山羊中枢神经系统的形成和发育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从解剖学、组织学及细胞学方面对山羊胚胎中神经系统的形成和发育进行了系统的研究。主要结果如下:
     1.山羊胚胎脑和脊髓生长发育具有快慢交替的阶段性变化规律。发育早期脑的生长速度要快于同期脊髓的生长速度。出生前,大脑在长、宽、高三个方向上的发育表现出不均衡的特点。脊髓不同节段直径的变化表明,各个节段的生长高峰期的出现的时间、数量和增长趋势都不一致。
     2.山羊胚胎脊髓的神经管到E6w末才形成了完整的三层同心圆结构。脊髓神经管的组织发生和脊髓灰质的形成在时间上交互重叠。脊髓灰质结构中,有些结构发生早,而神经元分化发育较晚,如侧角、胶状质;有些结构发生虽然晚,但其中的神经元胞体分化发育则较早,如Clarke氏背核;有些结构发生早,神经元分化发育也早,如腹角运动神经元。
     3.发现了光镜下发育中神经元胞体形态变化经历以下几个阶段:①未分化细胞,仅见到细胞核,着色较深,聚集形成核团原基。②不成熟神经元,神经元开始发育,细胞核的增大,着色变浅,少数神经元胞体轮廓模糊,其数量逐渐增多,此类细胞数量的增加方式与核团自身特点有关。③幼稚神经元,神经元胞体变大,着色较深,轮廓清晰,细胞核着色变浅,有的成较大的淡染泡状核,中央核仁明显。④成熟期神经元,胞体着色变浅,尼氏颗粒开始出现,并不断变大增多,细胞核多为淡染的泡状核,神经元胞体逐渐具备成熟神经元的特点。不同核团中的神经元发育变化的时间有很大的差异,这种差异与相应的核团的结构特点相适应。同一核团内,不同神经元个体的发育不完全同步,但其变化规律是一致的。
     4.发现山羊脑内各脑区的核团发生和形成的时间略有差异,延髓和脑桥内部的核团多在E6w以前形成。但脑桥的耳蜗神经核和前庭神经核,其发生和形成持续的时间略长一些。中脑灰质结构的形成从E6w初~E8w,持续时间较长,明显晚于脑桥和延髓。间脑内灰质结构的形成于E6w末~E12w。端脑内部结构的形成始于E6w末,到E8w时端脑内的结构基本都已出现,但是大脑皮质全部形成一直持续到E12w以后。小脑皮质形成于E6w末,其外颗粒层这个次级生发中心在E21w仍然存在,说明小脑皮质的结构要到出生以后才能全部形成。
     5.山羊脑干内各灰质核团的形成和发育的次序不完全一致:①有的神经核团形成早,其神经元分化和发育较晚,如延髓的下橄榄核、三叉神经脊束核和孤束核;脑桥的上橄榄核、三叉神经脑桥核和脑桥核;中脑的脚间核和黑质。②神经核团形成较晚,但其神经元分化和发育较早,如延髓的舌下神经核和疑核及延髓的网状结构;脑桥的前庭神经核、耳蜗神经核及脑桥的网状结构;中脑的E-W核、前丘和中央灰质。③有些核团形成早,其神经元分化和发育也较早,如延髓的迷走神经背核:脑桥的三叉神经运动主核、外展神经核、面神经核;中脑的动眼神经核、滑车神经核、三叉神经中脑核和红核。
     6.耳蜗核的形成要早于前庭神经核,与前庭系和听觉系在种系发生的过程中规律相反;而前庭神经核的发育要早于耳蜗神经核,这与种系发生过程中出现的规律相似。
    
     山羊中枢神经系统的形成和发育
     7.山羊中脑灰质中,脑神经核团的形成和发育最早,其中卜w核的形成和发育要晚一点;
    红核的形成比黑质略晚一些,但红核的神经元的发育则比黑质早得多;中央灰质的形成较晚,
    其内部神经元的发育与黑质相似;脚间核形成于mW初,其内部神经元的发育直到朋W才开始;
    前丘形成于田W,其内部分层到m7。才较为明显,但灰质层内的神经元的发育与中央灰质相似,
    早于脚间核,这些结构内神经元发育分化的顺序为脑神经运动核、红核一前丘,黑质、中央灰
    质一脚间核。
     8.山羊小脑的外颗粒层形成于胚胎E6。末,外颗粒层逐渐增厚,到ESW不再变厚,E12W,
    外颗粒层开始变薄,E14W又开始增厚,直到E18W达到最厚以后,再次变薄,到出生前一周外
    颗粒层已经较薄,有4—5层细胞。山羊小脑的蒲肯野氏细胞可能在胚胎ESW以前就己聚集定位,
    到E14W,其轮廓与内颗粒层其它细胞区别开来,到出生前,己经比较成熟。小脑核的神经元在
    胚胎期发育分化早于浦肯野氏细胞,它形成于E7W,从ESW开始发育,E14W内多数神经元胞体
    轮廓清楚:到出生前小脑核的神经元远比浦肯野氏细胞成熟。
     9.山羊胚胎间脑内的灰质结构形成顺序依次为后丘脑、底丘脑一丘脑一上丘脑~下丘脑;
    神经元发育分化的顺序为底丘脑核一丘脑一后丘脑一下丘脑和上丘脑(绢核)。出生前山羊胚胎
    下丘脑内的神经元发育很不成熟,多数核团难以根据细胞构筑特征来区分界限,山羊胚胎下丘
    脑灰质结构发育顺序为外侧带一内侧带一室周带。
     10.山羊端脑内纹状体比大脑皮质形成的早。纹状体中,苍白球内的神经细胞定位和发育
    比尾壳核早,但其中大部分神经元与尾壳核的神经元一起开始发育,并且神经元发育分化要比
    尾壳核的晚一些。新皮质内各层神经元发育顺序依次为:内锥体层一外锥体层、多形层一内颗
    粒层一外颗粒层;海马皮质锥体细胞的发育较早,按由深到浅的次序发育,而海马皮质中
The histogenesis and development of central never system were observed in anatomic, histological and cytological level in prenatal goat. The results as follows:
    1. The brain and the spinal cord has the fast and slow alternant phases developmental rule in goat embryo. The growth speed of the brain was faster than the spinal cord. The develop are unbalanced on three dimension in the brain. The growth fastigium in different spinal cord segment weren't consistent in the timing, quantity and growth mode in the goat embryo.
    2. The three stratum round structure of were finished in the sixth weekend in the embryical goats. The overlapped time is longer between the histogenesis of never duct and the forming of spinal cord of prenatal goat. The forming time was incompletely consistency with the developing time of spinal cord: Some structure occur early and the neurons emerge lately such as the substantia gelatinosa. Some structure occur lately, and the neurons emerge earlier, such as the dorsal nucleus of Clarke's.
    3.The the general features developmental change of perikaryon has went through hereinafter several phase by staining with hematonylin and eosin: ?Undifferetiation neurons has dark- staining cell nucleus, which got together to form the analge of gray nucleus. ?Immatured neurons had developed, which cytonucleus is biger and its staining color became light. A few newrons whose outline were dim appeared firstly then its number were increased. The increased mode were related with the characteristic of the gray neucleus themselves. ?The youthfull neurons has enlarged perikaryon which outline became distinct. The staining color of cytonucleus became light till to a bigger light-staining and bubble-shaped nucleus which had central nucleolus appeared. ?The riped neurons had a bigger light-staining and bubble-shaped nucleus which had central nucleolus appeared. The Nissi's body in cytoplasm of neuron formed gradually, then they became bigger and increased, which made the body of neuron had characteristics of mature neuron.
    with enlargement of nucleus.then the body of neuron enlarged and their outlin became distinct gradually; during this process.the staining color of nucleus becime light till to a bigger light-staining and bubble-shaped nucleus which had central nucleolus appeared.With appearance of bubble-shaoed nucleus,the Nissi's body in cytoplasm of neuron formed gradually.then they became bigger and increased.which made the perikaryon had characteristics of mature neuron. The number of riped neuron is increased showed that the variational rufe of different neuron body are identical in spite of the time of their morphological change were inconsistent. In addition, the bigger difference in time of developmental change of neuron among different nucleus was adapt to their structural characteristics.
    4.The time of genesis and forming of gray nucleus of brain regions in embryo goat had a little difference. The gray nucleus in medulla oblongata and pons has been formed in the 6th weeks. But the genesis and forming time of the cochlear mucleus and the vestibular nucleus was later. The forming of gray matter of mesenceohalon need longer time, which formed at beginning of 6 week to 8 week, this
    
    is obvionsly late than medulla oblongata and pons. The formation of gray matter in diencephalon began at the 6th week and last to the 8th week. The gray matter structure of telencephalon formed at the end of the 6th week, and all structure appeared at the 8th week, but the complete formation of cortex was lasting to the 12th week. The cortex of cerebeelum formed at the end of the 6th week, but it's total formation was complete after birth.
    S.The development and differentiation rules of the brain stem nerve nuclei are similar to the spinalis in goat embryo. That is: some structures generation is earlier than the neurons differentiation, ie, Nucleus olivaris inferior, Nucleus tr. spinalis and Nucleus tr. solitarii in the medulla oblongata, Nucleus olivaris superior, Nucleus pontine in the pons, Nucleus intepeduncuaris and su
引文
[1] Ali M, Cloe J. Histological, biochemical and immunocytochemical data on the postnatal development of the hypothalamic magnocellular nucleus in the congenital hypothyroid rat. J Physiol Paris, 1987, 82(1) : 25-35.
    [2] Allen JM, Mcgregor GP, Woodhams PL, et al. Ontogeny of a novel peptide, neuropeptide Y (NPY) in rat brain. Brain Res, 1984,303:197-200.
    [3] Almli C R, Fisher R S. Postnatal development of sensory influences on neurons in the ventromedial hypothalamic nocleus of the rat. Brain Res, 1985, 350(1-2) : 13-26.
    [4] Altman J. Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res, 1982, 6:38-49.
    [5] Altman J. Postnatal development of the cerebellar cortex in the rat, Ⅱ .Phases in the maturtion of Purkinje celis and of the molecular layer. J Comp Neurol, 1972,145:399-463.
    [6] Altman J. Postnatal development of the cerebellar cortex in the rat, Ⅰ . The external germinal layer and the transitional molecular layer.J Comp Neurol, 1972,145:359-363.
    [7] Alvarez-Buylla A. Commitment and migration of young neurons in the vertebrate brain. Experientia, 1990,46:296-237.
    [8] Annie Laquerriere. Somatostatin receptors in the human cerebellum during development. Brain Res, 1992,573:251-259.
    [9] Baram T Z, Lemer S P. Ontogene of corticotropin releasing hormone gene expression in rat hypothalamus-comparision with somatostatin. Int J Dev Neurosci, 1991,9(5) :473-478.
    [10] Beal JA, Knight DS, Nandi KN. Structure and development of central arborization of hair follicle primary afferent fibers. Anat Embryol, 1988,178:271-276.
    [11] Beas-Zarate C, Flores-Soto ME, Armendariz-Borunda J. NMDAR-2C and 2D subunits gene expression is induced in brain by neonatal exposure of monosodium L-glutamate to adult rats. Neurosci Lett 2002;321(1-2) :9-12.
    [12] Bero L A, Kuhn C H. Role of serotonin in opiate induced prolactin secretion and antinociception in the developing rat. J Pharmacol Exe Ther, 1987,240(3) :831-836.
    [13] Bertossi M, Roneasli L, Mancini L, et al. Process of differentiationg of cerebellar Purkinje neurons in the chick embryo. Anat-Embryo-(Berl),1986,175(1) :25-32.
    [14] Bicknell H R J, Beal J A. Axonal and dendritic development of substantia gelatinosa neurons in the lumbosacral spinal cord of the rat. J Comp Neural, 1984,226:508-513.
    [15] Bourguignon J P, Gerard A, Franchimont P. Maturation of the hypothalamic control of pulsatile gonadotropin-releasing hormone secretion at onset of puberty Ⅱ: Reduced potency of an inhibitory autofeedback. Endocrinology, 1990,127(6) :2884-2890.
    [16] Bourguignon J P, Gerard A, Nathieu J, et al. Maturation of the hypothalamic control of pulsatile gonadotropin-releasing secretion at onset of puberty Ⅰ: Increased activition of N-methyl-D-aspartate receptors. Endocrinology, 1990,127(2) :873-881.
    [17] Branchek TA.Gershon MD. Time course of expression of neuropeptide Ycalcitingen related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytrypatamine in mucosalente or chromaffin cell. J. Comp Neurol, 1980, (2) :263-276.
    [18] Buija R M, Veils D N, Swaab D F. Ontogeny of vasopressin and oxytocin in the fetal rat: early vasopressinergic innervation of the fetal brain. Peptides 1980, 1:315-324.
    
    
    [19] Burgess S, Reim G, Chen W, et al. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 2002 Feb;129(4) :905-916.
    [20] Burgunden J M. Prenatal ontogene of growth hormone releasing hormone expression in rat hypothalamus. Dev Neurosci, 1991,13(6) :397-402.
    [21] Caballka L M, Ritchie T C, Coulter J D. Immunolocalization and quantitation of a novel nerve terminal protein in spinal cord development. J. Comp Neurol, 1990,295:83.
    [22] Caley D W, Marxwell D S. An electron microscopic studies of neurons during postnatal development of the rat cerebral cortex. J Comp Neurol, 1968,8:17-34.
    [23] Changiz G. Postnatal development on cortical acetylcholinesterase-rich neurons in the rat brain: permanent and transient patterns. Exp Neurology, 1995, 134 (2) : 157-178.
    [24] Chen N X, Fry K R, Pachter I A, et al: Vasoactive polypeptide(Vip) in the rabbit retina:localization, function and development. Soc Neurosci Abstr, 1984; 10:291.
    [25] Daikoku S, Kawano H, Noguchi N, et al. Ontogenetic apprearance of immunoreative GNTH-containing neurons in the rat hypothalamus. Cell Tissue Res, 1985,242(3) :511-518.
    [26] Eschuer J, Gless P. Free and membrane-bound ribosomes in maturing neurons of thews chick and their possible functional significance. Experientia,1993,19:301-308.
    [27] Falk L, Nordberg A, Seiger A,et al. The alpha7 nicotinic receptors in human fetal brain and spinal cord. J Neurochem 2002;80(3) :457-465.
    [28] Faure AV, Grunwald D, Moutin MJ, et al. Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 2001 ;14(10) :1613-22.
    [29] Fung S C, Kong Y C. Prenatal development of GABAergic, gycinergic and dopaminergie neurons in the rabbit retina. J Neurosci, 1982; 2: 1623-1632.
    [30] Furuta A, Rothstein JD, Martin LJ. Glutanate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci, 1997,17:8363-8375.
    [31] Hanaway J. Formation and differentiation of the Exeternal granular layer of the chick cerebellum. J Comp Neural, 1967,131-137.
    [32] Hares K A, Foster G A. Immunohistochemical nanlysis of the ontogeny of calciteonin gene-related peptide-like immunorectivity in the rat central nervous system. J Chem Neuroanat,1991,4:187-196.
    [33] Hartman R D, Rosella D L. Ontogeny of opioid inhibition of vasopressin oxytocin release in response to osmotic stimulation. Endocrinollogy, 1987,119(1) :1-11.
    [34] Hsiao C F, Wu N, Levine M S, et al. Development and serotonergic modulation of NMDA bursting in rat trigeminal motoneurons. J Neurophysiol 2002;87(3) :1318-1328.
    [35] Ifft J D. An autoradiographic study of the time of final division of neurons in rat hypothalamic nuclei. J Comp Neurol, 1972,144:193-204.
    [36] Ihnatovych I, Novotny J, Haugvicova R, et al. Ontogenetic development of the G protein-mediated adenylyl cyclase signalling in rat brain. Brain Res Dev Brain Res 2002 ;133(1) :69-75.
    [37] Inagaki S, Kubota Y, Shimada S, et al. ontogeny of calcitonin gene-related peptide-immunoreactivity structures in the rat forbrain and idencephalon. Dev Brain Res, 1998, 43:235-247.
    [38] Ingi T, Aoki Y. Expression of RGS2, RGS4 and RGS7 in the developing postnatal brain. Eur J Neurosci 2002 ;15(5) :929-936.
    
    
    [39] Janka I,et al. Cell-to-cell contacts in primary cultures of dissociated chicken embryonic brain. Cell Tissue Res., 1979,199:153.
    [40] Jansson J O, Ishikawa K, Katakami H, et al. Pre-and postnatal developmental changes in hypothalamic content of rat growth hormone-releasing factor. Endocrinology, 1987,120(2) :525-530.
    [41] Karanth S, Dult A, Jyneja H S. Age-related release of prolactin by the pituitary and the pituitary-hypothalamic complex in vitro: an attempt to describe the development of the hypothalamic prolactin-inhibiting and-rdeasing activities in male rats. J Endocrinol, 1987,115(3) :405-409.
    [42] Kirby ML. An ultrastructural morphom-etric study of developing rat substantia gelatinosa. Anatomical Record, 1981, 200(2) : 231-237.
    [43] Kopple H. Mitochondria in the postnataly developing rat cerebell: Anorphological and biochemical study. Develop Brain Res, 1983,11:199-208.
    [44] Larsson LT. Ontogeny of peptide-containing neurons in human gutan immunocytochemical study. J Comp Neurol,1991,(3) :354-369.
    [45] Luo C B. Localization of 5-HT (serotonin), substanc P and enkephalin neurons and their development in the raphe nuclei of the human fetal brainstem. Human prenatal brain development. Hong Kong: Leonardo Publishers, 1993, (1) :55-70.
    [46] Luo C B. Localization of acetylcholinesterase positive neurons and substance p and enkephalin positive fibers by histochemistry and immunohistochemistry in the sympathetic intermediate zone of the developing human spinal cord. Neuroscience, 1990,39 (1) : 97-102.
    [47] Ma Y J, Junier M P, Costa M E, et al. Transforming growth factor-alpha gene expressing in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron, 1992,9(4) :657-670.
    [48] Margaret M. neurons and glial cells in long term cultures of previously dissociated newborn mouse cerebral cortex. J Anat,1983,136;293-305.
    [49] Marvin M, Mckay R. Multipotential stem cells in the vertebrate CNS. Semin cell Biology,1992,3:401-411.
    [50] Masliah E,Terry RD,Alford M,et al. Quantitative immunohistochemistry of synaptophysin in human neocortex:An alterative methold to extimate density of presynaptic terminals in paraffin sections. J. Histochem Cytochem, 1990,38:837.
    [51] Matsumoto A, Hatta T, Moriyama K, et al. Sequential observations of exencephaly and subsequent morphological changes by mouse exo utero development system: analysis of the mechanism of transformation from exencephaly to anencephaly. Anat Embryol (Berl) 2002;205(1) :7-18.
    [52] Mc Dermott KW, Lantos PL. Distribution and fine structural analysis of undifferentiated cells in the primate subependymal layer. J Anat,1991,178:45-63.
    [53] McCauley AK, Meyer GA, Godwin DW. Developmental regulation of brain nitric oxide synthase expression in the ferret thalamic reticular nucleus. Neurosci Lett 2002 ; 320(3) :151-155.
    [54] Mehra R D, Bijlani V. Ultrastructural features of the developing human visual cortex. Indian J Med Res, 1983,77:541-553.
    [55] Meller X, Eschuer J, Glees P. The differentiation of endoplasmic reticulum in developing neurons of the chick spinal cord. Z Cellforsch,1996,69:189-197.
    [56] Michel C W, W S Young and J M Burgunder. Ontogeny of expression of the corticotropin-releasing factor gene in the hypothalamic paraventricular nucleus and of the
    
    proopiomelanocortin gene in rat pituitary. Endocrinology 1989, 124:60-68.
    [57] Moreno N, Lopez J M, Sanchez-Camacho C, et al. Early development of NADPH diaphorase expressing neurons in the brain of the urodele amphibian Pleurodeles waltl. Brain Res Bull 2002 ;57(3-4) :409-412.
    [58] Ojeda S R, Dissen C A, Junier M P. Neurotrophic factors and female sexual development. Front Neuroendocrinol. 1992,13(2) : 120-162.
    [59] Perry E K. Transmitters in the developing and senescent human brain. Ann N Y Acad Sci, 1993, 695:69-72.
    [60] Pivoko J, Grafenau P, et al. Nuclear fine struture and transcription in early goat embryos.Theriogenology, 1995,1 :661-671.
    [61] Pozzo M L D, Aoki A. Postnatal development of the hypothalamic ventromedial nucleus:neurons and synapses. Cell Mol Neurobiol, 1992,12(2) : 121-129.
    [62] Reichert H. Conserved genetic mechanisms for embryonic brain patterning. Int J Dev Biol 2002 ;46(1) :81-87.
    [63] Rickman D, Tohhson D, Brecha N: Ontogeny of somatoslation immunoreactive cells in the rabbit retina. Invest Qphthal vis sci (suppl), 1988; 29:196.
    [64] Seress L. Postnatal neurogenesis in the rat hypothyalamus. Brain Res. 1985, 345(1) : 156-160.
    [65] Shen W Z. Distribution of neuropeptide Y in the developing human spinal cord. Neuroscience, 1994,62(1) : 251-256.
    [66] Shen W Z. Inmmunohistochermical studies on the development of 5-HT (serotonin) neurons in the nuclei of the reticular formations of human fetuses, Pediatr Neurosci, 1989, 15:291-295.
    [67] Slater P. Age-related changes in binding to excitatory amino acid uptake sites in human cerebellum. Brain Res, 1992,579:219-226.
    [68] Sturrook RR.A quantitative and mor-phological study of vascularization of the developing mouse spinal cord. J Anat 1981,132:203-221.
    [69] Terrado J, Grrikagoitia I, Martinez-Millan L, et al. Expression of the genes for alpha-type and beta-type calciteonin gene-related peptide during postnatal rat brain development. Neuroscience, 1997,80:951-958.
    [70] Thiel G. Synapsin Ⅰ ,SynapsinⅡ and synaptophsin:Marker proteins of synalptic Vesicles. Brain Path,1993,3:87.
    [71] Tosic M, Rakic S, Matthieu JM, et al. Identification of Golli and myelin basie proteins in human brain during early development. Glia 2002 ;37(3) :219-228.
    [72] Tripathi BJ.Tripathi RC,Livingston AM,et al. The role of growth factors in the embryogenesis and differentiation of the eyes. Am J aAnat,1991,192(4) :442-157.
    [73] Tropea D, Domenici L. Expression of TrkB receptors in developing visual cortex is not regulated by light. Cell Mol Neurobiol 2001 ;21(5) :545-52.
    [74] Uzman L. The histogenesis of the mouse cerebellum as studied by tritiated thymidine uptake. J CompNeurol.1960,114:137-143.
    [75] Van H H, Suijdewint F G. Postnatal development of vasopressin mRNA content in supraoptic and paraventricular nucleus of the Wistar rat. Neurosei-Lett, 1986,65(1) :1-6.
    [76] Vincenzo Silani. Development of dopaminergic neurons in the human mesencephalon and in vitro effects of basie fibroblast growth factor treatment. Exp Neurology, 1994,128:59-76.
    [77] Vogel-Hopker A, Rohrer H. The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development 2002;129(4) :983-991.
    
    
    [78] Walshc, Cepk Cl. Cell lineage and cell migration in the developing cerebral cortex. Experientia, 1990, 46:940-947.
    [79] Whitnall N H, Key S, Ben B Y, et al. Neurophysin in the hypothyalamoneurohypophyseal system: Ⅱ Immunocytoemical studies of ontogeny of oxytocinergic and vassopressinergic neurons. J Neurosei, 1985, 5(1): 98-109.
    [80] Yew D F. Development and localization of enkephalin and substance P in the nucleus of tractus solitarius in the medulla oblongata of human fetuses. Neuroscience, 1990, 34 (2): 491-498.
    [81] Yew D T. Tyrosine hydroxylase and dopamine-hydroxylase-positive neurons and fibres in the developing human cerebellum -an immunohistochemieal study. Neuroscience, 1995. 65 (2): 453-461.
    [82] Yu M C. Immunohistochemical studies of GABA and parvalbumin in the developing human cerebellum. Neuroscience, 1996, 70 (1): 267-276.
    [83] Zhang D R, Yeh H H: Substance P-Like immunoreaetive amacrine cells in the adult and the developing rat reticia. Der Brain Res, 1992; 65:55-65.
    [84] 蔡文琴,李海标 发育神经生物学,科学出版社,北京,1999。
    [85] 曹贵方 山羊体形与卵巢发生及其结构与组织变化,西北农业大学博士研究生毕业论文,1998。
    [86] 曹贵方,张涌 20d18h山羊胚胎系统形态及以后各时期体形发生,内蒙古农业大学学报,1999,Vol,20 (4):81-84。
    [87] 曹贵方 山羊体形和卵巢发生及卵泡组织化学的研究[D],陕西杨凌:西北农林科技大学生物工程研究所 1998:45-59。
    [88] 曹启林,罗学港,刘忠浩等 人胎视皮质下层NPY—IR神经元的发育,中国组织化学与细胞化学杂志,1996,5:57-62。
    [89] 常兰 GAP-43免疫反应神经纤维在出壳前后鸡端脑丘脑和小脑的分布,西北农林科技大学士研究生毕业论文,1998。
    [90] 常兰,范光丽 GAP-43免疫反应神经纤维在出壳前后鸡丘脑内的分布及发育过程中的变化,黑龙江畜牧兽医,1999,9 (5):1-3。
    [91] 常兰,范光丽,徐永平等 鸡出壳前后端脑内生长相关蛋白免疫反应神经纤维的分布及变化,中国兽医科技,1999,9 (7):8-9。
    [92] 陈德蕙,张贺秋,张德芳 离体培养鸡胚脑神经细胞的超微结构研究,解剖学报,1987,18(1):79-82。
    [93] 陈良为,饶志仁,鞠躬等 大鼠脊髓前角内NMDA受体的定位与生后发育,解剖学报,2001 (2):105-108。
    [94] 陈宁欣,李海标 兔视网膜中P物质样免疫反应神经元的发育,解剖学报,1990,21(1):69-72。
    [95] 陈宁欣,李海标 兔胎视网膜内P物质免疫反应神经元的发生,神经解剖学杂志,1995,11 (1):25-28。
    [96] 陈义蔚 小白鼠运动终板和肌梭的发育.解剖学报,1980,11 (4):405-411。
    [97] 陈运才,姚志彬,陈以慈等 运动对小鼠小脑皮质和脊髓内突触素年龄变化的影响,解剖学报,1994,25 (3):263-267。
    [98] 陈运才 猕猴海马结构和皮质内AChE阳性纤维的分布及年龄变化,解剖学报,1994,25 (2):138-142。
    [99] 陈正礼 鸡间脑中胆碱乙酰转移酶免疫反应产物的分布与发育研究,西北农林科技大学士研究生毕业论文,2001。
    
    
    [100] 成令忠主编 组织学(第二版),北京,人民卫生出版社,1993。
    [101] 邓锦波,蔡琰,黎曰真等 人胚胎海马发育的形态学研究Ⅲ.肽能神经元的发生,1996,12(3):256-260。
    [102] 邓锦波,蔡琰,丘建勇等 人胚胎海马发育的形态学研究Ⅱ:神经细胞与神经胶质细胞的分化,神经解剖学杂志,1996,12(2):115-120。
    [103] 邓锦波,蔡琰,向正华等 人胚胎海马发育的形态学研究Ⅳ.SS能神经元的原位杂交法观察,神经解剖学杂志,1997,13(1):25-28。
    [104] 丁建华,王蕙仁 大鼠小脑皮质的生长发育,解剖学杂志,1985,8 (1):18-21。
    [105] 丁松林,孙卫文,郑德枢等 人胚胎海马结构小白蛋白免疫反应神经元的分布与发育,解剖学报,1999,30(2):133-135。
    [106] 董伦,罗知彬,沈伟哉等 人胎儿脊髓神经肽Y样神经元及其纤维的发育和分布的免疫细胞化学研究,神经解剖学杂志,1994,10 (4):341-345。
    [107] 董元祥,饶志仁,赵佐庆等 P物质、亮氨酸脑啡肽、5—羟色胺样成分在新生儿中脑导水管灰质周围的分布,神经解剖学杂志,1990,6(2):223-227。
    [108] 方智慧,黄大鹏,王金兰等 大鼠脑干一氧化氮合成酶阳性神经元的分布及发育,解剖学杂志,1998,21(1):11-13。
    [109] 符蛟荣,郑小桃 人胎儿小脑皮质蒲肯野细胞发育的定量观察,海南大学学报:自科版,1995,13(1):48-51。
    [110] 高上达,林礼务 胎儿小脑生长发育的声像图观察,实用妇科与产科杂志,1992,8(2):75-76。
    [111] 高作信 蒙古绵羊胚胎发育的形态学初步报告,1959年全国胚胎学学术会议论文摘要汇编,科学出版社,北京,1963。
    [112] 郭灵,张德兴,檀进发 人胎儿脊髓胶状质发育的电镜观察,广西医科大学学报,1994,11:42-45。
    [113] 何素云 人胎视网膜的组织发生.解剖学报,1988;19 (3):323-326。
    [114] 何真 人小脑皮质颗粒细胞的发育—扫描电镜研究,神经解剖学杂志,1986,2(2):239-244。
    [115] 侯玲玲 山羊心脏及主要原始血管的发生与发育,西北农业大学硕士研究生毕业论文,1999。
    [116] 胡兴昌,张德永 大鼠下丘脑室旁核加压素神径元的生后发育,解剖学杂志,1991,14(4):310-312。
    [117] 黄康华,叶华妹 人胚胎脊髓发育的组织学观察,华南师范大学学报(自然科学版),1993,(3、4):59-64。
    [118] 姜晓丹,韩淑利 胎儿额叶大脑皮质在发育过程中神经细胞数密度,佳木斯医学院学报,1992,15 (5):13-15。
    [119] 姜晓丹,王景霞 胎儿额叶大脑皮质在发育过程中厚度变化的形态计量研究,佳木斯医学院学报,1992,15 (6):20-21。
    [120] 姜晓丹,王荣华 胎儿额叶大脑皮质在发育过程中的形态计量分析,解剖学杂志,1992,15(3):210-213。
    [121] 雷德亮,卢大华,刘丹等 人胎儿脊髓胸段一氧化氮合酶阳性神经元发育的研究,湖南医科大学学报,1994,19(6):479-482。
    [122] 李盛芳,郝晶,宋卫华 大鼠下丘脑VP神经元及相关核团的生后发育及免疫细胞化学研究,山东医科大学学报,1999,37(2):103-105。
    [123] 李盛芳,武玉玲,郝晶 大鼠生后不同发育阶段下丘脑细胞凋亡的研究,山东医科大学学报,2000,38(2):128-130。
    [124] 李盛芳,张汉琦 鸡和大鼠小脑发育的比较观察,山东医科大学学报,1989,27(3):34-38。
    
    
    [125] 李耀宇,舒斯云,包新民等 降钙素基因相关肽在大鼠纹状体内分布的生后发育研究,解剖学杂志,2000,23 (6):550-553。
    [126] 李镇国,谷华运,王有琪 大鼠脑内乙酰胆碱酯酶的出现和变化,解剖学报,1984,15(2):204-209。
    [127] 梁伟,张建华 大鼠小脑和下橄榄核中含Calbindin-D28KmRNA的神经元的生后发育,神经解剖学杂志,1994,10(1):39-42。
    [128] 刘恩重,杨富明,胡志强等 人胚中脑黑质多巴胺能神经元发育过程的观察,功能性和立体定向神经外科杂志,1993,6(1):47-48。
    [129] 卢大华,雷德亮,罗学港等 人胎小脑内Calbindin和Parvalbumin的免疫组织化学研究,神经解剖学杂志,1999,15(3):227-233.
    [130] 罗悦,周昂英 人胚胎下丘脑与腺垂体SP,SRIF,L-ENK和M-ENK阳性细胞的发育与分布的研究,广东解剖学通报,1993,15(1):22-27。
    [131] 罗知彬,郑达人,关粤玲等 胆碱能神经元和P物质样、脑啡肽样纤维在人胎脊髓中间带的发育与定位,暨南大学学报,1991,12(2):1-6.
    [132] 马丹,鞠躬 人胎儿垂体前叶P物质免疫反应阳性神经纤维的形态及分布,解剖学报,1994,25(1):18-21。
    [133] 孟宪玉,张永起,于涯涛等 胎儿大脑半球颞叶脑沟生长发育规律的研究,解剖学通报,1983,6(1):35-39。
    [134] 慕晓玲,王士平,秦传芳 小白鼠脊髓发育分化的组织学及组织化学观察,石河子医学院学报,1994,Vol.16(3):146-150。
    [135] 纳冬梅,王荣华,孙强等 人胚胎视皮质神经元发育的体视学分析,解剖学杂志,1999,22(6)529-532。
    [136] 南燕,买鸿宴,张琳等 大鼠海马生后早期突出定量研究,中国神经科学杂志,1999,15(3):227-232。
    [137] 倪衡建,凌树才 大鼠下丘脑室旁核中一氧化氮合酶阳性神经元的生后发育,神经解剖学杂志,1997,13(2):171-174。
    [138] 彭泽春,苏鸿森,李玉文 人胎儿脑干内含儿茶酚胺神经元的分布,解剖学报,1993,24(3):160-165。
    [139] 钱雪松,仝宇红 人胚胎小脑皮质神经细胞的发育,解剖科学进展,2000,6(3):282-285。
    [140] 秦丽华,王淑玲,于恩华 大鼠眼上直肌神经的生后发育.解剖学报,1996,27(3):248-251。
    [141] 秦鹏春 哺乳动物胚胎学,科学出版社,北京,2001。
    [142] 饶志仁,陈军,董元祥等 5-HT能系统在人胎儿脑干内的发育,神经解剖学杂志,1990,6(1):60-66。
    [143] 沈伟哉,郭国庆,卢洪伟 用BrdU标记技术观察大鼠脊髓上胸段灰质细胞的分化发育,解剖学报,2000,31(4):289-291。
    [144] 舒先涛,张纯清,陈运才 大鼠小脑皮质内突触素P38免疫反应产物的分布及年龄变化,解剖学杂志,1997,20(1):41-44。
    [145] 宋天保 新生大鼠下丘脑多巴胺能神经元的体外发育,解剖学报,1998,29(2):170-173。
    [146] 宿宝贵,石世民,覃盛麟.人胎儿海马发育的研究,Ⅰ光镜观察.解剖学杂志,1992,15:263-265。
    [147] 唐一鹏 大鼠脑皮质神经元的发育—超微结构研究,神经解剖学杂志,1987,3(1):79-83。
    [148] 陶元祥,戴晓章 大鼠孤束核内NT-LI成分生后发育和衰老变化的光镜和电镜观察,神经解剖学杂志,1993,9(1):55-61。
    [149] 帖利军 潘建平,葛玲等 甲状腺激素对新生鼠小脑神经生长相关蛋白质表达的影响,中国当代儿科杂志,2001,3(1):28-31。
    
    
    [150] 万选才,杨天祝,徐承焘 现代神经生物学,北京医科大学中国协和医科大学联合出版社,北京,1998。
    [151] 汪守义,张永起 胎儿大脑半球径线生长规律的研究,解剖学通报,1981,4(2-3):265-270。
    [152] 王福庄,丁爱石,张振声等 新生大鼠海马、隔和下丘脑培养细胞中AChE阳性神经元的分布,解剖学杂志,1994,17(5):436-439。
    [153] 王兰,宋天保,周劲松 大鼠下丘脑室旁核内一氧化氮合酶神经元的生后发育,解剖科学进展,2000,6(3):232-234。
    [154] 王力神,鲍璿 内质网及其标志酶在离体培养脊髓神经元中的发育变化,实验生物学报,1989,22(2)177-183。
    [155] 王立根,饶志仁,赵佐庆等 P物质样、亮氨酸—脑啡肽样及5—羟色胺样免疫反应成分在人胎儿及新生儿Gudden被盖背核的分布及在发育过程中的变化—免疫组织化学技术研究,解剖学报,1992,23(1):28-32。
    [156] 王立根:P物质样免疫反应成分在人胎儿和新生儿脑干内的分布及在发育过程中的变化—免疫组织化学研究。神经解剖学杂志,1990,6(1):107-116。
    [157] 王瑞,张秀兰,张魁亨等 胎儿脊髓脊柱发育的观察,解剖学杂志,1998,21(3):229-232。
    [158] 王先荣,崔胤,亢效虎等 胎儿脑重测量及其发育规律的数学模型,北京师范学院学报(自然科学版),1991,12(2):45-48。
    [159] 吴建云 突触素免疫反应产物在鸡脑中的分布及变化研究,西北农林科技大学士研究生毕业论文,2000。
    [160] 武胜昔,吕葆真,李继硕 含GABA_A受体α_6亚单位mRNA神经元在大鼠脑内的生后发育,神经解剖学杂志,1996,12(2):147-150。
    [161] 席刚明,汪华侨,唐廷勇等 出生后大鼠海马结构兴奋性氨基酸神经元的发育.神经解剖学杂志,1999,15(2):165-170。
    [162] 向正华,蔡文琴 下丘脑生长抑素神经元的发生,解剖学杂志,1997,20(1):21-25。
    [163] 邢洪涛,张丽颖 大鼠胚胎小脑的发育学研究,中国医科大学学报,1997,26(4):345-347。
    [164] 徐慧君,武义鸣,冯家笙等 黑质纹体系多巴胺神经元的发育与再生的关系,解剖学杂志,1990,13(2):83-86。
    [165] 徐永平 鸡胚脑内乙酰胆碱酯酶阳性神经元的分布及发育,西北农林科技大学士研究生毕业论文,1997。
    [166] 徐永平,郑月茂,卿素珠等 山羊胚胎脊髓胶状质的形成和发育,动物医学研究进展,2002,23(3):95-98。
    [167] 荀崇文,包彬 蒙古绵羊21天16时7毫米胚胎的系统形态学研究,解剖学报,1979,10(1):69-79。
    [168] 荀崇文,包彬 蒙古绵羊胚胎的原肠形成,解剖学报,1986,17(1):106-112.
    [169] 荀崇文,包彬 蒙古绵羊胚胎胚中轴的形成,内蒙古农牧学院学报,1986,7(1):41-48。
    [170] 荀崇文,包彬 蒙古绵羊胚胎三胚层的形成,内蒙古农牧学院学报,1985,6(1):1-8。
    [171] 荀崇文,包彬 蒙古绵羊胚胎的卵裂及囊胚形成,解剖学报,1981,12(2):326-332。
    [172] 荀崇文,曹贵方 蒙古绵羊早期胚胎神经及感觉器官的组织发生,内蒙古农牧学院学报,1995,19(1):42-46。
    [173] 荀崇文,黄甫王珩 蒙古绵羊胚胎的体形发生,内蒙古农牧学院学报,1985,6(2):79-93。
    [174] 闫家阁,高莲香 胎脑顶叶 枕叶脑沟及外侧沟发育规律的研究,临沂医专学报,2000,22(3):163-167。
    [175] 闫素云,曲跃华 人胎蓝斑神经元的电镜观察,神经解剖学杂志,2000,16(2):151-153。
    [176] 闫家阁,李化连 胎脑径线发育的观察,沂水医专学报,1983,5(1):49-54。
    
    
    [177] 闫家阁,马永臻,李化连 胎脑颞叶脑沟发育规律的研究,临沂医专学报,1999,21(1):1-5。
    [178] 闫家阁,马永臻,沈美玲等 胎脑额叶脑沟发育规律的研究,临沂医专学报,1999,21(3):1-5。
    [179] 杨倩,Grossm R 蛋鸡下丘脑中生长抑素神经原发育的研究,南京农业大学学报,2000,23(4):93-96。
    [180] 杨增明,谭景和,秦鹏春 山羊早期胚胎发育的超微结构研究,动物学报,1992,38(1):11-17。
    [181] 姚钧,钱国桢,孟璘等 大鼠下丘脑内侧区生长抑素神经元的生后发育,解剖学杂志,1993,16 (5):459-462。
    [182] 姚向民,宋天保 培养中的下丘脑神经元的形态学研究,西安医科大学学,1996,17(1):28-30。
    [183] 于涯涛,张永起,孟宪玉等 胎儿大脑半球顶叶脑沟生长发育规律的研究,解剖学通报,1983,6(2):130-135。
    [184] 翟秀岩,马文锋,何威等 人胚下丘脑室旁核和室周核内生长抑素神经元的发生学研究,中国医科大学学报,1996,25(4):348-350。
    [185] 张国境,田向春 国人胎儿小脑皮质Purkinje细胞层突触的发育,解剖科学进展,2000,6(2):167-169。
    [186] 张可仁,芦守祥,郑靖中等 国人的脊髓节、脊髓面积和体积,解剖学报,1980,11(3):37-39。
    [187] 张培林.神经解剖学 北京:人民卫生出版社 1987:40~42。
    [188] 张永起,孟宪玉,于涯涛等 胎儿大脑半球额叶脑沟生长发育规律的研究,解剖学通报,1982,5(4):48-51。
    [189] 张樟建,张可仁,王国明等 衰老大鼠脑干中缝核群5—羟色胺样神经元的变化—免疫金银染色法和图像定量分析研究,神经解剖学杂志,1990,6(1):53-56。
    [190] 张祖启,张旭辉 人胎儿海马发育的初步观察,神经解剖学杂志,1987,3(1):113-117。
    [191] 赵林普,肖定华,陈士英等 人、大鼠、鸡等胚脑细胞的分离培养及生长分化,解剖学杂志,1985,8(4):269-272。
    [192] 赵佐庆,饶志仁,李继硕等 亮氨酸—脑啡肽样成分在人胎儿及新生儿脑干内的分布及在发育过程中的变化—免疫细胞化学研究,神经解剖学杂志,1991,7(1):103-110。
    [193] 郑德枢,陈二云,丁松林等 出生前人脑海马结构含GABA神经的分布和发育,神经解剖学杂志,1999,15(2):132-136。
    [194] 郑达人,罗治寰,关粤玲等 Brodmann 6层皮质出现前人胎视皮质(17区)细胞构筑的发育—扫描电镜观察,解剖学报,1990,21(1):39-43。
    [195] 郑月茂 山羊胎期肺发育的形态学研究,西北农业大学硕士研究生毕业论文,2001。
    [196] 钟谓,杜韵璜,黎昭洪 人胎视皮质17区血管活性肠多肽样神经元的形态,分布及个体发育,神经解剖学杂志,1990,6(2):216-222。
    [197] 周昂英,谭淼,罗悦等:人胚胎下丘脑—腺垂体系统P物质、生长抑素,亮氨酸脑啡肽和甲啡肽神经元的发育与分布研究,解剖学杂志,1994;17(1):6-10。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700