纳米SnO_2气敏膜的制备技术与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过丝网印刷技术和气溶胶辅助化学气相沉积技术研究了气敏膜的制备及膜的气敏特性。
     采用水热法分别制备纳米SnO2和In2O3粉体,通过加入微量In2O3掺杂,并调节玻璃粉加入量为5 wt%,以丝网印刷技术制备气敏厚膜,烧结温度调节为700℃。XRD、SEM测试表明厚膜表面的SnO2平均粒径为10 nm,厚膜表面为多孔结构。气敏测试结果表明:In2O3掺杂为7 wt%的厚膜元件有较好气敏性能,在40℃下能识别2 ppm的H2S气体,灵敏度为2.66;对30 ppm H2S灵敏度可达621。在热清洗后有较好的稳定性。通过水热掺杂法制备了In2O3和TiO2、活性Al2O3掺杂的厚膜气敏元件,分别可以识别300 ppm和800 ppm的甲烷气体。
     以SnCl2的乙醇溶液为前驱物,采用气溶胶化学气相沉积的方法研究了气敏薄膜的制备,系统研究了沉积时间、沉积温度、前驱物的浓度对薄膜电阻、气敏性能的影响。优化得出了制备纯SnO2的最佳工艺流程。XRD测试表明薄膜的主要成分为SnO2,无杂质。测试表明薄膜在25℃下对50 ppm H2S气体灵敏度可达97,无需热清洗电压变化值可以恢复90%以上。
     以Cu(CH3COO)2的乙醇溶液为前驱溶液利用气溶胶化学气相沉积方法实现了CuO掺杂改性。研究了掺杂方式、沉积时间、退火温度对薄膜气敏性能的影响。优化的掺杂工艺流程。SEM分析表明经过掺杂后的薄膜为多孔状薄膜,粒径为约为40 nm。经过掺杂后的薄膜在室温下对H2S气体的响应特性、恢复特性、稳定性都有很大改善。薄膜在25℃下对5 ppm和100 ppm的H2S气体灵敏度分别为3.7和928,室温下对100ppm H2S气体响应时间和恢复时间为100 s和130 s,无需加热清洗。最后,从缺陷化学的角度对薄膜的H2S气体的敏感机理进行了分析。
In this paper, screen-printing technology and Aerosol-Assisted Chemical vapor deposition were used to fabricate gas sensor, the properties of the sensors were deeply researched.
     Nanometer SnO2 and In2O3 powder were prepared through hydrothermal method. SnO2 powder doped with microdosage nanometer In2O3 and Sb2O3 was prepared into paste, then, was fabfricated into thick film and annealed at 700℃。XRD、SEM were used to analyse the microstructure of the films, the result showed that the particle size of the SnO2 nanoparticles on the film was 10 nm, the surface of film was porous. Gas-sensing testing of the film indicated that sensors which doped with 7 wt% In2O3 obtained the best gas-sensing properties: the film could identify 2 ppm H2S at 40℃and the sensitivity was 2.66; To 30 ppm H2S, the sensitivity reached 621, the sensor responsed quickly and could recover well after thermal cleaning. In2O3 and TiO2, Al2O3 doped thick films also were fabricated through hydrothermal, the sensors could detect 300 ppm and 500 ppm CH4 gas.
     Alcohol solution of SnCl2 was used as precursor, thin films were prepared by AACVD. The effect of depositing time, depositing temperature, concentration of solution on the conductivity and gas-sensing properties of the film were studied. The optimizing preparation method was generalized. The thin films also obtained excellent gas-sensing properties: the sensitivity to 50 ppm H2S at 25℃reached 97, the voltage change could response 90% without thermal cleaning.
     Alcohol solution of Cu(CH3COO)2 was used as precursor, CuO doped thin films were fabricated through AACVD. The effect of doping mode, depositing time, annealing temperature on gas-sensing properties of the film were studied. The optimizing doping process was concluded. SEM analysis indicated that the thin films were multihole, the average grain size was about 40 nm. The recovering/response properties to H2S at room temperature of the CuO doped thin films showed great improvement. At 25℃,the sensitivity to 5 ppm and 100 ppm H2S were 3.7 and 928 individually. Without thermal cleaning, the response time and the recovery time to 100 ppm H2S gas were100 s and 130 s individually. At last, the gas-sensing mechanism to H2S gas of thin film prepared by AACVD was analyzed by non-stoichiometric chemistry.
引文
[1]陈长庆,胡明,吴霞宛.气敏传感器的发展.材料导报, 2003, 17(1): 33~35
    [2]李魏.基于检测甲烷气体传感器的制备和研究: [硕士论文].福州:福州大学图书馆, 2006.
    [3] Liu Y. L., Liu Z. M., Yang H. F., et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B, 2005, 107: 600~604
    [4]贾良菊,应鹏展,许林敏等.气敏传感器的研究现状与发展趋势.煤矿机械, 2005, (4): 3~5
    [5]蔡晔,葛忠华,陈银飞.金属氧化物半导体气敏传感器的研究和开发进展.化工生产与技术, 1997, (14): 29~35
    [6]惠春,徐爱兰,陈寿田.纳米尺度下的钯元素的催化效应及气敏机理.稀有金属材料与工程, 2002, 31(4): 315~318
    [7]孙良彦,刘正绣,吴家琨等.气敏元件的表面修饰技术的研究与应用.郑州轻工业学院学报, 1994, 9(1): 173~178
    [8] Arijit C., Vinay G.., Sreenivas K. Enhanced Catalytic Activity of Ultrathin CuO Island on SnO2 Films for Fast Response H2S Gas Sensors. IEEE sensors journal, 2003, 3(6): 680~687
    [9] Patil L. A., Patil. D. R., Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sensors and Actutors B, 2006, 120: 316~323
    [10] Graf M., Frey U., Reichel P., et al. Monitoring of Environmentally Relevant Gases by a Digital Monolithic Metal-Oxide Microsensor Array. IEEE, 2004, 2(4): 776~770
    [11] Mauro E., Aaniola F., Simonetta C., et al. Hall Effect Measurements in Gas Sensors Based on Nanosized Os-Doped sol-gel Derived SnO2 Thin Films. 2003, 3(6): 827~835
    [12]徐红燕,李梅,刘秀琳等.水热处理对二氧化锡厚膜气敏传感器性能的影响.功能材料, 2005, (9): 150~155
    [13]惠春,陈寿田,徐爱兰等.半导体SnO2纳米晶态粉体显微结构对气敏传感器性能的影响.功能材料, 2000, (02): 178~181
    [14] Xu J. Q., Wang X. H., Shen J. N. Hydrothermal synthesis of In2O3 for detecting H2S in air. Sensors and Actuators B, 2006, (115): 642~646
    [15]傅军.厚膜型气敏器件膜厚影响气体检测灵敏度的研究.半导体技术, 2000, 25(2): 23~36
    [16] Bai S. L., Tong Z. F., Li D. Q., et al. Sensing characterization of Sn/In/Ti nanocomplex Oxides for CO, CH4 and NO2. Sciencei in China Series E: Technological Science, 2007, 50(1): 18~26
    [17]李松, Martin J., Harald B.金属氧化物气体传感器阵列的制备.传感技术学报, 2005, 18(1): 36~37
    [18] Lee D. S., Kim Y. T, Huh J. S., et al. Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films, 2002, 416(1): 271~278
    [19] Stankova M., Ivanov P., Llobet E., et al. Sputtered and screen-printed metal oxide-based integrated micro-sensor array for the quantitative analysis of gas mixtures, Sensors and Actutors B, 2006, 103: 23~30
    [20]刘艳丽.低维半导体氧化物的合成及气体传感器的研制: [博士论文].湖南:湖南大学图书馆, 2005.
    [21]徐滨士.纳米表面工程.第一版.北京:化学工业出版社, 2004. 24~26
    [22] Nandini D., Asim Halder K., Jalauddin M., et al. Sonochemically prepared In-dioxide based composition for methane sensor. Materials Letters, 2006, 60(8): 991~994
    [23] Nicolas S., Patrick G., Lauren P. G., et al. Preparation and haracterization of high surface area stannic oxides: Stuctural, textural and semiconducting properties. Sensors and Actutors B, 2002, (1): 176~188
    [24] Manorama S. V., Gopal Reddy C. V., Rao V. J. Tin dioxide nanoparticles prepared by sol-gel method for an improved hydrogen sulfide sensor. NanostructuredMaterials, 1999, 11(5): 643~649
    [25] Adarnyan A. Z., Adrnyan Z. N., Aroutiounian. V. M., et al. Sol-gel derived thin-film semiconductor hydroyen sensor. International Journal of Hydrogen Energy, 2007, 32: 4101~4108
    [26] Shen Y. B., Toshinari Y. Z., Liu Z. F. Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature. Thin Solid Films, 2008, (1): 1~3
    [27] Boben T., Skariah B., Radha K. Influence of Cs doping in spray deposited SnO2 thin films for LPG sensors. Sensors and Actutors B, 2008, (1): 1~4
    [28] Sobia A., Russell B., Christopher S., et al. The APCVD of tungsten oxide thin films from reaction of WCl6 with ethanol and results on their gas-sensing properties. Polyhedron, 2007, (26): 1493~1498
    [29]李建平.微结构气体传感器与电子鼻研究: [博士学位论文].合肥:中国科学院电子学研究所, 2000.
    [30]施尔畏,夏长泰,王步国等.水热法制备陶瓷粉体中的聚集生长.中国科学(E辑), 1997, 27: 126~133
    [31]郑燕青.低受限度体系同质体生长机理研究: [博士论文].上海:中国科学院上海硅酸盐研究所, 2000.
    [32] Zheng Y. Q., Shi E. W., Cui S. X., et al. Hydrothermal Prepration of Nanosized Brokite Powder. J.Am.Ceram.Soc, 2000, 83: 2634~2634
    [33]施尔畏,陈之战,元如林等.水热结晶学.第一版.北京:科技出版社, 2004. 216~218
    [34] Ivanovs kaya M., Gurlo A., Bogdanov P. Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors. Sensors and Actuators B, 2001, 77: 264~267
    [35]牛新书,仲皓想. In2O3纳米粉体的制备及其气敏性能的研究.电子元件与材料. 2005, 24(11): 10~11
    [36] Hiroyuki Y., Koji M., Norio M., et al. Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide. Sensors and Actuators B, 2000, 65: 39~41
    [37] Yang H., Zhang X. C., Tang A. D. Mechanosynthesis and gas-sensing properties of In2O3/SnO2 nanocomposites. Nanotechnology, 2006, 17: 2860~2864
    [38]龚树萍,刘欢,周东祥.纳米氧化锡气敏材料及其传感器阵列的研究进展.无机材料学报, 2006, 21(3): 521~526
    [39]林光明,杨华,周歧发,张进修.掺杂对纳米SnO2晶化及阻温特性的影响.传感技术学报, 1996, (1): 50~54
    [40] Saha M., Baneriee A., Halder A. K., et al. Effect of alumina addition on methane sensitivity of tin dioxide thick films sensors. Sensors and Actuators B, 2001, 79: 192~195
    [41] Bose S., Chakraborty S., Ghosh B. K., et al. Methane sensitivity of Fe-doped SnO2 thick films. Sensors and Actuators B, 2001,105: 346~350
    [42] Nandini D., Asim K., Jalaluddin M., et al. Sonochemically prepared tin-dioxide based composition for methane sensor. Materials Letters, 2006, 60: 991~994
    [43] Chen A. F., Huang X. F., Tong Z. F., et al. Preparation, characterization and gas-sensing properties of SnO2-In2O3 nanocomposite oxides. Sensors and Actuaators B, 2006, 115: 316
    [44]姜银珠.气溶胶化学气相淀积及其制备陶瓷膜燃料电池功能层研究: [博士学位论文].合肥:中国科学技术大学图书馆, 2007.
    [45] Hou X., Choy. K. L. Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition. Chemical Vapor Deposition, 2006, 12: 583~596
    [46] Ivashchenco A. I., Khoroshun E. V., Kiosse G. A., et al. Relations between structural and electronic properties of SnO2 polycrystalline thin film prepared by the aerosol MOCVD technique, 1995, 263: 122~126
    [47] Salehi A. Selectivity enhancemet of indium-doped SnO2 gas sensors. Thin Solid Films, 2002, 416: 260~263
    [48] Salehi A., Gholizade M., Gas-sensing properties of indium-doped SnO2 thin films with variations in indium concentration. Sensor and Actuators B, 2003, 89: 173~179
    [49] Liu Y., Erik K., Liu M. A Highly Sensitive and Fast-Responding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition. Chem.Mater, 2005, 17: 3997~4000
    [50] Michael Q., Julian S.半导体制造技术.第一版.韩郑生等译.北京:电子工业出版社, 2006. 242~245
    [51]孟广耀.化学气相沉积与无机新材料.第一版.北京:科学出版社,1984. 141~150
    [52]郑伟涛.薄膜材料与薄膜技术.第一版.北京:化学工业出版, 2004. 142~156
    [53] Fang G. J., Liu Z. L., Liu C. Q, et al. Room temperature H2S sensing properties and mechanism of CeO2-SnO2 sol-gel thin films. Sensors and Actuators B, 2000, 66(1-3): 46~48
    [54] Sarala Devi G., Manorama S., Rao V. J. High sensitivity and selectivity of an SnO2 sensor to H2S at around 100℃. Sensors and Actuators B, 1995, 28(1-3): 31~37
    [55] Patil L. A., Patil D. R. Heterocontact type Cuo-modified SnO2 Sensor for the detection of a ppm level H2S gas at room temperature. Sensors and Actuators B, 2006, 120: 316~323
    [56] Gupta V., Mozumdar. S., Chowdhuri A., et al. Influence of CuO catalyst in the nanoscale range on SnO2 surface for H2S gas sensing applications. Pramana-Journal of Physics, 2005, 65: 647~652
    [57]陈艾.敏感材料与传感器.第一版.北京:化学工业出版社. 2004. 191~199
    [58]周东祥,张绪礼,李标荣.半导体陶瓷及应用.第一版.武汉:华中理工大学出版社. 1991. 5~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700