化学与沉积CIS太阳能电池功能层薄膜及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CuInS2是一种性能优越的太阳能电池材料,其具有光吸收率高,禁带宽度接近太阳能电池最佳禁带宽度,直接带隙半导体,即可制成p型薄膜也可做成n型薄膜,理论转化效率高,成本低等特点,被人们称为最有希望的光伏器件材料之一。本文旨在探求应用低能耗、环境友好的化学浴沉积方法,设计合理的实验路线,优化实验参数,制备出高结晶度的硫化铜与氧化锌薄膜,并研究其光学及电学特性。本论文的主要研究内容可分为以下两大部分:
     1.设计反应路线,运用传统化学浴沉积与微波辅助方法成功制备出CuS薄膜,并比较了两种方法制备薄膜的热力学和动力学过程。研究反应时间、溶液pH值以及添加剂等反应参数对制备过程的影响。通过调节这些反应参数有效控制了制备过程,最终制备出结晶良好、符合化学计量比、表面具有特殊形貌的CuS薄膜,并对其带隙与电导率进行了计算。通过改造场发射测试方法对薄膜的场发射性能进行了评价,同时研究了反应时间与络合剂/分散剂的改变对其场发射性能的影响,通过计算薄膜的功函数、几何场增强因子以及有效发射面积,得到影响场发射性能的主导因素。
     2.设计反应路线,运用传统化学浴沉积方法成功制备出ZnO薄膜。研究溅射参数、络合剂与反应溶液环境等反应参数对制备过程的影响。通过调节这些反应参数有效控制了制备过程,最终制备出结晶良好、具有纤锌矿结构的、具有高度(0002)取向的ZnO薄膜,并对其带隙与电导率进行了计算。选取波长为630nm的红光激光器作为光源,对ZnO一维纳米阵列是否存在光陷效应进行了证明。将ZnO进行Al元素的n型掺杂,并利用紫外-可见漫反射光谱对ZnO:Al一维纳米阵列进行了雾度的测试,研究了随着反应时间以及掺杂量的增加雾度的变化规律;对未掺杂ZnO与Al掺杂ZnO一维纳米阵列进行了电阻率和Hall效应的测试,研究了Al掺杂量的增加对薄膜载流子浓度以及迁移率的影响。
CuInS2 is a solar cell materials with superior performance. It has the following advantages, such as: high light absorption rate, its band gap being close to the optimum band gap solar cells, direct band gap semiconductor, being doped to both p-type and n-type semiconductor membranes, the highest theoretical conversion efficiency, and low cost. So, it is known as the most promising material for photovoltaic devices. This article aims to synthesize copper sulfide and zinc oxide thin films with high crystallinity and to study their optical and electrical properties by using low energy, environmentally friendly chemical bath deposition method, designing the experimental program, and optimize the experimental parameters. The main contents of this paper can be divided into two parts:
     1. CuS thin film was successfully prepared using traditional and microwave assisted chemical bath deposition method by designing reaction route, and also thermodynamics and kinetics processes of thin films preparaed by these two methods are compared. The reaction parameters such as: reaction time, pH value, and additive are investigated carefully to see how these parameters influence on the whole preparation process. By adjusting the parameters of these reactions, the preparation processes are under controlled. Therefore, CuS thin films are synthesized with a good crystalline, strict stoichiometric ratio, and a special surface morphology. The correlative optical and electrical properties are tested. Especially, the transmittance and reflection of the thin films are measured and the corresponding band gaps are calculated. Meanwhile, the electric resistivity is measured. The field emission properties of the as-prepared thin films are evaluated through alterating the testing method. The factors affecting on the field emission properties such as reaction time and chelations/additives are researched. Then the dominant factors which affect the field emission properties are derived by calculating the work function, geometric enhancement factor and effective emission area of the thin films.
     2. ZnO 1D nanorod arrays are prepared by designing reaction route, using chemical bath deposition. The reaction parameters such as the parameters of RF-sputtering, the category of the chelation and the environment of the solution are investigated. By adjusting these parameters, the growth of the nanorods are under controlled. A ZnO nanorod arrays with good crystalline, wurtzite structure and high c-axis orientation are obtained. Then, we select a red laser with the wavelength of 630 nm as a light source to prove whether these kind of one-dimensional ZnO arrays have light trapping effect or not. As we all know, the pure ZnO has a low electric resistivity. So, the Al doped ZnO n-type semiconductor is prepared. The haze of ZnO:Al 1D nanorod arrays are investigated by using UV-Vis spectroscopy, and the change of haze with the variation of the reaction time and Al dopant composition are tested. A set of comparative experiments including electrical resistivity test and Hall effect test are carried on both doped ZnO and undoped ZnO. Finally, we study the change of mobility and carrier concentration with the increasement of Al doping on the films.
引文
1 PDF-2 Data Base, Release 1998, International Centre for Diffraction Data, PA, USA
    2 K. Sato, Y. Kudo, S. Kijima, and L. K. Samanta. Characterization of I-III-VI2 Bulk Crystals Grown by Chemical Vapor-Deposition– Application of Phase-Shift-Difference Spectroscopy. Journal of Crystal Growth. 1991,115 (1~4): 740~744
    3 L. Roa, J. C. Chervin, A. Chevy , M. Davila, P. Grima, and J. Gonzalez. Optical Absorption and Raman Scattering Measurements in CuAlSe2 at High Pressure. Physica Status Solidi B-Basic Research. 1996,198 (1): 99~104
    4 W. N. Honeyman and K. H. Wilkinson. Growth and Properties of Single Crystal of Group I-III-VI2 Ternary Semiconductors. Journal of Physics D: Applied Physics. 1971, 4 (8): 1182~1185
    5 S. Chichibu, T. Mizutani, K. Murakami, T. Shioda, T. Kurafuji, H. Nakanishi, S. Niki, P. J. Fons, and A. Yamada. Band Gap Energies of Bulk, Thin-film, and Epitaxial Layers of CuInSe2 and CuGaSe2. Journal of Applied Physics. 1998, 83 (7): 3678~3689
    6 H. Neumann, W. Horig, E. Reccius, H. Sobotta, B. Schumann, and G. Kuhn. Growth and Optical Properties of CuGaTe2 Thin-Films. Thin Solid Films. 1979, 61 (1): 13~22
    7 M. Quintero, C. Rincon, R. Tovar, and J. C. Woolley. Optical-Energy Gap Values and Deformation Potantials in Cu-III-VI2 Chalcopyrite Compounds. Journal of Physics Condensed Matter. 1992, 4 (5): 1281~1289
    8 M. Quintero, J. Gonzalez, and J. C. Woolley. Optical Energy-Gap Variation and Deformation Potentials in CuInTe2. Journal of Applied Physics. 1991, 70 (3): 1451~1454
    9 I. H. Choi, S. H. Eom, and P. Y. Yu. Soft Photon Mode and the Anomalous Temperature Dependence of Band Gap in AgGaS2. Physica Status Solidi B-Basic Research. 1999, 215 (1): 99~104
    10 M. C. Petcu, N. C. Giles, P. G. Schunemann, and T. M. Pollak. Band-Edge Photoluminescence at Room Temperature from ZnGeP2 and AgGaSe2. Physica Status Solidi B-Basic Research. 1996, 198 (2): 881~888
    11 U. N. Roy, B. Mekonen, O. O. Adetunji, K. Chattopahhyay, F. Kochari, Y.Cui, A. Burger, and J.T. Goldstein. Compositional Variations and Phase Stability During Horizontal Bridgman Growth of AgGaTe2 Crystals. Journal of Crystal Growth 2002, 241 (1~2): 135~140
    12 S. H. You, K. J. Hong, B. J. Lee, T. S. Jeong, C. J. Youn, J. S. Park, and S. N. Baek. Temperature Dependence of Band Gap and Photocurrent Properties for the AgInS2 Epilayers Grown by Hot Wall Epitaxy. Journal of Crystal Growth 2002, 245 (3~4): 261~266
    13 A. El-Korashy, M. A. Abdel-Rahim, and H. El-Zahed. Optical Absorption Studies on AgInSe2 and AgInTe2 Thin Films. Thin Solid Films. 1999, 338 (1~2): 207~212
    14 V. Estrella, R. Mejia, M. T. S. Nair, and P. K. Nair. Optical and Electrical Properties of Thallium Sulphide and TlxMySz (M=Cu, Bi, Sb) Thin Films. Modern Physics Letters B 2001, 15 (17~19): 737~740
    15 J. M. Meese, J. C. Manthuruthil, and D. R. Locker. CuInS2 Diodes for Solar-Energy Conversion. Bulletin of American Physical Society. 1975, 20 (4): 696~697
    16 S. Bandyopadhyaya, S. Chaudhuri, and A. K. Pal. Synthesis of CuInS2 Films by Sulphurization of Cu/In Stacked Elemental Layers. Solar Energy Materials and Solar Cells. 2000 , 60 (4): 323~339
    17 S. Kuranouchi and T. Nakazawa. Study of One-Step Electrodeposition Condition for Preparation of CuIn(Se,S)(2) Thin Films. Solar Energy Materials and Solar Cells. 1998 , 50 (14): 31~36
    18 A. M. Martinez, A. M. Fernandez, L. G. Arriaga, and U. Cano. Preparation and Characterization of Cu-In-S Thin Films by Electrodeposition. Materials Chemistry and Physics 2006, 95 (2~3): 270~274
    19 J. A. Hollingsworth, K. K. Banger, M. H. C. Jin, J. D. Harris, J. E. Cowen, E. W. Bohannan, J. A. Switzer, W. Buhro, and A. F. Hepp. Single Source Precursors for Fabrication of I-III-VI2 Thin-Film Solar Cells via Spray CVD. Thin Solid Films. 2003, 431 (1): 63~67
    20 M. H. Jin, K. K. Banger, J. D. Harris, and A. F. Hepp. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors. Materials Science Engineering: B. 2005, 116 (3): 395~401
    21 M. Gossla, T. Hahn, H. Metzner, J. Conrad, and U. Geyer. Thin CuInS2 Films by Three-Source Molecular Beam Depostion. Thin Solid Films. 1995, 268 (1~2): 39~44
    22 O. L. Mauricio and M. A. Arturo. Characterization of CuInS2 Thin Films for Solar Cells Prepared by Spray Pyrolysis. Thin Solid Films. 1998, 330 (2): 96~101
    23 A. N. Tiwari , D. K. Pandya, and K. L. Chopra. Electrical and Optical-Properties of Single-Phase CuInS2 Films Prepared Using Spray Pyrolysis. Thin Solid Films. 1985, 130 (3~4): 217~230
    24 M. Krunks, V. Mikli, O. Bijakina, H. Rebane, A. Mere, T. Varema, and E. Mellikov. Composition and Structure of CuInS2 Films Prepared by Spray Pyrolysis. Thin Solid Films. 2000, 361~362 (1): 61~64
    25 S. Lindroos, A. Arnold, and M. Leskela. Growth of CuS Thin Films by the Successive Ionic Layer Adsorption and Reaction Method. Applied Surface Science. 2000, 158 (1~2): 75~80
    26 S. J. Roh, R. S. Mane, H. M. Pathan, O. S. Joo, and S. H. Han. Rapid Growth of Nanocrystalline CuInS2 Thin Films in Alkaline Medium at Room Temperature. Applied Surface Science. 2005, 252 (5): 1981~1987
    27 Y. Onuma, K. Takeuchi, S. Ichikawa, Y. Suzuki, R. Fukasawa, D. Matono, K. Nakamura, M. Nakazawa, and K. Takei. Preparation and Properties of CuInS2 Thin Film Prepared from Electroplated Precursor. Solar Energy. 2006, 80 (1): 132~138
    28 M. Krunks, O. Kijatkina, A. Mere, T. Varema, I. Oja, and V. Mikli. Sprayed CuInS2 Films Grown under Cu-rich Conditions as Absorbers for Solar Cells. Solar Energy Materials and Solar Cells. 2005, 87 (1~4): 207~214
    29 Y. Yamamoto, T. Yamaguchi, Y. Demizu, T. Tanaka, and A. Yoshida. Fabrication and Characterization of CuIn(SxSe1-x)(2) Thin Films Deposited by RF Sputtering. Thin Solid Films. 1996, 281~282 (1~2): 372~374
    30 S. Nakamura and S. Ando. Preparation of CuInS2 Thin Films by Metal-Organic Decomposition. Journal of Physics and Chemistry of Solids, 2005, 66 (11): 1944~1946
    31 J. J. Qiu, Z. G. Jin, W. B.Wu, and L. X. Xiao. Characterization of CuInS2 Thin Films Prepared by Ion Layer Gas Reaction Method. Thin Solid Films. 2006, 510 (1~2): 1~5
    32 H. X. Tang, M. Yan, H. Zhang, X. Y. Ma, L. Wang, and D. R. Yang. Preparation and Characterization of CuInS2 Thin Films for Solar Cells by Chemical Bath Deposition. Chemical Research in Chinese University 2005, 21 (2): 236~239
    33 J. Podder, T. Miyawaki, and M. Ichimura. Preparation and Characterization of CuInS2 Thin Film from Aqueous Solution by Novel Photochemical Deposition Technique. Journal of Crystal Growth. 2005, 275 (1~2): e937~e942
    34 D. Cahen and R. Noufi. Defect Chemical Explanation for the Effect of Air Anneal on CdS/CuInSe2 Solar-Cell Performance. Applied Physics Letters.1989, 54 (6): 558~560
    35 S. Kohiki, M. Nishitani, T. Negami, T. Wada, H. Minjushiro, I. Watanabe, and Y. Yokoyama. UV Photoelectron Yield Spectroscopy of Chalcopyrite Structure Cu-In-Se Thin-Films. Thin Solid Films. 1994, 238 (2): 195~198
    36 C. D. Lokhande. Chemical Deposition of Metal Chalcogenide Thin Films. Materials Chemistry and Physics. 1991, 27 (1): 1~43
    37 R. S. Mane and C. D. Lokhande. Chemical Deposition Method for Metal Chalcogenide Thin Films. Materials Chemistry and Physics. 2000, 65 (1): 1~31
    38 T. P. Niesen and M. R. D. Guire. Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions. Solid State Ionics. 2002, 151 (1~4): 61~68
    39 J. G. Ibanez, F. Gomez, I. Konik, D. E. Lozano, A. Mugica, C. Gonzelez-Mesa, M. M. Singh, Z. Szafran, and R. M. Pika. Preparation of Semiconducting Materials in the Laboratory, Part 2: Microscale Chemical Bath Deposition of Materials with Band Gap Energies in the UV, VIS, and IR. Journal of Chemical Education. 1997, 74 (10): 1205~1207
    40 C. D. Lokhande, S. H. Pawar, C. H. Bhosale, and R. N. Patil (Eds.). Proceedings of the Workshop on Solid State Energy Conversion. Shivaji University. Kolhapur. 1985
    41 S. H. Pawar and P. N. Bhosale. Growth of Thin Films by Solution-gas Interface: A New Technique. Materials Chemistry and Physics. 1984, 11 (5): 461~479
    42 P. K. Nair, M. T. S. Nair, V. M. García, O. L. Arenas, Y. Pe?a, A. Castillo, I. T. Ayala, O. Gomezdaza, A. Sánchez, J. Campos, H. Hu, R. Suárez, and M. E. Rincón. Semiconductorthin Films by Chemical Bath Deposition for Solar Energy Related Applications. Solar Energy Materials and Solar Cells. 1998, 52 (3~4): 313~344
    43 P. K. Nair, M. T. S. Nair, A. Fernandez, and M. Ocampo. Prospects of Chemically Deposition Metal Chalcogenide Thin Films for Solar Control Applications. Journal of Physics D-Applied Physics 1989, 22 (6): 829~836
    44 J. E. Reynolds. Journal of Chemical Society 1884, 45 (5): 162
    45 I. Grozdanov. A Simple and Low cost Technique for Electroless Deposition of Chalcogenide Thin Films. Semiconductor Science and Technology. 1994, 9 (6): 1234~1241
    46 O. Savadogo. Chemically and Electrochemically Deposited Thin Films for Solar Energy Materials. Solar Energy Materials and Solar Cells. 1998, 52 (3~4): 361~388
    47 K. L. Chopra, R. C. Kainthla, D. K. Pandya, A. P. Thakoor, in: G. Hass, M. H. Francombe, and J. L. Vossen (Eds.). Physics of Thin Film. Vol. 12, Academic Press, New York, 1982: 201
    48 L. Huang, P. K. Nair, M. T. S. Nair, R. A. Zingaro, and E. A. Meyers. Interfacial Diffusion of Metal Atoms during Air Annealing of Chemically Deposited ZnS-CuS and PbS-CuS Thin Films. Journal of Electrochemical Society. 1994, 141 (9): 2536~2541
    49 P. K. Nair, L. Huang, M. T. S. Nair, H. Hu, E. A. Meyers, and R. A. Zingaro. Formation of p-type Cu3BiS3 Absorber Thin Films by Annealing Chemically Deposited Bi2S3-CuS Thin Films. Journal of Materials Research. 1997, 12 (3): 651~656
    50 G. Hodes and G. Calzaferri. Chemical Solution Deposition of Silver Halide Films. Advanced Functional Materials. 2002, 12 (8): 501~505
    51 J. J. Zhu, O. Palchik, S. G. Chen, and A. Gedanken. Microwave Assisted Preparation of CdSe, PbSe, and Cu2~xSe Nanoparticles. Journal of Physical Chemistry B. 2000, 104 (31): 734~7347
    52 O. Palchik, J. J. Zhu, and A. Gedanken. Microwave Assisted Preparation of Binary Oxide Nanoparticles. Journal of Materials Chemistry 2000, 10 (5): 1251~1254
    53 O. Palchik, A. Gedanken, V. Palchik, M. A. Slifkin, and A. M. Weiss. Microwave-Assisted Preparation, Morphological, and Photoacoustic Studies of the Na4SnSe4, K4Sn2Se6, and K4Sn3Se8, Zintl Molecular Sn-Se Oligomers. Journal of Solid State Chemistry. 2002,165 (1): 125~130
    54 T. Premkumar and K. Sankaranarayanan. Tunability of Structural, Surface Texture, Compositional and Optical Properties of CdZnS Thin Films by Photo Assisted-Chemical Bath Deposition Technique. Chalcogenide Letters. 2009, 6 (11): 617~622
    55 X. D. Gao, X. M. Li, and W. D. Yu. Morphology and Optical Properties of Amorphous ZnS Films Deposited by Ultrasonic-Assisted Successive Ionic layer Adsorption and Reaction Method. Thin Solid Films 2004, 468 (4): 43~47
    56 T. P. Niesen and M. R. De Guire. Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions. Journal of Electroceramic 2001, 6 (3): 169~207
    57 R. L. Call, N. K. Jaber, K. Seshan, and J. R. Whyte. Structural and Eletronic Properties of 3 Aqueous Deposition Films-CdS, CdO, ZnO, for Semiconductor and Photo Voltaic Applications. Solar Energy Materials. 1980, 2 (3): 373~380
    58 M. Z. Najdoski, I. S. Grozdanov, and B. M. Sukarova. Oriented Cadmium Oxide Thin Solid Films. Journal of Materials Chemistry. 1996, 6 (5): 761~764
    59 M. Ocampo, A. M. Fernandez, and P. J. Sebastian. Transparent Conducting CdO Films Formed by Chemical Bath Deposition. Semiconductor Science and Technology. 1993, 8 (5): 750~751
    60 P. O’Brien, T. Saeed, and J. Knowles. Speciation and the Nature of ZnO Thin Films from Chemical Bath Depositon. Journal of Materials of Chemistry. 1996, 6 (7): 1135~1139
    61 A. J. Varkey. A Solution Growth Technique for Deposition of ZnO Thin Films. International Journal of Materials & Product Technology. 1995, 10 (1~2): 94~97
    62 P. Pramanik and S. Bhattacharya. A Chemical Method for the Deposition of Nickel Oxide Thin Films. Journal of Electrochemical Society. 1990, 137 (12): 3869~3870
    63 F. C. Eze. Electroless Deposition of CoO Thin Films. Journal of Physics D-Applied Physics. 1999, 32 (5): 533~540
    64 D. Raviendra and J.K. Sharma. Electroless Deposition of SnO2 and Antimony Doped SnO2 Films. Journal of Physics and Chemistry of Solids. 1985, 46 (8): 945~950
    65 R. P. Goyal, D. Raviendra, and B. R. K. Gupta. Evaluation of Ionic Compressibilities and Static Polarizabilities of Cations and Anions of Ammonium Halides. Physica Status Solidi B-Basic Research. 1984, 123 (2): K109~K114
    66 D. Raviendra and J. K. Sharma. Electroless Deposition of Cadmium Stannate, Zinc Oxide, and Alumium Doped Zinc Oxide Films. Journal of Applied Physics. 1985, 58 (2): 838~844
    67 M. C. Neves and T. Trindade. Chemical Bath Deposition of BiVO4. Thin Solid Films. 2002, 406 (1~2): 93~97
    68 R. Zhai, H. Wang, H. Yan and M. Yoshimura. Preparation of Crystalline CaWO4 Thin Films by Chemical Bath Deposition. Journal of Crystal Growth. 2006, 289 (2): 647~651
    69 R. Wang, C. Liu, J. Zeng, K. W. Li and H. Wang. Fabrication and Morphology Control of BaWO4 Thin Films by Microwave Assisted Chemical Bath Deposition. Journal of Solid State Chemistry. 2009, 182 (4): 677~684
    70 D. F. A. Koch and R. J. McIntyre. Application of Reflectance Spectroscopy to a Study of Anodic-Oxidation of Cuprous Sulfide. Journal of Electroanalytical Chemistry. 1976, 71 (3): 285~296
    71 I. Grozdanov and M. Najdoski. Optical and Electrical-Properties of copper sulfide films of Variable Composition. Journal of Solid State Chemistry 1995, 114 (2): 469~475
    72 R. Suarez and P. K. Nair. Co-Deposition of PbS-CuS Thin Films by Chamical Bath Technique. Journal of Solid State Chemistry. 1996, 123 (2): 296~300
    73 H. Lee, S. W. Yoon, E. J. Kim, and J. Park. In-situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. Nano Letter. 2007, 7 (3): 778~784
    74 T. Sakamoto, H. Sunamura, H. Kawaura T. Hasegawa, T. Nakayama, and M. Aono. Nanometer-scale Switches Using Copper Sulfide. Applied Physics Letter. 2003, 82 (18): 3032~3034
    75 J. S. Chung and H. J. Sohn. Electrochemical Behaviors of CuS as a Cathode Material for Lithium Secondary Batteries. Journal of Power Sources. 2002, 108 (1~2): 226~231
    76 A. A. Sagade and R. Sharma. Copper Sulphide (CuxS) as an Ammonia Gas Sensor Working at Room Temperature. Sensors & Actuators B - Chemical. 2008, 133 (1): 135~143
    77 K. Tezuka, W. C. Sheets, R. Kurihara, Y. J. Shan, H. Imoto, T. J. Marks, and K. R. Poeppelmeier. Synthesis of covellite (CuS) from the elements. Solid State Science. 2007, 9 (1): 95~99
    78 A. Bauger, J. C. Mutin, and J. C. Niepce. Synthesis Reaction of Metatitanate BaTiO3, Part 1: Effect of the Gaseous Atmosphere upon the Thermal Evolution of the System BaCO3-TiO2. Journal of Materials Science. 1983, 18 (10): 3041~3045
    79 C. N. R. Rao and K. P. Kalyanikutty. The Liquid-Liquid Interface as a Medium to Generate Nanocrystalline Films of Inorganic Materials. Account of Chemical Research 2008, 41 (4): 489~499
    80 T. Kuzuya, K. Itoh, M. Ichidate, T. Wakamatsu, Y. Fukunaka, and K. Sumiyama. Electrochemical Characterization of Chemical Species Formed during the Electrochemical Treatment of Chalcopyrite in Sulfuric Acid. Electrochemica Acta. 2007, 53 (1): 213~217
    81 K. J. Wang, G. D. Li, J. X. Li, Q. Wang, and J. S. Chen. Formation of Single-Crystalline CuS Nanoplates Vertically Standing on Flat Substrate. Crystal Growth and Design. 2007, 7 (11): 2265~2267
    82 J. Johansson, J. Kostamo, M. Karppinen, and L. Niinisto. Growth of Conductive Copper Sulfide Thin Films by Atomic Layer Deposition. Journal of Materials Chemistry 2002, 12 (4): 1022~1026
    83 H. M. Pathan, J. D. Desai, and C. D. Lokhande. Modified Chemical Deposition and Physico-Chemical Properties of Copper Sulphide (Cu2S) Thin Films. Applied Surface Science. 2002, 202 (1~2): 47~56
    84 M. Kemmler, M. Lazell, P. O. Brien, D. J. Otway, J. H. Park, and J. R. Walsh. The Growth of Thin Films of Copper Chalcogenide Films by MOCVD and AACVD Using Novel Single-Molecule Precursors. Journal of Materials Science-Materials in Electronics. 2002, 13 (9): 531–535
    85 C. H. Fischer, H. J. Muffler, M. Bar, T. Kropp, A. Schonmann, S. Fiechter, G. Barbar, and M. C. Lux-Steiner. Spray-Ion Layer Gas Reaction (ILGAR) - A Novel Low-Cost Process for theDeposition of Chalcopyrite Layers up to the Micrometer Range for Photovoltaic Applications. Journal of Physical Chemistry B. 2003, 107 (30): 7516~7521
    86 K. D. Yuan, J. J. Wu, M. L. Liu, L. L. Zhang, F. F. Xu, L. D. Chen, and F. Q. Huang. Fabrication and Microstructure of P-type Transparent Conducting CuS Thin Film and Its Application in Dye-Sensitized Solar Cell. Applied Physics Letters. 2008, 93 (13): 132106
    87 P. K. Nair, V. M. Garcia, O. Gomez-Daza, and M. T. S. Nair. High Thin-Film Yield Achieved at Small Substrate Separation in Chemical Bath Deposition of Semiconductor Thin Films. Semiconductor Science and Technology. 2001, 16 (10): 855~863
    88 I. Puspitasari, T.P. Gujar, K. D. Jung, and O. S. Joo. Simple Chemical Preparation of CuS nanowhiskers. Materials Science and Engineering B - Solid State Materials for Advanced Technology. 2007, 140 (3): 199~202
    89 E. Vigil, L. Saadoun, J. A. Ayllon, X. Domenech, I. Zumeta, and R. Rodriguez-Clemente. TiO2 Thin Film Deposition from Solution Using Microwave Heating. Thin Solid Films. 2000, 365 (1): 12~18
    90 D. M. P. Mingos and D. R. Baghurst. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chemical Society Review. 1991, 20 (1): 1~47
    91 D. M. P. Mingos and D. R. Baghurst. Application of Microwaves to the Processing of Inorganic Materials. British Ceramic Transactions and Journal. 1992, 91 (4): 124~127
    92 K. J. Rao and P. D. Ramesh. Use of Microwave for the Synthesis and Processing of Materials. Bulletin of Materials Science. 1995, 18 (4): 447~465
    93 D. M. P. Mingos. The Applications of Microwaves in Chemical Synthesis. Research on Chemical Intermidiates. 1994, 20 (1): 596~599
    94 D. E. Clark and W. H. Sutton. Microwave Processing of Materials. Annual Review of Materials Science. 1996, 26 (4): 299~331
    95 R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan. Rapid Formation of CdS, ZnS Thin Films by Microwave-Assisted Chemical Bath Deposition. Materials Letters. 2005, 59 (12): 1497~1501
    96 H. Y. Xu, H. Wang, T. N. Jin, and H. Yan. Rapid Fabrication of Luminescent Eu:YVO4 films by Microwave-Assisted Chemical Solution Deposition.Nanotechnology. 2005,16 (1): 65~69
    97 V. R. Shinde, C. D. Lokhande, R. S. Mane, and S. H. Han. Hydrophobic and Textured ZnO Films Deposited by Chemical Bath Deposition: Annealing Effect. Applied Surface Science. 2005, 245 (1~4): 407~413
    98 A. Savadogo and K. C. Mandal. Studies on New Chemically Deposited Photoconducting Antimony Trisulphide Thin Films. Solar Energy Materials and Solar Cells. 1992, 26 (1~2): 117~136
    99 D. B. Fan, H. Wang, Y. C. Zhang, J. Cheng, B. Wang, and H. Yan. Preparation of Crystalline MnS Thin Films by Chemical Bath Deposition. Materials Chemistry and Physics. 2003, 80 (1): 44~47
    100 C. Y. Wu, S. H. Yu, and M. Antonietti. Complex Concaved Cuboctahedrons of Copper Sulfide Crystals with Highly Geometrical Symmetry Created by a Solution Process. Chemistry of Materials. 2006, 18 (16): 3599~3601
    101 H. J. Yan, W. Z. Wang, and H. L. Xu. A Micro-Interface Route to CuS Superstructure Composed of Intersectional Nanoplates. Journal of Crystal Growth. 2008, 310 (10): 2640~2643
    102 K. J. Wang, G. D. Li, J. X. Li, Q. Wang, and J. S. Chen. Formation of single-crystalline CuS Nanoplates Vertically Standing on Flat Substrate. Crystal Growth and Design. 2007, 7 (11): 2265~2267
    103 X. P. Feng, Y. X. Li, H. B. Liu, Y. L. Li, S. Cui, N. Wang, L. Jiang, X. F. Liu, and M. J. Yuan. Controlled Growth and Field Emission Properties of CuS Nanowalls. Nanotechnology. 2007, 18 (14): 145706
    104 F. Demichelis, G. Kaniadakis, A. Tagliaferro, and E. Tresso. New Approach to Optical Analysis of Absorbing Thin Solid Films. Applied Optics. 1987, 26 (9): 1737~1740
    105 J. I. Pankove. Optical Processes in Semiconductors. Englewood Cliffs, NJ: Prentice-Hall; 1971
    106 K. M. Gadave and C. D. Lokhande. Formation of CuxS Films Though a Chemical Bath Deposition Process. Thin Solid Films. 1993, 229 (1): 1~4
    107 I. Grozdanov, M. Najdoski. Optical and Electrical-Properties of Copper Sulfide Films of Variable Composition. Journal of Solid State Chemistry. 1995, 114 (2): 469~475
    108 S. D. Sartale, C. D. Lokhande. Growth of Copper Sulphide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method. Materials Chemistry and Physics. 2000, 65 (1): 63~67
    109 S. Erokhina, V. Erokhin, and C. Nicolini. Microstructure Origin of the Conductivity Differences in Aggregated CuS Films of Different Thickness. Langmuir. 2003, 19 (3): 766~771
    110 F. Demichelis, G. Kaniadakis, A. Tagliaferro, and E. Tresso. New Approach to Optical Analysis of Absorbing Thin Solid Films. Applied Optics. 1987, 26 (9): 1737~1740
    111 K. Takase, K. Sato, O. Shoji, Y. Takahashi, Y. Takano, K. Sekizawa, Y. Kuroiwa, and M. Goto. Charge Density Distribution of Transparent P-Type Semiconductor (LaO)CuS. Applied Physics Letters. 2007, 90 (16): 161916
    112 S. Erokhina, V. Erokhin, and C. Nicolini. Electrical properties of thin copper sulfide films produced by the aggregation of nanoparticles formed in LB precursor. Colloids and Surfaces A~Physicochemistry and Engineering Aspects. 2002, 198 (6): 645~650
    113 M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter. 2002, 14 (11): 2717~2744
    114 D. Vanderbilt. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B. 1990, 41 (11): 7892~7895
    115 J. P. Perdew and Y. Wang. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Physical Review B. 1992, 45 (23): 13244 ~13249
    116 M. W. Lufaso. Crystal Structures, Modeling, and Dielectric Property Relationships of 2:1 Ordered Ba3MM'2O9 (M = Mg, Ni, Zn; M ' = Nb, Ta) perovskites. Chemistry of Materials. 2004, 16 (11): 2148~2156
    117 M. Bieringer, S. M. Moussa, L. D. Noailles, and A. Burrows. Cation Ordering, Domain Growth, and Zinc Loss in the Microwave Dielectric Oxide Ba3ZnTa2O9-delta. Chemistry of Materials. 2003, 15 (2): 586~597
    118 B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen. Relaxation of Crystals with the Quasi-Newton Method. Journal of Computational Physics 1997, 131 (1): 233~240
    119 K. Kobayashi. First-Principles Study of the Electronic Properties of Transition Metal Nitride Surfaces. Surface Science. 2001, 493 (1~3): 665~670
    120 D. R. Askeland and P. P. Phule. The Science and Engineering of Materials, 4th ed. Thomson Brooks/Cole, Pacific Grove, CA, 2004, p. 798
    121 J. P. Perdew and M. Levy. Physical Content of the Exact Kohn-Sham Orbital Energies– Band-Gaps and Derivative Discontinuities. Physical Review Letters. 1983, 51 (20): 1884~1887
    122 M. J. Rutter and J. Robertson. Ab Initio Calculation of Electron Affinities of Diamond Surfaces. Physical Review B. 1998, 57 (15): 9241~9245
    123 Q. Wan, K. Yu, T. H. Wang and C. L. Lin. Low-Field Electron Emission from Tetrapod-Like ZnO Nanostructures Synthesized by Rapid Evaporation. Applied Physics Letters 2003, 83 (11): 2253~2255
    124 T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C. T. Lim, J. T. L. Thong and C. H. Sow. Controlled Growth and Field~emission Properties of Cobalt Oxide Nanowalls. Advanced Materials. 2005, 17 (13): 1595~1599
    125 S. Johnson, A. Markwitz, M. Rudolphi, H. Baumann, S. P. Oei, K. B. K. Teo and W. I. Milne. Field Emission Properties of Self-Assembled Silicon Nanostructures on N-and P-Type Silicon. Applied Physics Letters. 2004, 85 (15): 3277~3279
    126 N. S. Xu, J. Chen, and S. Z. Deng. Physical Origin of Nonlinearity in the Fowler-Nordheim Plot of Field-Induced Emission from Amorphous Diamond Films: Thermionic Emission to Field Emission. Applied Physics Letters. 2000, 76 (17): 2463~2465
    127 X. Lu, Q. Yang, C. Xiao, and A. Hirose. Effects of Hydrogen Flow Rate on the Growth and Field Electron Emission Characteristics of Diamond Thin Films Synthesized Through Graphite Etching. Diamond and Related Materials.2007, 16 (8): 1623~1627
    128 W. Zhao, R. Z. Wang, X. M. Song, H. Wang, B. Wang, H. Yan, and P. K. Chu. Ultralow~threshold Field Emission from Oriented Nanostructured GaN Films. Applied Physics Letters. 2010, 96 (9): 092101
    129 M. H. Huang, S. Mao, H. Feick, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292 (5523): 1897~1899
    130 J. A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, and D. Fische. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3. Journal of Physical Chemistry B. 2000, 104 (2): 319~328
    131 C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee. High-density, Ordered Ultraviolet Light~emitting ZnO Nanowire Arrays. Advanced Materials. 2003, 15 (10): 838~841
    132 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang. Nanowire Dye-sensitized Solar Cells. Nature Materials 2005, 4 (6): 455~459
    133 C. Hariharan. Photocatalytic Degradation of Organic Contaminants in Water by ZnO nanoparticles: Revisited. Applied Catalysis A-General. 2006, 304 (1): 55~61
    134 C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee. Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials. 2004, 14 (6): 589~594
    135 S. C. Lyu, Y. Z. Cheol, J. Lee, H. Ruh, and H. J. Lee. Low-Temperatre Growth of ZnO Nanowire Array by a Simple Physical Vapor Deposition Method. Chemistry of Materials. 2003, 15 (17): 3294~3299
    136 J. J.Wu and S. C. Liu. Advanced. Materials. 2002, 14 (3): 215~218
    137 M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung. Applied Physics Letters. 2005, 86 (10): 103105
    138 W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi. Applied Physics Letters. 2002, 80 (22): 4232~4234
    139 Y. Sun, G. M. Fuge, and M. N. R. Ashfold. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Lettera 2004, 396 (1~3): 21~26
    140 L. L. Wu and Y. S. Wu. Synthesis and Optcal Characteristic of ZnO Nanorod. Journal of Materials Science. 2007, 42 (1): 406~408
    141 D. B. Wang and C. X. Song. Controllable Synthesis of ZnO Nanorod and Prism Arrays in a Large Area. Journal of Physical Chemistry B 2005, 109 (26): 12697~12700
    142 Y. Sun, D. J. Riley, and M. N. R. Ashfold. Mechanism of ZnO Nanotube Growth by Hydrothermal methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B. 2006, 110 (31): 15186~15192
    143 M. Izaki, Light-assisted Chemical Deposition of Highly (0001) Oriented Zinc Oxide Film. Chemical Communications. 2002, 5: 476~477
    144 F. Li, Y. Ding, P. X. Gao, X. Q. Xin, and Z. L. Wang. Single-cystal Hexagonal Disks and Rrings of ZnO: Low-temperature, Large-scale Synthesis and Growth Mechanism. Angewandte Chemie. International edition in English. 2004, 43 (39): 5238~5242
    145 K. Govender, D. S. Boyle, P. B. Kenway, and P. J. O’Brien. Understanding the Factors That govern the Deposition and Morphology of Thin Films of ZnO From Aqueous Solution. Materials Chemistry 2004, 14 (16): 2575~2591
    146 H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah .Microcry. Stalline Silicon and Micromorph Tandem Solar Cells. Applied Physics A: Materials Science Processing 1999, 69 (2): 169~177
    147 O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schock. Texture etched ZnO : Al Coated Glass Substrates for Silicon Based Thin Film Solar Cells .Thin Solid Films. 1999, 351 (1~2): 247~253
    148 Y. Nasuno, M. Kondo, and A. Matsuda, Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells. Japanese Journal of Applied Physics. 2001, 40 (4A): L303~L305
    149 J. Krc, M. Zeman, O. Kluth, and F. Smole, M. Topic. Effect of Surface Roughness of ZnO:Al Films on Light Scattering in Hydrogenated Amorphous Silicon Solar Cells .Thin Solid Films. 2003, 426 (1~2): 296~304
    150 Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi, and M. Shimizu. Effect of Perforated Transparent Electrodes on Light Transmittance and Light Scattering in Substrates Used for Microcrystalline Ssilicon Thin-film Solar Cells. Applied Physics Letters. 2006, 88 (7): 071909
    151 S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim. Highly textured and conductive undoped ZnO film using hydrogen post-treatment. Applied Physics Letters. 1997, 70 (26): 3516~3518
    152 J. Yoo, J. Lee, S. Kim, K. Yoon, I.J. Park, S.K. Dhungel, B. Karunagaran, D. Mangalaraj, and J. Yi. High Ransmittance and Low Resistive ZnO:Al Films for Thin Film Solar Cells. Thin Solid Films. 2005, 480~481 (3): 213~217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700