhang J.; Guo J.; Xu H.; Cao B., Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl. Mater. Interfaces 2013,5,7893-7898.
    106 Holmberg K., Surfactant-templated nanomaterials synthesis. J. Colloid Interface Sci.2004,274, 355-364.
    107 Hyodo T.; Abe S.; Shimizu Y; Egashira M., Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens. Actuators, B 2003,93,590-600.
    108 Jia Y; Yu X.;-Y; Luo T.; Zhang M.-Y; Liu J.-H.; Huang X., PEG aggregation templated porous ZnO nanostructure:room temperature solution synthesis, pore formation mechanism, and their photoluminescence properties. CrystEngComm,2013,15,3647-3653.
    109 Wang Q.; Wang D.; Wu M.; Liu B.; Chen J.; Wang T.; Chen J., Porous SnO2 nanoflakes with loose-packed structure:Morphology conserved transformation from SnS2 precursor and application in lithium ion batteries and gas sensors. J. Phys. Chem. Solids 2011,72,630-636.
    110 Wang Q.; Wang D.; Wang T.; Shape-controlled synthesis of porous SnO2 nanostructures via morphologically conserved transformation from SnC2O4 precursor approach. Nano-Micro Lett.2011,3 (1):34-42.
    111 Liu S.; Li C.; Yu J.; Xiang Q.;. Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 2011,13,2533.
    112 Sinhamahapatra A.; Giri A. K.; Pal P.; Pahari S. K.; Bajaj H. G.; Panda A. B., A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity.J. Mater. Chem.2012,22,17227-17235.
    113 Lei A.; Qu B.; Zhou W.; Wang Y; Zhang Q.; Zou B., Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Mater. Lett.2012,66,72-75.
    114 Qin W.; Xu L.; Song J.;, Xing R.; Song H., Highly enhanced gas sensing properties of porous SnO2-CeO2 composite nanofibers prepared by electrospinning. Sens. Actuators, B 2013,185,231-237.
    115 Wang L.; Luo X.; Zheng X.; Wang R.; Zhang T., Direct annealing of electrospun synthesized h igh performance porous SnO2 hollow nanofibers for gas sensors. RSC Adv.2013,3,9723-9728.
    116 Song X.; Wang Z.; Liu Y.; Wang C.; Li L., A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers. Nanotechnology 2009,20(7):75501.
    117 Guo Z. P.; Du G. D.; Nuli Y; Hassan M. F.; Liu H. K., Ultra-fine porous SnO2 nanopowder preparedviaa molten salt process:a highly efficient anode material for lithium-ion batteries. J. Mater. Chem.2009,19,3253-3257.
    118 Bhattacharyya S.; Gedanken A., A template-free, sonochemical route to porous ZnO nano-disks. Micropor Mesoporous Mat 2008,110,553-559.
    119 Li M.; Liu X.; Cui D.; Xu H.; Jiang M., Preparation of ZnO bulk porous nanosolids of different pore diameters by a novel solvothermal hot press (STHP) method. Mater. Res. Bull.2006,41, 1259-1265.
    120 Chen H.; Zhu W.; Zhou X.; Zhu J.; Fan L.; Chen X., Formation of porous SnO2 by anodic oxidation and their optical properties. Chem. Phys. Lett.2011,515,269-273.
    121 Zhang G; Shen X.; Yang Y, Facile Synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and theirphotocatalytic activity,J.Phys. Chem. C2011,115,7145-7152.
    122 Tiemann M., Porous metal oxides as gas sensors. Chem.-Eur. J.2007,13,8376-8388.
    123 Du N.; Zhang H.; Chen B.; Ma X.; Liu Z.; Wu J.; Yang D., Porous indium oxide nanotubes: Layer-by layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors.Adv. Mater.2007,19,1641-1645.
    124 Sun C. W.; Rajasekhara S.; Goodenough J. B.; Zhou F., Monodisperse porous LiFePO4 microspheres for a high power Li-Ion battery cathode J. Am. Chem. Soc.2011,133,2132-2135.
    125 Liu J.; Xia H.; Lu L.; Xue D. F., Anisotropic CO3O4 porous nanocapsules toward high-capacity Li-ion batteries. J. Mater. Chem.2010,20,1506-1510.
    126 Wang H. E.; Zheng L. X.; Liu C. P.; Liu Y K.; Luan C. Y.; Cheng H.; Li Y Y.; Martinu L; Zapien J. A.; Bello I. Microwave synthesis of porous TiO2 spheres and their applications in dye-sensitized solar cells. J. Phys. Chem. C 2011,115,10419-10425.
    127 Liu J. Y.; Luo T.; Meng F.; Sun L. B.; Li M. Q.; Liu J. H., A novel coral-like porous SnO2 hollow architecture:biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chem. Commun.2010,46,472-474.
    128 Wan Y.; Zhao D. Y, On the Controllable soft-templating approach to mesoporous silicates Chem. .Rev.2007,107,2821-2860.
    129 Yu H. D.; Wang D. S.; Han M. Y, Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc.2007,129,2333-2337.
    130 Qian L. H.; Yan X. Q.; Fujita T.; Inoue, A.; Chen, M. W., Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements. Appl. Phys. Lett.2007,90,153120.
    131 Chen L. F.; Song Z.; Wang X.; Prikhodko S. V.; Hu J. C.; Kodambaka S.; Richards R. Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres. ACS Appl. Mater. Interfaces 2009,9,1931-1937.
    132 Wan Q.; Li Q. H.; Chen Y J.; Wang T. H., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett.2004,18,3654-3656.
    133 Martinson A. B. F.; Elam J. W.; Hupp J. T.; Pellin M. J., ZnO nanotube based dye-sensitized solar cells. Nano Lett.2007,7,2183-2187.
    134 Qiu J. H.; Guo M.; Wang X. D, Electrodeposition of hierarchical ZnO nanorod-nanosheet architectures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011,3, 2358-2367.
    135 Yang J. L.; An S. J.; Park W. L; Yi G. C.; Choi W. Y, Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater.2004,16,1661-1664.
    136 Zhang L. Y; Yin L. W.; Wang C. X.; Lun N.; Qi Y. X. Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2010,2,1769-1773.
    137 Wang N.; Cao X.; Wu Q. Y; Zhang R.; Wang L.; Yin P.; Guo L., Hexagonal ZnO bipyramids:synthesis,morphological evolution,and optical properties. J. Phys. Chem. C 2009,113, 21471-21476.
    138 Wang X. D.; Song J. H.; Liu J.; Wang Z. L., Direct current nanogenerator driven by ultrasonic wave. Science 2007,316,102-105.
    139 Gao P. X.; Song J. H.; Liu J.; Wang Z. L., Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices.Adv. Mater.2007,19,67-72.
    140 Lao C. S.; Li Y.; Wong C. P.; Wang Z. L., Enhancing the electrical and optoelectronic performance ofnanobelt devices by molecular surface functionalization. Nano Lett.2007,7,1323-1328.
    141 Lee S. W.; Jeong M. C.; Myoung J. M.; Chae G S.; Chung I. J., Magnetic alignment of ZnO nanowires for optoelectronic device applications. Appl. Phys. Lett.2007,90,133115.
    142 Fan Z. Y.; Dutta D.; Chien C. J.; Chen H. Y.; Brown E. C.; Chang P. C.; Lu J. G, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett.2006,89, 213110.
    143 Tang Z. K.; Wong G. K. L.; Yu P.; Kawasaki M.; Ohtomo A.; Koinuma H.; Segawa Y. Room-temperature ultraviolet laseremission from self-assembled ZnO microcrystallite thin films Appl. Phys. Lett.1998,25,3270-3272.
    144 Guo Z. H.; Wei S. Y.; Shedd B.; Scaffaro R.; Pereira T.; Haha H. T., Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites.J. Mater. Chem2007,17,806-813.
    145 Yao K. X; Zeng H. C., ZnO/PVP nanocomposite spheres with two hemispheres. J. Phys. Chem. C 2007,111,13301-13308.
    146 Wang X. D.; Summers C. J.; Wang Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensorarrays. Nano Lett.2004,3,423-426.
    147 Yang P. D.; Yan H. Q.; Mao S.; Russo R.; Johnson J.; Saykally R.; Morris N.; Pham J.; He R. R.; Choi H. J.; Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater.2002, 12,323-331.
    148 Xing Y. J.; Xi Z. H.; Xue Z. Q.; Zhang X. D.; Song J. H., Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett.2003,9,1689-1691.
    149 Park W. I.; Yi G. C.; Kim M.; Pennycook S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater.2002,24,1841-1843.
    150 Kong X. Y.; Wang Z. L., Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals.Appl. Phys. Lett.2004,6,975-977.
    151 Park J. H.; Choi H. J.; Choi Y J.; Sohn S. H.; Park J. G, Ultrawide ZnO nanosheets. J. Mater. Chem.2004,14,35-36.
    152 Zhang Y; Xu J. Q.; Xiang Q.; Li H.; Pan Q. Y; Xu P. C. Brush-like hierarchical ZnO nanostructures:synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 2009,113, 3430-3435.
    153 Fang Z.; Tang K. B.; Shen G Z.; Chen D.; Kong R.; Lei S. J., Self-assembled ZnO 3D flowerlike nanostructures. Mater. Lett.2006,60,2530-2533.
    154 Jang J. M.; Kim C. R.; Ryu H.; Razeghi M.; Jung W. G, ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process.J.Alloys Compd.2008,463, 503-510.
    155 Sinha A. K.; Basu M.; Pradhan M.; Sarkar S.; Pal, T., Fabrication of large-scale hierarchical ZnO hollow spheroids for hydrophobicity and photocatalysis. Chem.-Eur.J.2010,16,7865-7874
    156 Gao X. F.; Jiang L., Biophysics:water-repellent legs of water striders. Nature 2004,432,36.
    157 Mao Y; Kanungo M.; Hemraj-Benny T. H.; Wong S. S., Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. J. Phys. Chem. B 2006,110,702-710.
    158 Huang J. R.; Wu Y. J.; Gu C. P.; Zhai M. H.; Sun Y. F.; Liu. J. H., Fabrication and gas-sensing properties of hierarchically porous ZnO architectures. Sens. Actuators,B2011,155,126-133.
    159 Huang X. H.; Xia X. H.; Yuan Y F.; Zhou F., Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 2011,56,4960-4965.
    160 Wang X. B.; Cai W. P.; Lin Y. X.; Wang G Z.; Liang C. H., Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem.2010,20,8582-8590.
    161 Liang J. B.; Bai S.; Zhang Y S.; Li M.; Yu, W. C.; Qian Y T., Malate-assisted synthesis of ZnO hexagonal architectures with porous characteristics and photoluminescence properties investigation. J. Phys. Chem. C 2007,111,1113-1118.
    162 Chernikov A.; Horst S.; Waitz T.; Tiemann M.; Chatterjee S., Photoluminescence properties of ordered mesoporous ZnO.J. Phys. Chem. C 2011,115,1375-1379.
    163 Wang J. X.; Wu C. M. L.; Cheung W. S.; Luo L. B.; He Z. B.; Yuan G D.; Zhang W. J.; lee, C. S.; Lee., S. T., Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells. J. Phys. Chem. C 2010,114,13157-13161.
    164 Xu F.; Zhang P.; Navrotsky A.; Yuan Z. Y; Ren T. Z.; Halasa M.; Su B. L., Hierarchically assembled porous ZnO nanoparticles:Synthesis, surface energy, and photocatalytic activity. Chem. Mater.2007,19,5680-5686.
    165 Jing Z. H.; Zhan J. H., Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater.2008,20,4547-4551.
    166 Liu X. H.; Zhang J.; Wang L. W.; Yang T. L.; Guo X. Z.; Wu S. H.; Wang S. R.,3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 2011,21,349-356.
    167 Yu A.; Qian J. S.; Pan H.; Cui Y. M.; Xu M. G.; Tu L.; Chai Q. L.; Zhou X. F., Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets:Preparation, characterization and gas sensing property. Sens. Actuators,B2011,158,9-16.
    168 Polarz S.; Orlov A. V; Schuth F.; Lu A. H., Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls. Chem.-Eur. J.2007,13,592-597.
    169 Lei J.; Xu L.; Morein C.; Chen C. H.; Lai M.; Dharmarathna S.; Dobley A.; Suib S. L., Titanium containing y-MnO2 (TM) hollow spheres:one-step synthesis and catalytic activities in Li/Air batteries and oxidative chemical reactions. Adv. Fund. Mater.2010,22,3373-3382.
    170 Kulak A.; Iddon P.; Li Y. T.; Armes S. P.; Colfen H.; Paris O.; Wilson R. M.; Meldrum F. C., Continuous structural evolution of calcium carbonate particles:A unifying model of copolymer-mediated crystallization. J. Am. Chem. Soc.2007,129,3729-3736.
    171 Wu X. L.; Guo Y. G.; Wan L. J.; Hu C. W., Alpha-Fe2O3 nanostructures:inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage.J. Phys. Chem. C 2008,112, 16824-16829.
    172 Wang X.; Yuan F. L.; Hu P.; Yu L. J.; Bai L. Y, Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication. J. Phys. Chem. C 2008,112, 8773-8778.
    173 Xing Z. J.; Geng B. Y.; Li X. L.; Jiang H.; Feng C. X.; Ge, T., Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance. Cryst EngComm.2011,13,2137-2142.
    174 Gergintschew Z.; Forster H.; Kositza J.; Schipanski D.,2-Dimensional numerical-simulation of semiconductor gas sensors. Sen. Actuators, B 1995,26,170-173.
    175 Chiu H.-C; Yeh C.-S., Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C 2007,111,7256-7259.
    176 Hong Y. J.; Son M. Y.; Kang Y. C, One-Pot Facile Synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for li-ion batteries. Adv. Mater. 2013,25,2279-2283.
    177 Kim W.-S.; Hwa Y.; Jeun J.-H.; Sohn H.-J.; Hong S.-H., Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013,225,108-112.
    178 Deng D.; Lee J. Y, Hollow Core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity li ion storage. Chem. Mater.2008,20,1841-1846.
    179 Snaith H. J.; Ducati C, SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett.2010,10,1259-1265.
    180 Aprile C.; Teruel L.; Alvaro M.; Garcia H., Structured mesoporous tin oxide with electrical conductivity. Application in electroluminescence. J.Am. Chem. Soc.2009,131,1342-1343.
    181 Wang H.; Sun R; Zhang Y; Li L.; Chen H.; Wu Q.; Yu J. C., Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem.2010,20, 5641-5645.
    182 Zhang Y; He X.; Li J.; Miao Z.; Huang F., Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B 2008,132,67-73.
    183 Huang J. Y; Zhong L.; Wang C. M.; Sullivan J. P.; Xu W.; Zhang L. Q.; Mao S. X.; Hudak N. S.; Liu X. H.; Subramanian A., Fan H.; Qi L.; Kushima A.; Li J.; In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010,330,1515-1520.
    184 Sun S. H.; Meng G W.; Zhang G X.; Gao T.; Geng B. Y; Zhang L. D.; Zuo J., Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett. 2003,376,103-107.
    185 Wang C.; Zhou Y; Ge M.; Xu X.; Zhang Z.; Jiang J. Z., Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J.Am. Chem. Soc.2010,132,46-47.
    186 Wang C.; Chu X.; Wu M., Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B 2007,120,508-513.
    187 Yu C.; Yu J. C.; Wang F.; Wen H.; Tang Y, Growth of single-crystalline SnQ2 nanocubes via a hydrothermal route. CrystEngComm 2010,12,341-343.
    188 Yang H. G; Zeng H. C., Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angew. Chem.2004,116,6056-6059.
    189 Hyodo T.; Nishida N.; Shimizu Y.; Egashira M., Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens. Actuators B 2002,83,209-215.
    190 Ahn H.-J.; Choi H.-C.; Park K.-W.; Kim S.-B.; Sung Y.-E., Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J. Phys. Cham. B 2004,108, 9815-9820.
    191 Maniula P.; Boppella R.; Manorama S. V, A facile and green approach forthe controlled synthesis of porous SnO2 nanospheres:application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Interfaces 2012,4,6252-6260.
    192 Chandra D.; Mukherjee N.; Mondal A.; Bhaumik A., Design and synthesis of nanostructured porous SnO2 with high surface areas and their optical and dielectric properties. J. Phys. Chem. C 2008, 112,8668-8674.
    193 Yin X. M.; Li C. C.; Zhang M.; Hao Q. Y; Liu S.; Li Q. H.; Chen L. B., T. H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 2009,20,455503.
    194 Zong Y.; Cao Y.; Jia D.; Hu P., The enhanced gas sensing behavior of porous nanocrystalline SnO2 prepared by solid-state chemical reaction. Sens. Actuators B 2010,145,84-88.
    195 Huang J.; Yu K.; Gu C.; Zhai M.; Wu Y.; Yang M.; Liu J., Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property. Sens. Actuators B 2010,147,467-474.
    196 Chao J.; Xu X.; Huang H.; Liu Z.; Liang B.; Wang X.; Ran S.; Chen D.; Shen G, Porous SnO2 nanoflowers derived fromtin sulfide precursors as high performance gas sensors. CrystEngComm 2012, 14,6654-6658.
    197 Kim H.-R.; Choi K.-I.; Kim K.-M.; Kim I.-D.; Cao G.; Lee J.-H., Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem. Commun.2010,46,5061-5063.
    198 Song F.; Su H.; Chen J.; Moon W.-J.; Lau W. M.; Zhang D.,3D hierarchical porous SnO2 derived from self-assembled biological systems for superior gas sensing application. J. Mater. Chem.2012,22, 1121-1126.
    199 Huang J.; Xu X.; Gu C.; Yao S.; Sun Y.; Liu J., Large-scale selective preparation of porous SnCb 3D architectures and their gas-sensing property. CrystEngComm 2012,14,3283-3290.
    200 Kim K.-W.; Cho P.-S.; Lee J.-H.; Hong S.-H.; Preparation of SnO2 whiskers via the decomposition of tin oxalate. J. Electroceram.2006,17,895-898.
    201 Demir-Cakan R.; Hu Y.-S.; Antonietti M.; Maier J.; Titirici M.-M., Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage roperties. Chem. Mater. 2008,20,1227-1229.
    202 Wu S.; Cao H.; Yin S.; Liu X.; Zhang X., Amino acid-assisted hydrothermal synthesis and photocatalysis of snO2 Nanocrystals. J. Phys. Chem. C2009,113,17893-17898.
    203 Zhu J.; Lu Z.; Aruna S. T.; Aurbach D.; Gedanken A., Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as li insertion electrodes. Chem. Mater.2000,12,2557-2566.
    204 Lotty O.; Hobbs R.; Regan C.; Hina J.; Marschner C.; Dwyer C., Petkov N.; Holmes J. D., Self-seeded growth of germanium nanowires:Coalescence and ostwald ripening. Chem. Mater.2013, 25,215-222.
    205 Graf C.; Dembski S.; Hofmann A.; Ruhl E., A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 2006,22,5604-5610.
    206 Wang X.; Liu W.; Liu J.; Wang F.; Kong J.; Qiu S.; He C.; Luan L., Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl. Mater. Interfaces 2012,4,817-825.
    207 Crepaldi E. L.; Soler-lllia G J. de A. A.; Grosso D.; Cagnol F.; Ribot R; Sanchez C., Controlled formation of highly organized mesoporous titania thin films:From mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc.2003,125,9770-9786.
    208 Long J. W.; Logan M. S.; Rhodes C. F.; Carpenter E. E.; Stroud R. M.; Rolison D. R., Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J. Am. Chem. Soc.2004, 126,16879-16889.
    209 Cheng J. P.; Chen X.; Wu J.-S.; Liu F.; Zhang X. B.; Dravid V. P., Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. CrystEngComm 2012,14,6702-6709.
    210 Takata M.; Tsubone D.; Yanagida H., Dependence of electrical conductivity of ZnO on degree of sintering.J. Am. Ceram. Soc.1976,59,4-8.
    211 Hellegouarc'h F.; Arefi-Khonsari F.; Planade R.; Amouroux J., PECVD prepared SnO2 thin films forethanol sensors. Sens. ActuatorsB 2001,73,27-34.
    212Morrison S. R.; Selectivity in semiconductor gas sensors. Sens. Actuators B 1987,12,425-440.
    213 Sahay P. P., Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci.2005,40, 4383-4385.
    214 Xu J.; Han J.; Zhang Y.; Sun Y.; Xie B., Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B 2008,132,334-339.
    215 Li L.-L.; Zhang W.-M.; Yuan Q.; Li Z.-X.; Fang C.-J.; Sun L.-D.; Wan L.-J.; Yan C.-H., Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnCb and their gas sensor behaviors. Cryst. Growth Des.2008,8,4165-4172.
    216 Wang B.; Zhu L. F.; Yang Y. H.; Xu N. S.; Yang G W., Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C2008,112,6643-6647.
    217 Liu S.; Xie M.; Li Y.; Guo X.; Ji W.; Ding W., Synthesis and selective gas-sensing properties of hierarchically porous intestine-like SnO2 hollow nanostructures. Mater. Chem. Phys.2010,123, 109-113.
    218 Uchiyama H.; Shirai Y.; Kozuka H., Hydrothermal synthesis of flower-like SnO2 particles consisting of singlecrystalline nanorods through crystal growth in the presence of poly(acrylicacid). RSC Adv.2012,2,4839-4843.
    219 Kim J. G.; Lee S. H.; Nam S. H.; Choi S. M.; Kim W. B., Standing pillar arrays of C-coated hollow SnO2 mesoscale tubules for a highly stable lithium ion storage electrode. RSC Adv.2012,2,7829-7836.
    220 Chen J.; Li C.; Xu F.; Zhou Y; Lei W.; Sun L.; Zhang Y, Hollow SnO2 microspheres for high-efficiency bilayered dye sensitized solar cell. RSC Adv.2012,2,7384-7387.
    221 Jiang L. H.; Sun G Q.; Zhou Z. H.; Sun S. G; Wang Q.; Yan S. Y; Li H. Q.; Tian J.; Guo J. S.; Zhou B.; Xin Q., Hollow SnO2 microspheres for high-efficiency bilayered dye sensitized solar cell. J. Phys. Chem. B 2005,109,8774-8778.
    222 Andio M. A.; Browning P. N.; Morris P. A.; Akbar S. A., Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens. Actuators, B 2012,165,13-18.
    223 Sysoev V. V.; Goschnick J.; Schneider T.; Strelcov E.; Kolmakov A., A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett.2007,7,3182-3188.
    224 Lee D. S.; Jung J. K.; Lim J. W.; Huh J. S.; Lee D. D., Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sens. Actuators,B2001,77,228-236.
    225 He J. H.; Wu T. H.; Hsin C. L.; Li K. M.; Chen L. J.; Chueh Y. L.; Chou L. J.; Wang Z. L. Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2006,2, 116-120.
    226 Duan J. H.; Yang S. G; Liu H. W., Gong J. F.; Huang H. B.; Zhao X. N.; Zhang R.; Du Y. W., Single crystal SnO2 zigzag nanobelts. J. Am. Chem. Soc.2005,127,6180-6181.
    227 Cheng B.; Russell J. M.; Shi W.; Zhang L.; Samulski E. T., Large-scale, solution-phase growth of single-crystalline SnO2 nanorods.J. Am. Chem. Soc.2004,126,5972-5973.
    228 Ge J.;, Wang J.; Zhang H.; Wang X.; Peng Q.; Li Y, High ethanol sensitive SnO2 microspheres. Sens. Actuators, B 2006,113,937-943.
    229 Shi L.; Bao K.; Cao J.; Qian Y, Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route. Appl. Phys. Lett.2008,93,152511.
    230 Hu J.; Bando Y; Liu Q.; Golbery D., Laser-Ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Fund. Mater.2003,13,493-496.
    231 Liu Y; Dong J.; Liu M., Well-aligned "Nano-Box-Beams"of SnO2. Adv. Mater.2004,16,353-356.
    232 Liu A. M.; Hidajat K.; Kawi S.; Zhao D. Y, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun.2000, 1145-1146.
    233 Waitz T., Wagner T.; Sauerwald T.; Kohl C.; Tiemann M., Ordered mesopotous In2O3:synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater.2009,19,653-661.
    234 DurrM.; Schmid A.; Obermaier M.; Rosselli S.; Yasuda A.; nelles G, Low-temperature fabrication ofdye-sensitized solar cells by transfer of composite porous layers. Nat. Mater.2005,4,607-611.
    235 Doherty C. M.; Caruso R. A.; Smarsly B. M.; Adelhelm P.; Drummond C. J., Hierarchically porous monolithic LiFeP04/Carbon composite electrode materials for high power lithium ion batteries. Chem. Mater.2009,21,5300-5306.
    236 Yu Y; Chen C.; Shi Y., A Tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007,19,993-997.
    237 Horcajada P.; Chalati T.; Serre C.; Gillet B.; Sebrie C.; Baati T.; Eubank J. F.; Heurtaux D.; Clayette P.; Kreuz C.; Chang J.; Hwang Y K.; Marsaud V.; Bories P.; Cynober L.; Gil S.; Ferey G.; Couvreur P.; Gref R., Porous metal-organic-frame work nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010,9,172-178.
    238 Huang J.; Xu X.; Gu C.; Wang W.; Geng B.; Sun Y; Liu J., Effective VOCs gas sensor based on porous SnO2 microcubes prepared via spontaneous phase segregation. Sens. Actuators, B 2012,173, 599-606.
    239 Sun P.; Zhao W.; Cao Y; Guan Y.; Sun Y; Lu G, Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties. CiystEngComm 2011,13, 3718-3724.
    240 Bagal L. K.; Patil J. Y; Mulla I. S.; Suryavanshi S. S., Influence of Pd-loading on gas sensing characteristics ofSnO2 thick films. Ceram. Int.2012,38,4835-4844.
    241 Shaalan N. M.; Yamazaki T.; Kikuta T., NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sens. Actuators, B 2012,166-167,671-677.
    242 Yuasa M.; Kida T.; Shimanoe K., Preparation of a stable sol suspension of pd-loaded SnO2 nanocrystals by a photochemical deposition method for highly sensitive semiconductor gas sensors. ACSAppl. Mater. Interfaces 2012,4,4231-4236.
    243 Chang C.-M.; Hon M.-H.; Leu I. C., Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Adv.2012,2,2469-2475.
    244 Qian L. H.; Wang K.; Li Y.; Fang H. T.; Lu Q. H.; Ma X. L., CO sensor based on Au-decorated SnO2 nanobelt Mater. Chem. Phys.2006,100,82-84.
    245 Qian L. H.; Wang K.; Fang H. T.; Li Y.; Ma X. L., Au nanoparticles enhance CO oxidation onto SnO2 nanobelt. Mater. Chem. Phys.2007,103,132-136.
    246 Yu Y.-T.; Dutta P., Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sens. Actuators, B 2011,157,444-449.
    247 Korotcenkov G.; Gulina L. B.; Cho B. K.; Han S. H.; Tolstoy V. P., SnO2-Au nanocomposite synthesized by successive ionic layer deposition method:Characterization and application in gas sensors. Mater. Chem. Phys.2011,128,433-441.
    248 Kuang M. C.; Daivis R. J.; Kung H. H., Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C 2007,111,11767-11775.
    249 Liu X.; Zhang J.; Guo X.; Wang S.; Wu Shihua, Core-shella-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties. RSC Advances 2012,2,1650-1655.
    250 Wang S.; Zhao Y.; Huang J.; Wang Y; Kong F.; Wu S.; Zhang S.; Huang W., Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors. Vacuum 2006,81,394-397.
    251 Bakrania S. D.; Wooldridge M. S., The effects of the location of Au additives on combustion-generated SnO2 nanopowders for CO gas sensing, sensors 2010,10,7002-7017.
    252 Zhang H.; Li Z.; Liu L.; Xu X.; Wang Z.; Wang W.; Zheng W.; Dong B.; Wang C., Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite Nanofibers. Sens. Actuators, B 2010,147, 111-115.
    253 Li X.; Li D.; Qiao L.; Wang X.; Sun X.; Wang P.; He D., Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J. Mater. Chem.2012,22,9189-9194.
    254 Park S.-K.; Yu S.-H.; Woo S.; Ha J.; Shin J.; Sung Y.-E.; Piao Y., A facile and green strategy forthe synthesis of MoS2 nanospheres with excellent Li-ion storage properties. CrystEngComm 2012,14, 8323-8325.
    255 Su X.; Wu Q.; Zhan X.; Wu J.; Wei S.; Guo Z., Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci.2012,47,2519-2534.
    256 Zhong K.; Zhang B.; Luo S.; Wen W.; Li H.; Huang X.; Chen L., Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011,196,6802-6808.
    257 Qu H.; Wei S.; Guo Z., Coaxial electrospun nanostructures and their applications. J. Mater. Chem. A 2013,1,11513-11528.
    258 Balaya P.; Li H.; Kienle L.; Maier J., Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater.2003,13,621-625.
    259 Brandt A.; Balducci A., Ferrocene as precursor for carbon-coateda-Fe2O3 nano-particles for rechargeable lithium batteries. J. Power Sources 2013,230,44-49.
    260 Kim G-P.; Park S.; Nam I.; Park J.; Yi J., Synthesis of porous NiO materials with preferentially oriented crystalline structures with enhanced stability as lithium ion battery anodes. J. Power Sources 2013,237,172-177.
    261 Do J.-S.; Weng C.-H., Preparation and characterization of CoO used as anodic material of lithium battery. J. Power Sources 2005,146,482-486.
    262 Ko S.; Lee J.-I.; Yang H. S.; Park S.; Jeong U., Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater.2012,24,4451-4456.
    263 Zhong K.; Xia X.; Zhang B.; Li H.; Wang Z.; Chen L., MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010,195,3300-3308.
    264 Hu L.; Sun Y.; Zhang F.; Chen Q., Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with imp roved lithium storage properties. J. Alloys Compd.2013,576,86-92.
    265 Yang G; Li Y.; Ji H.; Wang H.; Gao P.; Wang I.; Liu H.; Pinto J.; Jiang X., Influence of Mn content on the morphology and improved electrochemical properties of Mn3O4/MnO@carbon nanofiberas anode material for lithium batteries. J. Power Sources 2012,216,353-362.
    266 Yun Y. S.; Kim J. M.; Park H. H.; Lee J.; Hub Y. S.; Jin H.-J., Free-standing heterogeneous hybrid papers based on mesoporous g-MnO2 particles and carbon nanotubes for lithium-ion battery anodes. J. Power Sources 2013,244,747-751.
    267 Ahn M.; Fillry T. R.; Jafvert C. T.; Nies L.; Hua L.; Cruz J., Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environ. Sci. Technol.2006,40,215-220.
    268 Barrett K. A.; Mcbride M. B., Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol.2005,39,9223-9228.
    269 Cao J.; Mao Q. H.; Shi L.; Qian Y. T., Fabrication ofg-MnO2/a-MnO2 hollow core/shell structures and their application to water treatment. J. Mater. Chem.2011,21,16210-16215.
    270 Shim H.-W.; Lim A.-H.; Min K.-M.; Kim D.-W., Synthesis of manganese oxide nanostructures using bacterial soft templates. CiystEngComm 2011,13,6747-6752.
    271 Jiang H.; Zhao T.; Yan C. Y.; Ma J.; Li C. Z., Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2,2195-2198.
    272 Yin J. Z.; Gao F.; Wu Y. F.; Wang J. J.; Lu Q. Y, Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route. CiystEngComm 2010,12, 3401-3403.
    273 Poizot P.; Grugeon S.; Tarascon J. M., Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc.2002,149,1212-1217.
    274 Liu Y; Zhao X.; Li F.; Xia D., Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011,56,6448-6482.
    275 Sun B.; Chen Z.; Kim H.-S.; Ahn H.; Wang G, MnO/C core-shell nanorods as high capatity anode materials for lithium-batteries. J. Power Sources 2011,196,3346-3349.
    276 Lou X. W.; Deng D.; Lee J. Y, Self-supported formation of needlelike CO3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.2008,20,258-262.
    277 Wu H. B.; Chen J. S.; Hng H. H.; Lou X. W., Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012,4,2526-2542.
    278 Kang J.-H.; Paek S.-M.; Choy J.-H., Porous SnO2/layered titanate nanohybrid with enhanced electrochemical performance for reversible lithium storage. Chem. Comnmn.2012,48,458-460.
    279 Kokubu T.; Oaki Y; Hosono E.; Zhou H.; Imai H., Biomimetic solid-solution precursors of metal carbonate for nanostructured metal oxides:MnO/Co and MnO-CoO nanostructures and their electrochemical properties. Adv. Funct. Mater.2011,21,3673-3680.
    280 Zhang X.; Xing Z.; Wang L.; Zhu Y; Li Q.; Liang J.; Yu Y; Huang T.; Tang K.; Qian Y; Shen X., Synthesis of MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem.2012,22,17864-17869.
    281 Li X.; Xiong S.; Li J.; Liang X.; J Wang.; Bai J.; Qian Y, MnO@Carbon Core-shell nanowires as stable high-performance anodes for lithium-Ion batteries. Chem.-Eur. J.2013,19,11310-11319.
    282 Ding Y. L.; Wu C. Y; Yu H. M.; Xie J.; Cao G. S.; Zhu T. J.; Zhao X. B.; Zeng Y W., Coaxial MnO/Cnanotubes as anodes forlithium-ion batteries. Electroehim. Acta 2011,56,5844-5848.
    283 Li S.-R-; Sun Y; Ge S.-Y; Qiao Y; Chen Y.-M.; Lieberwirth I.; Yu Y; Chen C.-H., A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chem. Eng. J.2012, 192,226-231.
    284 Qiao H.; Yao D.; Cai Y; Huang P.; Wei Q., One-pot synthesis and electrochemical property of MnO/C hybrid microspheres. Ionics 2013,19,595-600.
    285 Xu, G-L.; Xu Y.-F.; Sun H.; Fu F.; Zheng X.-M.; Huang L.; Li J.-T.; Yang S.-H.; Sun S.-G; Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun.2012,48,8502-8504.
    286 Chen Y; Xia H.; Lu L.; Xue J., Synthesis of porous hollow Fe3O4 beads and their applications in lithium batteries. J. Mater. Chem.2012,22,5006-5012.
    287 Luo W.; Hu X.; Sun Y; Huang Y, Controlled Synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACSAppl. Mater. Interfaces 2013, 5,1997-2003.
    288 Sun Y; Hu X.; Luo W.; Huang Y, Porous carbon-modified MnO disks prepared by a micro wave-poly ol process and their superior lithium-ion storage properties. J. Mater. Chem.2012,22, 19190-19195.
    289 Fang L.; Li W. J., Micro Nano Lett.,2012,7,353.
    290 Hu H.; Xu J.; Yang H.; Liang J.; Yang S.; Wu H., Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer. Mater. Res. Bull.2011,46, 1908-1915.
    291 Wang T.; Colfen H.; Antonietti M., Nonclassical crystallization:mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc.2005,127, 3246-3247.
    292 Yu J.; Guo H.; Davis S. A.; Mann S., Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv. Fund. Mater.2006,16,2035-2041.
    293 Du N.; Zhang H.; Ma X.; Yang D., Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubesvialayer-by-layer assembly:a new ternary hybrid for a room-temperature CO gas sensor. Chem. Commun.2008,6182-6184.
    294 Yi R.; Shi R.; Gao G; Zhang N; Cui X.; He X. Y.; Liu X., Hollow metallic microspheres: fabrication and characterization. J. Phys. Chem. C2009,113,1222-1226.
    295 Wang W.; Zhen L.; Xu G.; Zhang B.; Shao W., Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route. J. Phys. Chem. B2006,110,23154-23158.
    296 Wu Q.; Chen X.; Zhang P.; Han Y.; Chen X.; Yan Y; Li S., Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des.2008,8, 3010-3018.
    297 Wang Y; Zhu Q.; Zhang H., Fabrication of Ni(OH)2 and NiO hollow spheres by a facile templatefree process. Chem. Commun.2005,5231-5233.
    298 Wu M.-S.; Chiang P.-C. J.; Lee J.-T.; Lin J.-C., Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 2005,109,23279-23284.
    299 Deng Y.; Zhang Q.; Shi Z.; Han L.; Peng F.; Chen G, Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres. Electrochim. Acta 2012,76, 495-503.
    300 Zhang M.; Lei D.; Yin X.; Chen L.; Li Q.; Wang Y.; Wang T., Magnetite/grapheme composites: microwave irradiation synthesis and enhanced cycling and rate performance for lithium ion batteries. J. Mater. Chem.2010,20,5538-5543.
    301 Zhang L.; Wu H. B.; Madhavi S.; Hng H. H.; Lou X. W., Formation of Fe2O3 microboxes with hierarchical shell structures form metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc.2012,134,17388-17391
    302 Maier J., Nanoionics:ion transport and electrochemical storage in confined systems. Nat. Mater. 2005,4,805-815.
    303 Guo J.; Liu Q.; Wang C.; Zachariah M. R., Interdispersed amorphous MnOx-Carbon nanocompositess with superior electrochemical performance as lithium-storage material. Adv. Funct. Mater.2012,22,803-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700