淀山湖类毒素-A污染状况及其神经毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化的日益加剧,淡水“水华”和海水“赤潮”不断暴发,藻类〔包括藻毒素〕污染已成为迫切的公共卫生问题之一。藻毒素能引起多脏器的损伤。类毒素-A(anatoxin-a, ANTX-A)是一种常见的神经藻毒素。已有ANTX-A引起家禽、家畜和野生动物急性中毒死亡的许多报道。许多国家湖泊和水库中都检测出不同程度的ANTX-A污染,且传统氯化饮水消毒技术尚不能完全去除水中的ANTX-A,造成人们低剂量反复接触ANTX-A的可能性。毒理学试验也提示了低剂量ANTX-A的中枢神经毒性。因此,需要全面认识A NTX-A的低剂量神经毒性。
     本研究从淀山湖ANTX-A污染调查、ANTX-A体内神经毒性试验及体外神经毒性试验三方面,对ANTX-A在我国淀山湖的污染状况以及低剂量亚急性暴露ANTX-A对中枢神经系统的影响和可能毒作用机理进行探讨。
    
    第一部分 淀山湖类毒素-A污染状况调查
    目的:研究淀山湖富营养化状况和ANTX-A在淀山湖的分布情况,并探讨ANTX-A与各项环境因素的相关性。方法:在2002年夏秋季节,测定湖水中与水体富营养化有关的各项理化指标、藻细胞总数、水中和水华藻中ANTX-A含量(高效液相色谱法),分析水中ANTX-A与各项环境因素的相关性(广义估计方程)。结果:水中总氮和总磷均超过地面水环境质量标准III级限值,水中藻细胞总数均值达到3×106个/L。湖中ANTX-A平均污染水平为7ng/L,7月污染最严重。水华藻中ANTX-A含量为15ng/mg干藻。ANTX-A与照度、浊度、总磷、叶绿素A有明显的相关关系,浊度作用较强(p<0.01)。结论:淀山湖呈现严重富营养化。存在ANTX-A污染,7月污染较严重。水体浊度与ANTX-A污染呈正相关。
    
    第二部分 类毒素-A体内神经毒性实验研究
    目的:研究ANTX-A亚急性暴露对小鼠中枢神经系统的影响,并探讨其毒作用机理。方法:小鼠每日腹腔染毒ANTX-A 0,12.5,50,200 ug/kg.bw,连续一月,观察体重增长情况,用小鼠避暗试验和水迷宫试验测定小鼠神经行为改变,并观察中枢神经系统病理学改变。测定脑组织中钙调信号传导系统包括细胞内钙离子、ATPase、钙调神经磷脂酶(PP2B)、c-fos、NGFI-A和CREB
    
    
    -1变化,以及自由基信号系统包括NO和活性氧变化。结果:ANTX-A 200μg/kg.bw组小鼠体重增长缓慢(p<0.05)。ANTX-A 200μg/kg.bw组小鼠被动回避反应和空间学习记忆能力降低(p<0.05)。ANTX-A 200μg/kg.bw组小鼠皮质和海马区有散在的神经元变性或坏死。其余ANTX-A剂量组未见上述改变。ANTX-A 12.5μg/kg.bw、50μg/kg.bw、200μg/kg.bw各剂量组动物脑组织内钙离子浓度明显升高(p<0.01);ANTX-A 200μg/kg.bw组小鼠脑组织PP2B活性、c-fos基因和蛋白表达、CREB-1蛋白表达均有增高(p<0.05);ANTX-A 50μg/kg.bw、200μg/kg.bw组小鼠脑组织内Ca2+-ATP酶活性均有降低(p<0.05)。ANTX-A 200μg/kg.bw组小鼠脑组织活性氧含量增高(p<0.05)。结论:亚急性ANTX-A暴露对小鼠学习记忆能力有一定抑制作用。ANTX-A可能通过钙调信号传导通路和活性氧产生中枢毒作用。
    
    第三部分 类毒素-A体外神经毒性实验研究
    目的:研究ANTX-A对神经元烟碱型乙酰胆碱受体(nAChRs)的毒作用及其作用机制。方法:用[H3]-NA释放试验来检测ANTX-A对PC12细胞nAChRs的激活和脱敏作用,研究PC12细胞激活和脱敏状态时胞内钙调信号传导通路和活性氧变化。结果:10-9M~10-7M ANTX-A刺激PC12细胞1小时可激活PC12细胞,有剂量反应关系。10-7M ANTX-A刺激PC12细胞30min~120min可激活PC12细胞,有时间效应关系。ANTX-A激活PC12细胞时,胞内钙离子浓度、c-fos和NGFI-A基因表达明显增加(p<0.05); Ca2+-ATP酶和PP2B活性降低(p<0.05)。ANTX-A两相刺激可诱导PC12细胞脱敏。ANTX-A诱导PC12细胞脱敏时,胞内钙离子浓度、PP2B活性、c-fos、NGFI-A基因表达和活性氧含量显著增加(p<0.05);Ca2+-ATP酶活性显著降低(p<0.05)。美加明(MEC)--烟碱受体拮抗剂和环孢菌素A(CsA)――PP2B抑制剂可抑制ANTX-A诱导细胞脱敏的产生(p<0.05)。维拉帕米(VRP)―― L型-电压敏感的钙通道拮抗剂可拮抗ANTX-A增加胞内钙离子浓度的作用。结论:ANTX-A在体外可激活和脱敏神经元烟碱型乙酰胆碱受体,钙调信号传导通路可能在ANTX-A诱导nAChRs激活和脱敏中起重要调控作用,活性氧在ANTX-A诱导nAChRs脱敏中可能有重要调控作用。
With progressive eutrophication of surface water, water bloom and red tide break out frequently in freshwater and seawater. Contamination of algae (including algal toxins) has been an important public health concern. Algal toxins can give birth to the damage of many tissues. Anatoxin-a (ANTX-A) is one of the most familiar neurotoxical algal toxins. There were lots of domestic fowls and livestock and wild animals poisoning incidents caused by ANTX-A. Different amounts of ANTX-A were detected from lakes and reservoirs in many countries. Moreover, conventional chlorination water treatment procedure is not sufficient to totally remove ANTX-A, humans are potentially exposed to low-level ANTX-A. Some toxicological tests suggested that low-dose ANTX-A might be associated with central nerve system toxicity. Therefore, it’s necessary to study the low-dose neurotoxicity of ANTX-A.
    The present study is aimed to investigate the distribution of ANTX-A from Dianshan Lake and to explore the effect of ANTX-A on CNS and its possible mechanism. This study includes three parts: 1) investigation on the pollution of ANTX-A in Dianshan Lake; 2) in vivo neurotoxical test of ANTX-A; 3) in vitro neurotoxical test of ANTX-A.
    
    Part 1: Investigation on the Pollution of Anatoxin-a in Dianshan Lake
    Objectives: To study the eutrophication status and the distribution of ANTX-A in Dianshan Lake, and discuss the correlation between ANTX-A and various environmental elements. Methods: During the summer and autumn in 2002, some physical-chemical elements associated to eutrophication and algae cell density were investigated, the concentration of ANTX-A in the lake and water-bloom algae were measured by the high-performance liquid chromatography (HPLC), the correlation between ANTX-A and environmental elements was analyzed by general estimated equations (GEE). Results: The concentration of total nitrogen (TN) and total phosphorus (TP) in the Lake were higher than the III level guideline of surface water environmental quality standard. The average algae cell density was 3×106
    
    
    /liter. The average level of ANTX-A in the lake was 7 ng/liter. And the pollution of ANTX-A was most serious in July. The concentration of ANTX-A in water-bloom algae was 15ng/mg dry algae. The level of ANTX-A was correlated with illumination, turbidity, TP and chlorophyll a (Chla). And the correlation between turbidity and ANTX-A was more significant than others (p<0.05). Conclusion: Dianshan Lake presented serious eutriphication. There was the pollution of ANTX-A, and it was most serious in July. The concentration of ANTX-A was significant correlative with turbidity of lake.
    
    Part 2: in vivo Neurotoxical Test of Anatoxin-a
    Objectives: To study the effect of sub-acute exposure of ANTX-A on CNS in mouse and explore its possible mechanism. Methods: Mice were administered by i.p. with ANTX-A at the concentrations of 0, 12.5, 50, 200ug/kg.bw/day for 30 days. Body weight increase was observed during the administration period, neurobehavioral function was measured using step-through test and Morris water maze test, the CNS neuropathological changes were examined. The changes of calcium-mediated signal transduction system including intracellular calcium, ATPase, calcineurin (PP2B), c-fos and CREB-1 and free radical signal system comprised of reactive oxygen species (ROS) and nitric oxide (NO) were measured. Results: The body weight increase of the mice in ANTX-A 200ug/kg.bw group decreased obviously (p<0.05). The passive evade activity and special learning and memory function of the mice in ANTX-A 200ug/kg.bw group weakened significantly (p<0.05). Degeneration and necrosis of neuron were observed in the cortex and hippocampus of ANTX-A 200ug/kg.bw-treated mice. And no such changes were observed in the other ANTX-A group. In ANTX-A 12.5ug/kg.bw, 50ug/kg.bw, 200ug/kg.bw group, the concentration of intracellular calcium in the brain increased significantly (p<0.05). The activity of PP2B and the gene and protein expression of c-fos and CREB-1 improved in ANTX-A 200ug/kg.
引文
Ando M. New regulation of tap water quality and exposure assessment. Eisei Shikenjo Hokoku. 1994, 112: 1-16
    中华人民共和国水利部. 2000年中国水资源公报.
    Francis G. Poisonous Australian lake. Nature (London). 1878, 18: 11-1
    Skulberg O M, Codd G A, Carmichael W W. Toxic blue-green algal blooms in Europe: a growing problem. Ambio. 1984, 13: 244-247
    Codd G A, Bell S G, Brooks W P. Cyanobacterial toxins in water. Water Science Technique. 1989, 21(3): 1-13
    Carmichael W W, Falconer I R. Deseases related to freshwater blue-green algal toxins and control measures. In: Algal toxins in seafood and drinking water. I R Falconer(ed). Academic press, London. 1993, 187-209
    Sivonen K, Niemela S E, Niemi R M, et al. Toxic cyanobacteria(blue-green algae)in Finnish fresh and coastal waters. Hydrobiology. 1990, 190: 267-275
    Hawser S P, O’Neil J M, Roman M R, et al. Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. Journal of Apply Phycology. 1992, 4: 79-86
    Hitzfeld B C, Hoger S J, Dietrich D R. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives Supplements. 2000, 108(1): 113-123
    Park, HD, Kim, B, Kim, E, et al. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes, Environmental Toxicology and Water Quality, 1998, 13(3): 225-234
    Bumke-Vogt, C, Mailahn, W, Chorus, I. Anatoxin-a and neurotoxic cyanobacteria in German lakes and reservoirs, Environmental Toxicology. 1999, 14(1): 117-125
    Fromme, H, Koehler, A, Krause, R, et al. Occurrence of cyanobacterial toxins - microcystins and anatoxin-a in Berlin water bodies with implications to human health and regulations, Environmental Toxicology. 2000, 15(2): 120-130
    Hart J, Fawell JK, Croll B. The fate of both intra- and extracellular toxins during drinking water treatment, 21ST international water services congress and exhibition. Blackwell Science Ltd., 1998, 611-616
    Toivola D M, Erksson J E. Toxins affecting cell signaling and alteration of cytoskeletal structure. Toxicology in Vitro. 1999, 521-530
    Yu SZ. Primary liver cancer: natural toxins and prevention in China. Journal of Toxicology
    
    
    Science, 1998, 23(suppl.): 2143-7.
    WHO. Cyanobacterial toxins: microcystin-LR. In: WHO guidelines for drinking water quality, world health organization, Geneva, 1998, 2: 96-110
    William M, Valentine DJ, Schaeffer , et al. Electromyographic assessment of the neuromrscular blockade produced in vivo by anatoxin-a in the rat . Toxicon, 1991,29(3):347-357
    Carmichael W W, Biggs D F, Gorham P R. Toxicology and pharmacological action of anabaena flos-aquae toxin, Science. 1975, 187: 542-544
    Stolerman IP, Albuquerque EX, Garcha HS. Behavioural effects of anatoxin-a potent nicotinic agonist in rat. Neuropharmacology. 1992, 31(3): 311-314
    Zhang X, Stjernlof P, Adem A, et al. Anatoxin-a: a potent ligand for nicotine cholinergic receptors in rat brain. European Journal of Pharmacology. 1987, 135: 457-458
    Soliakov L, Gallagher T, Wonnacott S. Anatoxin-a-evoked [3H]dopamine release from rat striatal synaptosomes, Neuropharmacology. 1995, 34(11): 1535-1541
    Wonnacott S, Kaiser S, Mogg A, et al. Presynaptic nicotinic receptors modulating dopamine release in the rat striatum, European Journal of Pharmacology. 2000, 393: 51-58
    Soliakov L, Wonnacott S. Involvement of protein kinase C in the presynaptic nicotinic modulation of [3H]-dopamine release from rat striatal synaptosomes, British Journal of Pharmacology. 2001, 132: 785-791
    Macallan DRE, Lunt GG, Wonnacott S, et al. Methyllycaconitine and (+)-anatoxin differentiate between nicotinic receptors in vertebrate and invertebrate nervous systems. FEBS Letters .1988, 226: 357-363
    Nuria D, Peter R, Jürgen D. The CNS toxin anatoxin-A interacts with alpha4?2-nicotinic acetylcholine receptors in human cortex. Progress in brain research. 1996, 109: 313
    Fawell, JK, Mitchell, RE, Hill, RE, et al. The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Human & Experimental Toxicology, 1999, 18(3): 168-173
    Astrachan NB,Archer BG,Hilbelink DR. Evaluation of the subacute toxicity and teratogenicity of anatoxin-a. Toxicon,1980,18:684-688
    乔明彦, 何振荣, 沈智等. 达赉湖鱼腥藻水华对羊的毒害作用及毒素分离, 内蒙古环境保护. 1996, 8(1): 19-20
    Krienitz L, Ballot A, Kotut K, et al. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiology Ecology , 2003, 43: 141-148
    Edwards C, Beattie KA, Scrimgeour CM, et al. Identification of anatoxin-a in benthic
    
    
    cyanobacteria(blue-green algae) and in associated dog poisonings at loch insh, Scotland. Toxin. 1992, 30(10): 1165-1175
    宋永昌, 王云, 戚云海. 淀山湖富营养化及其防治研究. 上海. 华东师范大学出版社 1992, 2-5
    水质总氮的测定, 中华人民共和国国家标准 GB 11894-89
    水质总磷的测定, 中华人民共和国国家标准 GB 11893-89
    黄祥飞. 湖泊生态调查观测与分析. 第1版. 北京: 中国标准出版社, 2000.76-78
    章宗涉. 淡水浮游生物的研究方法. 上海:科技出版社, 1991, 336-339
    钱凯先. 国内外湖泊富营养化研究与对策, 环境科学. 1985, 9(2): 59-63
    Ken-Ichi Harada, Yukio Kimura, Kiyoshi Ogawa, et al. A new procedure for the analysis and purification of naturally occurring anatoxin-A from the blue-green alga anabaena flos-aquae. Toxin 1989, 27(12): 289-1296
    Stevens D K, Krieger R I. Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-A. Toxin, 1991, 29(2): 167-179
    Ojanpera I, Vrori E, Himberg K, et al. Facile detection of anatoxin-A in algal material by thin-layer chromatography with fast black K salt. Analyst, 1991, 116, 265-267
    Takino M, Daishima S, and Yamaguchi K. Analysis of anatoxin-A in freshwaters by automated on-line derivatization-liquid chromatography-electrospray mass spectrometry. Journal of Chromatography A, 1999, 862, 191-197
    James KJ, Furey A, Sherlock I.R, et al. Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation produced by liquid chromatography with fluorimetric detection. Journal of Chromatography A, 1998, 798: 147-157
    Devlin JP, Edwards OE, Gorham PR, et al. Anatoxin-a: a toxic alkaloid from anabaena flos-aquae NRC-44-1. Canad. J.Chem,1977,55:1367-1371
    Sivonen K, Himberg K, Luukkainen R,et al. Primary characterization of neurotoxic cyanobacterial blooms and strains from Finland. Toxic Assess,1989,13:145-150
    Stevens DK, Krieger RI. Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-a. Toxicon, 1991,29(2):167-179
    James K J, Furey A, Sherlock I R, et al. Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorimetric detection. Journal of Chromatography A. 1998, 798: 147-157
    Rapala J, Lahti K, Sivonen K, et al. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a, Letters in Applied Microbiology. 1994, 19(6): 423-428
    
    Liang, K. Y., Zeger, S. T. Longitudinal data analysis using generalized linear models, Biometrika. 1986, 73(1): 13
    Sivonen K. Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by oscillatoria agardhii strains, Appl. Environ. Microbiol, 1990, 56(9): 2658-2666
    Hawser SP, Codd GA. Letter to the Editor: A neurotoxic factor associate with the bloom-forming cyanobacterium trichodesmium. Toxicon,1991,29:277-278
    赵玲, 徐秋萍, 司银楚, 等. 聪圣胶囊对早老龄小鼠脑缺损再灌后学习记忆障碍的影响, 北京中医药大学学报, 2001, 24(1):36-38
    王良斌, 胡卫红, 徐晓虹, 等. 脑室注射NGF对大鼠学习记忆以及自发行为的影响, 中国药理学通报, 1997, 18(5): 406-412
    Ochoa E L M, Chattopadhyay A, Mcnamee MG. Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators, Cellular and Molecular Neurobiology. 1989, 9(2): 141-178
    陈崇宏,谢和辉,徐淑云.受体调节、受体与疾病中国药理学通报,1999,15(4):289-293
    riggle D J. Desensitizational Trends Pharmacology. Science. 1980, 1: 395-398
    Changeux J P, Heidmann T. Allosteric receptors and moleculars models of learning, In synaptic function. John Wiley & Sons, New York, 549-601
    Wooltorton J R, Pidoplichko V I, Broide R S, et al. Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain opamine areas. Journal of Neuroscience. 2003, 23(8): 3176-85
    Fujii S, Sumikawa K. Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Research. 2001, 894(2): 340-6
    Fujii S, Ji Z, Sumikawa K. Inactivation of alpha7 ACh receptors and activation of non-alpha7 ACh receptors both contribute to long term potentiation induction in the hippocampal CA1 region, Neuroscience Letter. 2000, 286(2): 134-8
    Lanahan A, Worley P. Immediate-early genes and synaptic function, Neurobiology of Learning and Memory. 1998, 70: 37-43
    Davis S, Bozon B, Laroche S. How necessary is the activation of the immediate early gene zif 268 in synaptic plasticity and learning, Behavioural Brain Research. 2003, 142: 17-30
    Cammarota M, Bevilaqua L R M, Ardenghi P, et al. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade, Molecular Brain
    
    
    Research. 2000, 76: 36-46
    Bartsch D, Ghirardi M, Casadio A, et al. Enhancement of memory-related long-term facilitation by ApAF, a novel transcription factor that acts downstream from both CREB1 and CREB2, Cell. 2000, 103: 595-608
    齐若梅,廖福龙,王振纲. 细胞内钙的调节机制与临床应用.中国药理学通报 2002,18(1):16~19
    Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990, 4: 477-485
    于翠娟, 闫力君, 魏群. 钙调神经磷酸酶及其进展. 生命科学. 2000, 72(2): 89-92
    Macho A, Hirsch T, Marzo I, et al. Glutathione depletion in an early and calcium elevation is a late event of thymocyte apoptosis. Journal of Immunology, 1997,158: 4612-4619.
    Brooks B, Robinson, J H, Windebank K P. Flow cytometric determination of intracellular calcium changes in human peripheral blood mononuclear cells during conjugation to tumour cell lines, Journal of Immunological Methods. 1995,178: 229-239
    王春华, 汪志伟, 魏群. 癫痫大鼠与正常大鼠脑中钙调神经磷酸酶及其底物的研究. 生物化学杂志, 1995, 11(6): 711-714
    许绍芬. 主编. 神经生物学. 第二版. 上海医科大学出版社. 1999, 66
    Yakel J. Calcineurin regulation of synaptic function : from ion channels to transmitter release and gene transcription, TiPs. 1997, 18: 124-134
    李国君,吴德生,肖邦良等. 铅对大鼠不同脑区IEG表达的影响, 卫生研究. 1999,28(2): 65-70
    孙纪超,叶广俊. 尼古丁对小鼠海马结构c-fos蛋白表达的影响,中华预防医学杂志, 1997, 31(2): 57-59
    陆林, 黄明生, 王学义. 即刻早期基因的调控及其在心理应激时的表达, 国外医学精神病学分册. 2000, 27(1): 27-30
    Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor, Science. 1987, 238 (4828): 797-799
    Enslen H, Soderling T R. Roles of calmodulin-dependent protein kinases and phosphatases in calcium-dependent transcription of immediate early genes, The Journal of Biological Chemistry. 1994, 269(33): 20872-20877
    Cosgaya J M, Aranda A. The ras oncogene inhibits growth factor inducibility of early response genes, and promotes selectively expression of NGFI-A in a PC12 cell line, FEBS Lett. 1999, 445: 329-332
    Finkel T. Redox-dependent signal transduction, FEBS Letters. 2000, 476: 52-54
    
    Hensley K, Robinson K A, Gabbita S P, et al. Reactive oxygen species, cell signaling, and cell injury, Free Radical Biology & Medicine. 2000, 28( 10): 1456–1462
    Ohashia T, Mizutania A, Murakamib A, et al. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species, FEBS Letters. 2002, 511: 21-27
    Osseni R A, Rat P, Bogdan A, et al. Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sciences. 2000, 68: 387–399
    魏文青,王荣杰,丛建波,等. 自由基与细胞信号传导, 国外医学生理病理科学与临床分册. 1999, 19(5):329-332
    Bogumil R, Namgaladze D, Schaarschmidt D, et al. Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide : Evidence for a dithol-disulfide equilibrium and implications for redox gegulation, European Journal of Biochemichal. 2000, 267: 1407-1415
    Sommer D, Fakata K L, Swanson F S, et al. Modulation of the phospatase activity of calcineurin by oxidants and antioxidants in vitro, European Journal of Biochemical. 2000, 267: 2312-2322
    Mahata M, Mahata SK, Parmer RJ, et al. Vesicular Monoamine Transport Inhibitors: Novel action at calcium channels to prevent catecholamine secretion. Hypertension, 1996, 28: 414-420.
    吴冠芸 主编, 生物化学与分子生物学实验常用数据手册, 科学出版社, 2000
    Mahata SK, Mahata M, Parmer RJ, et al. Desensitization of catecholamine release: the novel catecholamine release-inhibitory peptide catestatin (chromogranin A344-364) acts at the receptor to prevent nicotinic cholinergic tolerance. Journal of Biological Chemistry, 1999, 274(5): 2920-2928
    Mahata M, Mahata S K, Parmer R J, et al. Proadrenomedullin n-terminal 20 peptide minimal active region to regulate nicotinic receptors, Hypertension. 1998, November, 907-916
    Taupenot L, Mahata M, Mahata S K, et al. Time-dependent effects of the neuropeptide PACAP on catecholamine secretion, Hypertension, 1999, November, 1152-1162
    Boulter J Hollmann M, O'Shea-Greenfield A, et al. Molecular cloning and functional expression of glutamate receptor subunit g. Science, 1990, 249: 1033-1037
    Lukas R J, Bencherif M. : Heterogeneity and regulation of nicotinic acetylcholine receptors, International Review of Neurobiology. 1992, 34: 25-131
    Blumenthal E M, Conroy W G, Romano S J, et al. Detection of Functional Nicotinic Receptors Blocked by α-Bungarotoxin on PC12 Cells and Dependence of Their Expression on Post-Translational Eventsl, Journal of Neuroscience. 1997(17): 6094-6104
    
    Kiss J P, Windisch K, Oliveira K D, et al. Differential effect of nicotinic agonists on the [3H]Norepinephrine release from rat hippocampal slices, Neurochemical Research, 2001, 26(8/9): 943-950
    Anderson DJ, Puttfarcken P S, Jacobs I, et al. Assessment of nicotinic acetylcholine receptor-mediated release of [3H]-norepinephrine from rat brain slices using a new 96-well format assay, Neuropharmacology. 2000, 39: 2663-2672
    Sershen H, Balla A, Lajtha A, et al. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus, Neuroscience. 1997, 77(1): 121-130
    Clarke B S, Reuben M. Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release, Journal of pharmacology. 1996, 117: 595-606
    Marchi M, Lupinacci M, Bernero E, et al. Nicotinic receptors modulating ACh release in rat cortical synaptosomes: role of Ca2+ ions in their function and desensitization, Neurochemistry International. 1999, 34: 319-328
    Liu J. Molecular cloning of adenosine A1 and A2 receptors, Trends in Pharmacological sciences. 1991, 12(9):326-8.
    Khirong L, Sokolova E, Gimatullin R,et al. Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers. Journal of Neuroscience1998, 18(7): 2458-2466.
    Tong G, Shepherd D and Jahr CE. Synaptic desensitization of NMDA receptors by calcineurin. Science, 1995,267(5203): 1510-1512.
    Ochoa EM, Chattopadhyay A, Mcnamee MG. Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell Molecular Neurobiology. 1989, 9(2): 141-178
    Salminer O, Seppa T, Gaddnas H, et al. Effect of acute nicotine on fos protein expression in rat brain during chronic nicotine and its withdrawal. Pharmacolog Biochemistry and Behavior. 2000. 66(1): 87–93
    Dar DE, Zinder O. Catecholamine secretion from bovine adrenal chromaffin cells induced by the dextrorotatory isomer of anatoxin-a. General Pharmacology,1998, 31(5): 737-740
    Burley J R, Sihra T S. A modulatory role for protein phosphatase 2B(calcineurin) in the regulation of Ca2+ entry, European Journal of Neuroscience. 2000, 12: 2881-2891
    Milbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene ,Neuron. 1988, 1(3): 183-188
    Xia Z, Dudek H, Miranti C K, et al. Calcium infux via the NMDA receptor induces
    
    
    immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. Journal of Neuroscience. 1996, 16: 5425-5436
    Regehr W G, Tank D W. Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites, Nature. 1990, 345(6278): 807-810
    Cosgaya J M, Aranda A. The ras oncogene inhibits growth factor inducibility of early response genes, and promotes selectively expression of NGFI-A in a PC12 cell line, FEBS Lett. 1999, 445: 329-332
    Enslen H, Soderling T R. Roles of calmodulin-dependent protein kinases and phosphatases in calcium-dependent transcription of immediate early genes, The Journal of Biological Chemistry. 1994, 269(33): 20872-20877
    Finkbeiner S, Tavazoie S F, Maloratsky A, et al. CREB: A Major Mediator of Neuronal Neurotrophin Responses, Neuron. 1997, 19:1031-1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700