氧化钨基纳米材料的制备与气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以石墨片作为诱导剂,采用水热法合成了六方相单晶WO_3/C纳米棒材料,同时制备了Ag改性的氧化钨纳米棒和SnO_2(或ZnO)-WO_3/C的复合纳米材料,并对其进行了TG-DTA、XRD、XPS、IR、BET、SEM、TEM等表征,测试了厚膜型器件对乙醇、丙酮、甲醛气体的敏感性能。
     纳米棒WO_3/C材料在290℃时对1000μL·L~(-1)的乙醇气体灵敏度为79.3,而其在330℃下对1000μL·L~(-1)丙酮气体灵敏度为32.2。Ag改性的纳米棒材料仍对乙醇和丙酮气体有较好响应,更重要的是降低了测试的工作温度(217和252℃),并提高了对甲醛气体的灵敏度。SnO_2复合WO_3/C材料进一步提高了测试甲醛气体的灵敏度,在252℃时对1000μL·L~(-1)甲醛气体的灵敏度达到9.3,而ZnO复合WO_3/C材料较大提高了对乙醇、丙酮、甲醛气体灵敏度,在330℃时,对1000μL·L~(-1)乙醇和丙酮灵敏度分别为100.0,105.0,对370μL·L~(-1)甲醛灵敏度达到33.4,且三种气体的最低检测限分别为0.1、0.1、0.037μL·L~(-1)。
In this paper, single crystal hexagonal phase of WO_3/C nanorods were synthesized by hydrothermal method with graphite flake as induced agent, which was then used to prepare the Ag modified WO_3 nanorods and SnO_2(or ZnO)-WO_3/C composites. These materials were characterized by TG-DTA, XRD, XPS, IR, BET, SEM and TEM, respectively. Their thick film-type gas sensors were fabricated and their gas sensitivities to ethanol, acetone and formaldehyde were measured.
     The sensitivity of WO_3/C nanorods to 1000μL·L~(-1) ethanol is 79.3 at the working temperature of 290℃, while the sensitivity to 1000μL·L~(-1) acetone is 32.2 at the working temperature of 330℃. It is interesting to note that the Ag modified WO_3 nanorods still exhibit good response to ethanol and acetone with lower working temperature (217 and 252℃) and could improve sensitivity to formaldehyde. The SnO_2-WO_3/C composites further improved the sensitivity to formaldehyde, and the sensitivity of the SnO_2-WO_3/C based sensor to 370μL·L~(-1) formaldehyde is 9.3 at 252℃. In comparison, ZnO-WO_3/C composites clearly improved the sensitivity to the gases of ethanol, acetone and formaldehyde. The sensitivities to 1000μL·L~(-1) ethanol and acetone is 100.0 and 105.0 whereas the sensitivity to 370μL·L~(-1) formaldehyde is 33.4. It can detect the gas concentration of the three aforementioned gases as low as 0.1, 0.1 and 0.037μL·L~(-1), respectively.
引文
[1] Rout C.S., Hegde M., Rao C.N.R. H2S sensors based on tungsten oxide nanostructures[J]. Sensors and Actuators B, 2008, 128(2): 488–493.
    [2] Morales W., Cason M., Olawunmi A., Norma R.Combustion Synthesis and characterization of nanocrystalline WO_3 [J]. J.Am. Chem. Soc. 2008, 130(20): 6318–6319.
    [3] Szila′gyi I.M., Madara′sz J., Pokol G. Stability and controlled composition of hexagonal WO_3[J]. Chem. Mater, 2008, 20(12): 4116–4125.
    [4] Gua Z.J., Li H.Q., Zhai T.Y., Yang W.S. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals [J]. Journal of Solid State Chemistry, 2007, 180(1): 98–105.
    [5]徐宇兴,唐子龙,张中太.氧化钨纳米线的制备及表征和一氧化碳的气敏性能[J].硅酸盐学报,2009,37(3): 387-391.
    [6] Baek Y.H., Yong K.J. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO_3 powder [J]. J. Phys. Chem. C, 2007, 111(3): 1213-1218.
    [7] Liu Z.W., Bando Y.S., Tang C.C. Synthesis of tungsten oxide nanowires[J]. Chemical Physics Letters, 2003, 372(1):179–182.
    [8] Phuruangrat A., Ham D.J., Hong S.J. Synthesis of hexagonal WO_3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction[J]. J. Mater. Chem., 2010, 20, 1683–1690.
    [9] Wang J., Khoo E., Lee P.S. Synthesis, assembly, and electrochromic properties of uniform crystalline WO_3 nanorods[J]. J. Phys. Chem. C, 2008, 112(37): 14306–14312.
    [10] Choi H.G., Jung Y. H., Kim D. K.Y. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. J. Am. Chem. Soc, 2005, 88(6): 1684–1686.
    [11] Xiao Z.D., Zhang L.D., Wang Z.Y. Low-temperature synthesis and structural characterization of single-crystalline tungsten oxide nanorods[J]. Materials Letters, 2007, 61(8): 1718–1721.
    [12] Shankar N., Yu M.F., Vanka S.P. Synthesis of tungsten oxide (WO_3) nanorods using carbon nanotubes astemplates by hot filament chemical vapor deposition [J]. Materials Letters, 2006, 60(6): 771–774.
    [13] Lou X.W., Zeng H. C. An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution[J]. Inorg. Chem, 2003, 42(20): 6169-6171.
    [14] Li Y.B., Bando Y., Golberg D. WO_3 nanorods/nanobelts synthesized via physicalvapor deposition process[J]. Chemical Physics Letters, 2003, 367(1): 214–218.
    [15] Song X.C., Zhao Y., Zheng Y.F. Hydrothermal synthesis of tungsten oxide nanobelts [J]. Materials Letters, 2006, 60(28): 3405–3408.
    [16]嵇天浩,侯少凡,杜海燕.六方相WO_3纳米带的制备与表征[J]. Chinese Journal Of Inorganic Chemistry, 2005, 25(5): 818-822.
    [17] Wang S.L., He Y.H., Huang B.Y. Formation and growth mechanism of tungsten oxide microtubules[J]. Chemical Physics Letters, 2006, 427(4): 350–355.
    [18] Wu Y., Xi Z.H., Zhang G.M. Growth of hexagonal tungsten trioxide tubes[J]. Journal of Crystal Growth, 2006, 292(1): 143–148.
    [19] Wang Z.X., Zhou S.X., Wu L.M. Preparation of rectangular WO_3·H_2O nanotubes under mild conditions[J]. Adv. Funct. Mater, 2007, 17(11): 1790–1794.
    [20] He Y.P., Zhao Y.P. Near-infrared laser-induced photothermal coloration in WO_3·H_2O nanoflakes[J]. J. Phys. Chem. C, 2008, 112(1): 61-68.
    [21] Zhou L., Zou J., Yu M.M., Lu P. Green synthesis of hexagonal-shaped WO_3·0.33H_2O nanodiscs composed of nanosheets[J]. Crystal Growth & Design, 2008, 8(11): 3993-3998.
    [22] Ko R.M., Wang S.J., Tsai W.C. The evolution of tungsten oxide nanostructuresfrom nanowires to nanosheets[J]. Cryst Eng Comm, 2009, 11(8): 1529–1531.
    [23]宋涛,丘泰,沈春英. W/O型微乳法制备超细片状WO_3的研究[J]. Journal of Materials Science & Engineering, 2007, 25(1): 102–104.
    [24] Liao C.C., Chen F.R., Kai J.J. Electrochromic properties of nanocomposite WO_3 films[J]. Solar Energy Materials & Solar Cells, 2007, 91(14): 1282–1288.
    [25] Djaoued Y., Priya S., Balaji S. Low temperature synthesis of nanocrystalline WO_3 films by sol–gel process[J]. Journal of Non-Crystalline Solids, 2008, 354(2): 673–679.
    [26] Tong M.S., Dai G.R., Gao D.S. WO_3 Thin film sensor prepared by sol–gel technique and its low-temperature sensing properties to trimethylamine[J]. Materials Chemistry and Physics, 2001, 69(1): 176–179.
    [27] Cantalini C., Sum H.T., Faccio M. NO_2 sensitivity of WO_3 thin film obtained by high vacuum thermal evaporation[J]. Sensors and Actuators B, 1996, 31(1): 81-87.
    [28] Cui X.Z., Zhang H., Dong X.P. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO_3 and WO_3/C composites[J]. J. Mater. Chem, 2008, 18(30): 3575–3580.
    [29] Teoh L.G., Shieh J., Lai W H. Structure and optical properties of mesoporous tungsten oxide[J]. Journal of Alloys and Compounds, 2005, 396(1): 251–254.
    [30] Cheng W., Baudrin M., Dunna B. Synthesis and electrochromic properties of mesoporous tungsten oxide[J].J. Mater. Chem, 2001, 11(1): 92-97.
    [31] Hu L.H., Ji H.F., Jiang H. Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides[J]. J. Phys. Chem. C, 2007, 111(42): 15173-15184.
    [32] Yu J.G., Qi L.F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity[J]. Journal of Hazardous Materials, 2009, 169(6): 221-227.
    [33] Zhao Z.G., Miyauchi M. A novel visible-light-driven photochromic material withhigh-reversibility:tungsten oxide-based organic–inorganic hybrid microflowers[J]. Chem. Commun, 2009, 16: 2204–2206.
    [34] Liu Z.F., Miyauchi M., Yamazaki T. Facile synthesis and NO_2 gas sensing of tungsten oxide nanorods assembled microspheres[J]. Sensors and Actuators B, 2009, 140(2): 514–519.
    [35] Lee C.Y., Kim S.J., Hwang I.S. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO_3 hollow microspheres[J]. Sensors and Actuators B, 2009, 142(1): 236–242.
    [36] Chen D., Ye J.H. Hierarchical WO_3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv. Funct. Mater, 2008, 18(13): 1922–1928.
    [37] Su X.T., Xiao F., Lin L., Jian J.K. Hydrothermal synthesis of uniform WO_3 submicrospheres using thiourea as an assistant agent[J]. Matericals Characterization, 2010, 61(8): 831– 834.
    [38] Gibot P., Comet M., Vidal L. Synthesis of WO_3 nanoparticles for superthermites by the template method from silica spheres [J]. Solid State Sciences, 2011, 13(5): 908-914.
    [39] Lv K.Z. Li J., Qing X.X. Synthesis and photo-degradation application of WO_3/TiO_2 hollow spheres[J]. Journal of Hazardous Materials, 2011, 189(1): 329–335.
    [40] Lu X.F., Liu X.C., Zhang W.J. Large-scale synthesis of tungsten oxide nanofibers by electrospinning[J]. Journal of Colloid and Interface Science,2006, 298(2): 996–999.
    [41] Zhao Z.G., Miyauchi M. A novel visible-light-driven photochromic material with high-reversibility:tungsten oxide-based organic–inorganic hybrid microflowers[J]. Chem. Commun, 2009: 2204–2206.
    [42] Zhang Y., Chen Y.G., Liu H. Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: construction, phase transition, and voltammetric behavior[J]. J. Phys. Chem. C, 2009, 113(5): 1746–1750.
    [43] Park S. Y., Lee J.M., Noh C.H. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies[J]. J. Mater. Chem, 2009, 19(42): 7959–7964.
    [44] Wang J.M., Khoo E., Lee P. S. Synthesis, assembly, and electrochromic properties of uniform crystalline WO_3 nanorods[J]. J. Phys. Chem. C, 2008, 112(37): 14306–14312.
    [45] Liao C.C., Chen F.R., Kai J.J. Electrochromic properties of nanocomposite WO_3 films[J]. Solar Energy Materials & Solar Cells, 2007, 91(14): 1282–1288.
    [46] Cheng W., Baudrin E., Dunna B. Synthesis and electrochromic properties of mesoporous tungsten oxide[J]. J. Mater. Chem, 2001, 11(1): 92-97.
    [47] Yang Z. L., Pu H.T., Yin J.L. Preparation and electrochromic property of covalently bonded WO_3/polyvinylimidazole core-shell microspheres[J]. Journal of Colloid and Interface Science, 2005, 292(1): 108–112.
    [48] Zheng H.T., Mathe M. Hydrogen evolution reaction on single crystal WO_3/C nanoparticles supported on carbon in acid and alkaline solution international[J]. Journal of Hydrogen Energy, 2011, 36(3): 1960-1964.
    [49] Moralesd W., Cason M., Aina O. Combustion synthesis and characterization of nanocrystalline WO_3[J]. J. Am.Chem. Soc, 2008, 130(20): 6318–6319.
    [50]邹丽霞,丁慧玲,董丽君. WO_3·H_2O纳米线阵列的制备及其光催化活性[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 123-128.
    [51] Yu J.G, Qi L.F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity[J]. Journal of Hazardous Materials, 2009, 169(1): 221-227.
    [52] Yu J.G., Qi L.F., Cheng B. Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres[J]. Journal of Hazardous Materials, 2008, 160(2): 621–628.
    [53] Miseki Y.G., Kusama H., Sugihara H. Cs-modified WO_3 photocatalyst showingefficient solar energy conversion for O_2 production and Fe (III) ion reduction under visible light[J]. J. Phys. Chem. Lett, 2010, 1(8): 1196–1200.
    [54] Ham D. J., Phuruangrat A., Thongtem S. Hydrothermal synthesis of monoclinic WO_3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water[J]. Chemical Engineering Journal, 2010, 165(1): 365–369.
    [55] Yan H.J., Zhang X.J., Zhou S.Q. Synthesis of WO_3 nanoparticles for photocatalytic -O_2 tvolution by thermal decomposition of ammonium tungstate loading on g-C3N4[J]. Journal of Alloys and Compounds, 2011, 509(24): 232–235.
    [56] Leghari S. A. K., Sajjad S., Chen F. WO_3/TiO_2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst[J]. Chemical Engineering Journal, 2011, 166(3): 906–915.
    [57] Siciliano T., Tepore, Micocci G. WO_3 Gas sensors prepared by thermal oxidization of tungsten[J]. Sensors and Actuators B, 2008, 133(1): 321–326.
    [58] Ionescu R., Hoel C.G. Granqvist ethanol and H_2S gas detection in air and in reducing and oxidizing ambience: application of pattern recognition to analyse the out put from temperature-modulated nanoparticulate WO_3 gas sensors[J]. Sensors and Actuators B, 2005, 104(1): 124–131.
    [59] Azad A.M., Hammoud M. Fine-tuning of ceramic-based chemical sensors via novel microstructural modification I: low level CO sensing by tungsten oxide, WO_3[J]. Sensors and Actuators B, 2006, 119(2): 384–391.
    [60] Wei X.l., Shen P. K. Electrochromics of single crystalline WO_3·H_2O nanorods[J]. electrochemistry communications, 2006, 8(2): 293–298.
    [61] Yang J.I., Lim H., Han S.D. Influence of binders on the sensing and electrical characteristics of WO_3-based gas sensors[J]. Sensors and Actuators B, 1999, 60(1): 71–77.
    [62] Bai S.L., Li D.Q., Han D.M. Preparation, characterization of WO_3–SnO_2 nanocomposites and their sensing properties for NO_2[J]. Sensors and Actuators B,2010, 150(2): 749–755.
    [63] Jun Z., Liu X.H., Xu M. Pt clusters supported on WO_3 for ethanol detection[J], Sensors and Actuators B, 2010, 147(1): 185–190
    [64] Rout C.S., Hegde M., Rao C.N.R. H_2S Sensors Based on tungsten oxide nanostructures[J]. Sensors and Actuators B, 2008, 128(2): 488–493.
    [65] Bal′azsi C., Wang L.S., Zayim E.O. Nanosize hexagonal tungsten oxide for gas sensing applications[J]. Journal of the European Ceramic Society, 2008, 28 (5):913–917.
    [66] Boulmani R., Bendahan M., Lambert-Mauriat C. Correlation between rf-sputtering parameters and WO_3[J]. Sensors and Actuators B, 2007, 125(2): 622–627.
    [67] Blo M., Carotta M.C., Galliera S. Synthesis of pure and loaded powders of WO_3 for NO_2 detection through thick film technology[J]. Sensors and Actuators B, 2004, 103(1): 213–218.
    [68] Galatsis K., Li Y.X., Wlodarski W. Comparison of single and binary oxide MoO_3, TiO_2 and WO_3 sol-gel gas sensors[J]. Sensor and Actuators B, 2002, 83(1): 276-280.
    [69] Bendahan M., Gu′erin J., Boulmani R. WO_3 sensor response according to operating temperature: experiment and modeling[J]. Sensors and Actuators B, 2007, 124(1): 24–29.
    [70] Sriyudthsak M., Supothina S. Humidity-insensitive and low oxygen dependence tungsten oxide gas sensors[J]. Sensors and Actuators B, 2006, 113(1): 265–271.
    [71] Cantalini C., Wlodarski W., Li Y. Investigation on the O_3 sensitivity properties of WO_3 thin films prepared by sol–gel, thermal evaporation and r.f. sputtering techniques[J]. Sensors and Actuators B, 2000, 64(1): 182–188.
    [72] Reyes L.F., Hoel A., Saukko S. Gas sensor response of pure and activated WO_3 nanoparticle films made by advanced reactive gas deposition[J]. Sensors and Actuators B, 2006, 117(1): 128–134.
    [73] Hoel A., Reyes L.F., Saukko S. Gas sensing with films of nanocrystalline WO_3 and Pd made by advanced reactive gas deposition[J]. Sensors and Actuators B, 2005, 105(2): 283–289.
    [74] Cantalini C., Sum H.T., Faccio M. NO_2 Sensitivity of WO_3 thin film obtained by high vacuum thermal evaporation[J]. Sensors and Actuators B, 1996, 31(1): 81-87.
    [75] Ponzoni A., Comini E., Ferroni M. Nanostructured WO_3 deposited by modified thermal evaporation for gas-sensing applications[J]. Thin Solid Films, 2005, 490 (1): 81– 85.
    [76] Teoh L.G., Hon Y.M., Shieh J. Sensitivity properties of a novel NO_2 gas sensor based on mesoporous WO_3 thin film[J]. Sensors and Actuators B, 2003, 96(1): 219–225.
    [77] Stankova M., Vilanova X., Calderer J. Sensitivity and selectivity improvement of rf sputtered WO_3 microhotplate gas sensors[J]. Sensors and Actuators B, 2006, 113(1): 241–248.
    [78] Jin C.J., Yamazakia T., Shirai Y. Dependence of NO_2 gas sensitivity of WO_3 sputtered films on film density[J]. Thin Solid Films, 2005, 474(1): 255– 260.
    [79] Khatko V., Vallejos S., Calderer J. Gas sensing properties of WO_3 thin films deposited by rf sputtering[J]. Sensors and Actuators B, 2007, 126(2): 400–405.
    [80] Ippolito S.J., Kandasamy S., Kalantar-zadeh K. Hydrogen Sensing characteristics of WO_3 thin film conductometric sensors activated by Pt and Au catalysts[J]. Sensors and Actuators B, 2005, 108(1): 154–158.
    [81] Liu Z.F., Yamazaki T., Shen Y,B. Influence of annealing on microstructure and NO_2-sensing properties of sputtered WO_3 thin films[J]. Sensors and Actuators B, 2007, 128(1): 173–178.
    [82] Stankova M., Vilanova X., Llobet E. Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO_3 thin-film sensors[J]. Sensors and Actuators B, 2005, 105(2): 271–277.
    [83] Kim T.S., Yoo K. S. Sensing Characteristics of dc reactive sputtered WO_3 thin films as an NOx gas sensor[J]. Sensors and Actuators B, 2000, 62(2): 102–108.
    [84] Penza M., Martucci C., Cassano G. NOx Gas sensing characteristics of WO_3 thin films Activated by Noble Metals (Pd, Pt, Au) layers[J]. Sensors and Actuators B, 1998, 50: 52–59.
    [85] Kim T.S., Kim Y.B., Yoo K. S. Sensing characteristics of dc reactive sputtered WO_3 thin films as an NOx gas sensor[J]. Sensors and Actuators B, 2000, 62(6): 102–108.
    [86] Chen L., Tsang S. C. Ag doped WO_3-based powder sensor for the detection of NO gas in air[J]. Sensor and Actuators B, 2003, 89(1): 68-75.
    [87] Choi Y.G., Sakai G., Shimanoe K. Wet Process-prepared thick films of WO_3 for NO_2 sensing[J]. Sensors and Actuators B, 2003, 95(1): 258–265.
    [88] Li X.L., Lou T.J., Sun X.M. Highly sensitive WO_3 hollow-sphere gas sensors[J]. Inorganic Chemistry, 2004, 43(17): 5442-5449.
    [89] Gillet M., Masek K., Potin V. An epitaxial hexagonal tungsten bronze as precursor for WO_3 nanorods on Mica[J]. Journal of Crystal Growth, 2008, 310(14): 3318– 3324.
    [90] Zhu K., He H., Xie S.H. Crystalline WO_3 nanowires synthesized by templating Method[J]. Chemical Physics Letters, 2003, 377(3): 317-321.
    [91] Cheng L.F., Zhang X.T., Liu B. Template synthesis and characterization of WO_3/TiO_2 composite nanotubes[J]. Nanotechnology, 2005, 16(8): 1341-1345.
    [92] Lai W. H., Shieh J., Teoh L.G. Fabrication of one-dimensional mesoporous tungsten oxide[J]. Nanotechnology, 2006, 17(1): 110-115.
    [93] Therese H. A., Li J.X. Facile large scale synthesis of WS2 nanotubes from WO_3 nanorods prepared by a hydrothermal route[J]. Solid State Sciences, 2005, 7(1): 67–72.
    [94] Mo R.F., Jin G.Q., Guo X.Y. Morphology evolution of tungsten trioxide nanorodsprepared by An additive-free hydrothermal route[J]. Materials Letters, 2007, 61(18): 3787–3790.
    [95] Cao B.B., Chen J.J., Tang X.J. Growth of monoclinic WO_3 nanowire array for highly sensitive NO_2 detection[J]. J. Mater. Chem, 2009, 19(16): 2323–2327.
    [96] Zhao Y.M., Zhu Y.Q. Room Temperature ammonia sensing properties of W18O49 nanowires[J]. Sensors and Actuators B, 2009, 137(1): 27–31.
    [97] Rout C. S., Govindaraj A., Rao C. N. R. High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires[J]. J. Mater. Chem, 2006, 16(40): 936–941.
    [98] Qin Y.X., Hu M., Zhang J. Microstructure characterization and NO_2-sensing properties of tungsten oxide nanostructures[J]. Sensors and Actuators B, 2010, 150(1): 339-345.
    [99] Wang G., Ji Y., Huang X.R. Fabrication and characterization of polycrystalline WO_3 nanofibers and their application for ammonia sensing[J]. J. Phys. Chem. B, 2006, 110(47): 23777-23782.
    [100] Kim Y.S. Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors[J]. Sensors and Actuators B, 2009, 137(1): 297–304.
    [101] Xiang Q., Meng G. F., Zhao H. B. Au nanoparticle modified WO_3 nanorods with their enhanced properties for photocatalysis and gas sensing[J]. J. Phys. Chem. C, 2010, 114(5): 2049–2055.
    [102] Shen X.P., Wang G.X., Wexler D. Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays[J]. Sensors and Actuators B, 2009, 143(1): 325–332.
    [103] Hieu N. V., Quang V. V., Hoa N. D. Preparing large-scale WO_3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route[J]. Current Applied Physics, 2011, 11(3): 657-661.
    [104] Stoycheva T., Vallejos S., Calaerer J. Characterization and gas sensing propertiesof intrinsic and Au doped WO_3 annostructures deposited by AACVD technique[J]. Procedia Engineering, 2010, 5: 131-134.
    [105] Leng J.Y., Xu X.J., Lv N. Synthesis and gas-sensing characteristics of WO_3 nanofibers via electrospinning[J]. Journal of Colloid and Interface Science, 2011, 356(1): 54–57.
    [106] Ding X.H., Zeng D.W., Zhang S.P. C-doped WO_3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature [J].Sensors and Actuators B, 2011, 155(1): 86–92.
    [107] Mwakikung B.W., Sideras-Haddad E., Forbes A. Raman spectroscopy of WO_3 nano-wires and thermo-chromism study of VO_2 belts produced by ultrasonic spray and laser pyrolysis techniques[J]. Phys. Stat. Sol., 2008, 205(1): 150–154.
    [108] Chen M., Wang X., Yu Y.H. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Applied Surface Science, 2000, 158: 134-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700