聚苯胺—银纳米电缆阵列生物传感器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚苯胺(PANI)-银同轴纳米电缆的制备、表征及其与多种酶复合后制成的生物传感器的性能研究为主要内容。测试了以聚苯胺-金属同轴纳米电缆阵列为基本元件制成的尿酸、胆碱、维生素C、多巴胺、葡萄糖生物传感器的性能。
     本文首先利用二次铝阳极氧化法在草酸溶液中得到多孔铝阳极氧化膜(AAO)。并以此制成AAO电极,用于后续纳米线及电缆阵列的制备。这种AAO电极是优良的纳米模板,具有很好的发展前景。
     通过直流电沉积在AAO孔道内得到了直径不同,长度为20μm的PANI纳米电缆阵列。利用二次电沉积方法获得了聚苯胺外皮层厚度、直径不同的聚苯胺-钴、聚苯胺-铜、聚苯胺-银同轴纳米电缆阵列。测试并分析了以上PANI纳米线及电缆的电导率。研究发现,聚苯胺厚度相同的PANI-金属纳米电缆阵列,其电导率随于直径正相关,而对于直径相同的PANI-金属纳米电缆阵列,其电导率与聚苯胺厚度负相关,以上现象是由复合方式决定的,由于聚苯胺导电性较小,随着聚苯胺比例增加,纳米电缆整体电导率减小。
     首次制备了尿酸氧化酶/聚苯胺-Ag纳米电缆阵列尿酸传感器。研究发现,聚苯胺-Ag纳米电缆阵列具有良好的导电性,加速电子在尿酸氧化酶上的传递,且纳米尺寸效应明显增加了电极的比表面积。其氧化峰电流与尿酸浓度存在着良好的线性关系。线性方程为Y=1.323X-0.062。
     测试了长度、外皮厚度、直径不同的PANI-Ag同轴纳米电缆阵列传感器在多巴胺、维生素C溶液中与不同结构的尿酸氧化酶酶/PANI-Ag同轴纳米电缆传感器在尿酸溶液中的响应曲线,并研究了结构变化对灵敏度的影响。结果发现,灵敏度与电缆长度近似线性正相关。传感器的灵敏度随PANI厚度增加而迅速降低,当PANI厚度超过5nm后,灵敏度迅速下降到0.3左右,之后随PANI厚度增加而缓慢下降。传感器的灵敏度随电缆直径增加而降低。
     首次制备了胆碱氧化酶/聚苯胺-Ag纳米电缆阵列尿酸传感器,研究了此电极的电化学行为和热力学稳定性。研究发现,此种纳米电缆阵列氧化峰电流与胆碱浓度存在着良好的线性关系。线性方程为Y=1.227X-0.0122。
     首次制备了GOD/TiO2/PANI-Ag纳米电缆阵列葡萄糖传感器。此传感器上的氧化峰电流与葡萄糖浓度存在着良好的线性关系。线性方程为Y=1.335X-0.086。
     总之,本文首次制备了多种酶/(TiO2)/PANI-Ag纳米电缆阵列传感器,其抗干扰性能优良,灵敏度高,具有巨大的应用前景。
In this paper, polyaniline(PANI)-the coaxial Nanocables in silver, Characterizationand enzyme complex made with a variety of biosensor properties of the main content.Tested as a basic component made of polyaniline-metal the coaxial Nanocable arrayuric acid, choline, vitamin C,dopamine,the performance of a glucose biosensor.
     Use secondary aluminum anodization in oxalic acid solution porous anodicaluminum oxide membrane(AAO), prepared by the AAO membrane porearrangement is highly ordered, high density, smooth wall of hole, there is no crosschannels. And made the AAO electrode used for the the subsequent nanowire andcables array of preparation. The AAO nano-electrode is an excellent template,withgood prospects for development.
     Using DC deposition method length for20nm,80nm,120nm, the160nm ofpolyaniline Nanocable array and diameter, respectively, for the60nm,80nm,120nm,160nm, polyaniline sheath thickness was1,3,5,8,20,35nm polyaniline-cobalt ofpolyaniline-copper, polyaniline-a silver coaxial Nanocables array, test and analyze theconductivity. The study found that the same thickness of polyaniline polyaniline-metalNanocables array, its conductivity is positively correlated with the diameter, the samediameter polyaniline-metal Nanocables array, the conductivity of polyanilinenegatively correlated with the thickness of the above phenomenon is determined by acomposite manner, the smaller conductive polyaniline With the polyaniline increase inthe proportion of the overall conductivity of the Nanocable reduced.
     Urate oxidase/polyaniline the Ag Nanocables the array uric acid sensor wasprepared for the first time to study the electrochemical behavior and thermodynamicstability. The study found that the polyaniline nano-Ag cable the array having goodelectrical conductivity, accelerating the electron transfer in the urate oxidase, and thenano-size effect of a marked increase in the specific surface area of the electrode. Theoxidation peak current and concentration of uric acid there is a good linearrelationship. The linear regression equation was Y=1.323X-0.062correlationcoefficient of0.99259. The detection limit is1x10-6mol/L, the response time for0.120S.
     Testing PANI sheath thickness1,3,5,8,20,35nm,μ m,20μ m10μ m μlength of1.5for60nm in diameter,80nm,120nm,160nm PANI-Ag with axis Nanocable arraysensor10mm,20mM,50mM,100mM dopamine, vitamin C solution with differentstructures of the urate oxidase enzyme/nano PANI-Ag coaxial cable sensor in 10mm,20mM,50mM,100mM uric acid solution in the response curve, and to studythe impact of structural changes on the sensitivity. It was found that the sensitivity andcable length approximately linear positive correlation. The sensitivity of the sensor israpidly reduced with PANI thickness increase, after the the PANI thickness of morethan5nm, the sensitivity is decreased rapidly to about0.3, after slowly decreasedwith the increase in the thickness of the PANI. With the cable diameter-increased thesensitivity of the sensor reduced.
     Choline oxidase/polyaniline nano-Ag cable the array uric acid sensor wasprepared for the first time to study the electrochemical behavior and thermodynamicstability.The study found that the cable polyaniline-Ag nano-array having goodelectrical conductivity, the oxidation peak current and the concentration of cholinethere is a good linear relationship. The linear regression equation wasY=1.227X-0.0122a detection limit of1x10-6mol/L, the response time of0.120S.
     We prepared the GOD/TiO2/PANI-Ag nano cable arrays sensor. The oxidationpeak current and the concentration of glucose sensor there is a good linear relationship.Linear regression equation was Y=1.335X-0.086.
     In short, the article was first prepared by a variety of enzymes/(TiO2)/PANI-theAg Nanocables array sensor, excellent anti-jamming performance, high sensitivity,and has great application prospects.
引文
[1]Street GB. Polypyrrole: from powders to plastics. In: Skotheim TA, editor.Handbook of conducting polymers, vol. I. New York: Marcel Dekker,1986.265–91
    [2]Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis ofelectrically conducting organicpolymers: halogen derivatives of polyacetylene,(CH)x. J Chem Soc Chem Commun,1977.578–80
    [3]Heeger AJ. Semiconducting and metallic polymers: the fourth generation ofpolymeric materials (Nobel Lecture). Angew Chem Int Ed2001.40:2591–611
    [4]Feast WJ. Synthesis of conducting polymers. In: Skotheim TA, editor. Handbookof conducting polymers, vol. I. New York: Marcel Dekker.1986.1–43.
    [5]Kundu K, Giri D. Evolution of the electronic structure of cyclic polythiopheneupon bipolaron doping. Am Inst Phys,1996.105:11075–80
    [6]Hong SY, Marnick DS. Understanding the conformational stability and electronicstructures of modified polymers based on polythiophene. Macromolecules,1992.4652–7
    [7]Diaz AF, Bargon J. Electrochemical synthesis of conducting polymers. In:Skotheim TA, editor. Handbook of conducting polymers, vol. I. New York: MarcelDekker,1986.81–115
    [8]Diaz AF, Kanazawa KK. Electrochemical polymerization of pyrrole. J Chem SocChem Commun1979:635.[9] Dall’Olio A, Dascola G, Varacco V, Bocchi V.Electron paramagnetic resonance and conductivity of an electrolytic oxypyrrole
    [(pyrrole polymer)] black. C R Acad Sci Ser C,1968.267:433–5
    [10]Tourillon G. Polythiophene and its derivatives. In: Skotheim TA, editor. Handbook of conducting polymers, vol. I. New York: Marcel Dekker,1986.293–350
    [11]Pauw JLvd. A method of measuring specific resistivity and Hall effect of discs ofarbitrary shape. Phillips Res Rep,1958.13:1–9
    [12]Kaneto K, Yoshino K, Inuishi Y. Electrical and optical properties ofpolythiophene prepared by electrochemical polymerization. Solid State Commun,1983.46:389–91
    [13]Chung T-C, Kaufman JH, Heeger AJ, Wudl F. Charge storage in dopedpoly(thiophene): optical and electrochemical studies. Phys Rev B,1984.30:702–10
    [14]Wallace G, Kane-Maguire L. Conducting polymers. In: Wnek GE, Bowlin GL,editors. Encyclopedia of biomaterials and biomedical engineering. New York:Marcel Dekker, Inc.2004.374–83
    [15]Heeger AJ. Polyacetylene: new concepts and new phenomena. In: Skotheim TA,editor. Handbook of conducting polymers, vol. II. New York: Marcel Dekker,1986.729–56
    [16]Heeger AJ. Semiconducting and metallic polymers: the fourth generation ofpolymeric materials. Synth Met,2002.125:23–42
    [17]Bredas JL. Electronic structure of highly conducting polymers. In: Skotheim TA,editor. Handbook of conducting polymers, vol. II. New York: Marcel Dekker,1986.859–913
    [18]Collier JH, Camp JP, Hudson TW, Schmidt CE. Synthesis and characterization ofpolypyrrole–hyaluronic acid composite biomaterials for tissue engineeringapplications. J Biomed Mater Res,2000.50:574–84
    [19]Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerkar DP.Electrochemically synthesized conducting polymeric materials for applicationstowards technology in electronics, optoelectronics and energy storage devices.Mater Chem Phys,1999.61:173–91
    [20]Foulds NC, Lowe CR. Enzyme entrapment in electrically conducting polymers. JChem Soc Faraday Trans,1986.82:1259–64
    [21]Umana M, Waller J. Protein modified electrodes: the glucose/oxidase/polypyrrolesystem. Anal Chem,1986.58:2979–83
    [22]Wong JY, Langer R, Ingber DE. Electrically conducting polymers cannoninvasively control the shape and growth of mammalian cells. Proc Natl AcadSci USA,1994.91:3201–4
    [23]Shi G, Rouabhia M, Wang Z, Dao L H, Zhang Z. A novel electrically conductiveand biodegradable composite made of polypyrrole nanoparticles and polylactide.Biomaterials,2004.25:2477–88
    [24]Aebischer P, Valentini RF, Dario P, Domenici C, Galleti PM. Piezoelectricguidance channels enhance regeneration in the mouse sciatic nerve after axotomy.Brain Res,1987.436:165–8
    [25]Valentini RF, Sabatini AM, Dario O, Aebischer P. Polymer electrec guidancechanels enhance peripheral nerve regeneration in mice. Brain Res,1989.480:300–4
    [26]Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacsin M, et al.Cerebral astrocyte response to micromachined silicon implants. Exp Neurol,1999.156:33–49.
    [27]Weidland JD, Anderson DJ. Chronic neural stimulation with thin-film, iridiumoxide electrode. IEEE Trans Bio-Med Eng,2000.47:911–8
    [28]Cui X, Hetke JF, Wiler JA, Anderson DJ, Martin DC. Electrochemical depositionand characterization of conducting polymer polypyrrole/PSS on multichannelneural probes. Sensors Actuators A,2001.93:8–18
    [29]Gerard M, Chaubey A, Malhotra BD. Application of conducting polymers tobiosensors. Biosenors Bioelectron,2002.17:345–59
    [30]Clark LC, Lyons C. Electrode systems for continuous monitoring incardiovascular surgery. Ann NY Acad Sci,1962.102:29–45
    [31]Cosnier S, Dawod M, Gorgy K, Da Silva S. Synthesis and electrochemicalcharacterization of a new electropolymerizable hydrophilic viologen designed forenzyme wiring. Microchim Acta,2003.143:139–45
    [32]Chen J, Too CO, Wallace GG, Swiegers GF, Skelton BW, White AH.Redox-active conducting polymers incorporating ferrocenes: preparation,characterization and biosensing properties of ferrocenylpropyl and-butylpolypyrroles. Electrochim Acta,2002.47:4227–38
    [33]Chen J, Too CO, Wallace GG, Swiegers GF. Redox-active conducting polymersincorporating ferrocenes,2: preparation and characterisation of polypyrrolescontaining propyl-and butyl-tethered [1.1]ferrocenophane. Electrochim Acta,2004.49:691–702
    [34]Cete S, Yasar A, Arslan F. An amperometric biosensor for uric acid determinationprepared from uricase immobilized in polypyrrole film. Artif Cells BloodSubstitutes Biotechnol,2006.4:367–80
    [35]Arslan F, Yasar A, Kilic E. Preparation of Pt/polypyrrole–ferrocene hydrogenperoxide sensitive electrode for the use as a biosensor. Russian JElectrochem,2006.2:137–40
    [36]Arslan F, Yasar A, Kilic E. An amperometric biosensor for xanthine determinationprepared from xanthine oxidase immobilized in polypyrrole film. Aritif CellBlood Substitutes Immobilization Biotechnol,2006.4:11–126
    [37]Alves WA, Fiorito PA, Cordoba de Torresi SI, Torresi RM. Design of molecularwires based on supramolecular structures for application in glucose biosensors.Biosensors Bioelectron,2006.2:298–305
    [38]Fiorito PA, Brett CMA, Cordoba de Torresi SI. Polypyrrole/copperhexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta,2006.69:403–8
    [39]Li J-P, Gu H-N. A selective cholesterol biosensor based on composite filmmodified electrode for amperometric detection. J Chinese Chem Soc (Taipei,Taiwan),2006.53:575–82
    [40]Pandey PC, Mishra AP. Conducting polymer-coated enzyme microsensor for urea.Analyst,1988.113:329–31
    [41]Gambhir A, Gerard M, Mulchandani A, Malhotra BD. Co-immobilization ofurease and glutamate dehydrogenase in electrochemically preparedpolypyrrole–polyvinyl sulphonate films. Appl Biochem Biotechnol,2001.96:249–57
    [42]Palmisano F, Zambonin PG, Centonze D. Amperometric biosensors based onelectrosynthesised polymeric films. Fresenius J Anal Chem,2000.366:586–601
    [43]Habermuller L, Mosbach M, Schuhmann W. Electrontransfer mechanisms inamperometric biosensors. Fresenius J Anal Chem,2000.366:560–8
    [44]Bakker E, Telting-Diaz M. Electrochemical sensors. Anal Chem,2002.74:2781–800
    [45]Schuhmann W. Amperometric enzyme biosensors based on optimisedelectron-transfer pathways and non-manual immobilisation procedures. Rev MolBiotechnol,2002.82:425–41
    [46]Cosnier S. Biosensors based in electropolymerized films: new trends. AnalBioanal Chem,2003.377:507–20
    [47]Malhotra BD, Chaubey A, Singh SP. Prospects of conducting polymers inbiosensors. Anal Chim Acta,2006.578:59–74
    [48]Ahuja T, Mir IA, Kumar D, Rajesh. Biomolecular immobilization on conductingpolymers for biosensing applications. Biomaterials,2007.28:791–805
    [49]Tamiya E, Karube I, Hattori S, Sizuki M, Yokoyama K. Micro glucose sensorsusing electron mediators immobilized on a polypyrrole-modified electrode.Sensors Actuators,1989.18:297–307
    [50]Fu Y, Yuan R, Chai Y, Zhou L, Zhang Y. coupling of a reagentless electrochemicalDNA biosensor with conducting polymer film and nanocomposite as matrices forthe detecion of the HIV DNA sequences. Anal Lett,2006.39:467–82
    [51]Trojanowicz M, Matuszewski W, Podsiada M. Enzyme entrapped polypyrrolemodified electrode for flow-injection determination of glucose. BiosensorsBioelectron,1990.5:149–56
    [52]Fortier G, Brassard E, Belanger D. Optimization of a polypyrrole glucose oxidasesensor. Biosensors Bioelectron,1990.5:473–90
    [53]Ramanavicius A, Kausaite A, Ramanaviciene A. Polypyrrole-coated glucoseoxidase nanoparticles for biosensor design. Sensors Actuators B,2005.B111–B112:532–9
    [54]Zhu M, Jiang Z, Jing W. Fabrication of polypyrrole–glucose oxidase biosensorbased on multilayered interdigitated ultramicroelectrode array with containedtrenches. Sensors Actuators B,2005.B110(2):382–9
    [55]Wang J, Myung NV, Yun M, Monbouquette HG. Glucose oxidase entrapped inpolypyrrole on high-surface area Pt electrodes: a model platform for sensitiveelectroenzymatic biosensors. J Electroanal Chem,2005.575:139–46
    [56]Serradilla RS, Lopez RB, Mora DN, Mark HB, Kauffmann JM. Hydrogenperoxide sensitive amperometric biosensor based on horseradish peroxidaseentrapped in a polypyrrole electrode. Bionsensors Bioelectron,2002.17:921–8
    [57]Llaudet E, Botting NP, Crayston JA, Dale N. A threeenzyme microelectrodesensor for detecting purine release from central nervous system. BionsensorsBioelectron,2003.18:43–52
    [58]Ngamna O, Morrin A, Moulton SE, Killard AJ, Smyth MR, Wallace GG. An HRPbased biosensor using sulphonated polyaniline. Synth Met,2005.153:185–8
    [59]Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS. Synthesis andcharacterization of a pyrrole-alginate conjugate and its application in a biosensor.Biomacromolecules,2005.6:3313–8
    [60]Cristea C, Mousty C, Cosnier S, Popescu IC. Organic phase PPO biosensor basedon hydrophilic films of electropolymerized polypyrrole. Electrochim Acta,2005.50:3713–8
    [61]Zhu L, Lu Y. Electrochemically embedded enzyme in polypyrrole film and itsapplication in biosensor. Gongneng Cailiao,2005.36:619–21
    [62]Chen J, Winther-Jensen B, Lynam C, Ngamna O, Moulton S, Zhang W, et al. Asimple means to immobilize enzyme into conducting polymers via entrapment.Electrochem Solid State Lett,2006.9(7):H68–70
    [63]Vidal JC, Garcia-Ruiz E, Espuelas J, Aramendia T, Castillo JR. Comparison ofbiosensors based in entrapment of cholesterol oxidase and cholesterol esterase inelectropolymerized films of polypyrrole and diaminonaphtalene derivative foramperometric determination of cholesterol. Anal Bioanal Chem,2003.377:273–80
    [64]Li CM, Sun CQ, Song S, Choong VE, Maracas G, Zhang XJ. Impedance labellessdetection-based polypyrrole DNA biosensor. Front Biosci,2005.10:180–6
    [65]Rodriguez MI, Alocilja EC. Embedded DNA–pyrrole biosensor for rapiddetection of Esherichia coli. IEEE Sens J,2005.5:733–6
    [66]Chen Y, Elling, Lee Y-l, Chong S-C. A fast sensitive and label freeelectrochemical DNA sensor. J Phys: Conf Ser,2006.34:204–9
    [67]Jiang X, Lin X. Overoxidizing polypyrrole film directed DNA immobilization forconstruction of electrochemical micro-biosensors and simultaneousdetermination of serotonin and dopamine. Anal Chim Acta,2005.537:145–51
    [68]Yamagishi FG, Stanford Jr TB, VanAst CI. Biosensors from conducting polymertransducers and sol–gel encapsulated bioindicator molecules. Proc ElectrochemSoc,2001.18:213–23.
    [69]Deshpande MV, Hall EA. An electrochemically grown polymer as animmobilization matrix for whole cells: applications in an amperometricdopamine sensor. Biosensors Bioelectron,1990.5:431–48
    [70]Sidwell JS, Rechnitz GA. Bananatrode, an electrochemical biosensor fordopamine. Biotechnol Lett,1985.7:419–22
    [71]Hodgson AJ, John MJ, Campbell T, Georgevich A, Woodhouse S, Aoki T, et al.Integration of biocomponents with synthetic structures—use of conductingpolymerpolyelectrolyte composites. Proc SPIE Int Soc OptEng,1996.2716:164–76
    [72]Campbell TE, Hodgson AJ, Wallace GG. Incorporation of erythrocytes intopolypyrrole to form the basis of a biosensor to screen for rhesus(D) blood groupsand rhesus(D) antibodies. Electroanalysis,1999.11:215–22
    [73]Mousty C, Galland B, Cosnier S. Electrogeneration of a hydrophilic cross-linkedpolypyrrole film for enzyme electrode fabrication: application to theAmperometric detection of glucose. Electroanalysis,2001.13:186–90
    [74]Fabiano S, Tran-Minh C, Piro B, Dang LA, Pham MC, Vittori O. Poly3,4-ethylenedioxythiophene as an entrapment support for amperometric enzymesensor. Mater Sci Eng C,2002.21:61–7
    [75]Wilchek M, Bayer EA. The avidin–biotin complex in bioanalytical applications.Anal Biochem,1988.171:1–32
    [76]Torres-Rodriguez LM, Billon M, Roget A, Bidan G. Electrosynthesis of abiotinylated polypyrrole film and study of the avidin recognition by QCM. JElectroanal Chem,2002.523:70–8
    [77]Evans SAG, Brakha K, Billon M, Mailley P, Denuault G. Scanningelectrochemical microscopy (SECM): localized glucose oxidase immobilizationvia the direct electrochemical microspotting of polypyrrole–biotin films.Electrochem Commun,2005.7:135–40
    [78]Dupont-Filliard A, Billon M, Livache T, Guillerez S. Biotin/avidin system for thegeneration of fully renewable DNA sensor based on biotinylated polypyrrole film.Anal Chim Acta,2004.515:271–7
    [79]Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV. Bioaffinity sensingusing biologically functionalized conducting-polymer nanowire. J Am Chem Soc,2005.127:496–7
    [80]Mouffouk F, Brown SJ, Demetriou AM, Higgins SJ, Nichols RJ, Rajapakse RM,et al. Electrosynthesis and characterization of biotin-funtionalizedpoly(terthiophene) copolymers and their response to avidin. J Mater Chem,2005.15:1186–96
    [81]Cosnier S, Ionescu RE, Herrmann S, Bouffier L, Demeunynck M, Marks RS.Electroenzymatic polypyrrole-intercalator sensor for the determination of WestNile virus cDNA. Anal Chem,2006.78:7054–7
    [82]Riccardi CdS, Yamanaka H, Josowicz M, Kowalik J, Mizaikoff G, Kranz C.Label-free DNA detection based on modified conducting polypyrrole films atmicroelectrodes. Anal Chem,2006.78:1139–45
    [83]Livache T, Roget A, Dejean E, Barthet C, Bidan G, Teoule R. Preparation of aDNA matrix via an electrochemically directed copolymerization of pyrrole andoligonucleotides bearing a pyrrole group. Nucleic Acids Res,1994.22:2915–21
    [84]Lasalle N, Roget A, Livache T, Mailley P, Veil E. Electropolymerisablepyrrole-oligonucleotide: synthesis and analysis of ODN hybridisation byfluorescence and QCM. Talanta,2001.55:993–1004
    [85]Minett AI, Barasci JN, Wallace GG. Immobilisation of anti-Listeria in apolypyrrole film. React Funct Polym,2002.53:217–27
    [86]Minett AI, Barasci JN, Wallace GG. Coupling conducting polymers and mediatedelectrochemical responses for the detection of Listeria. Anal Chim Acta,2003;.475:37–45
    [87]Shimomura M, Kojima N, Oshima K, Yamauchi T, Miyauchi S. Covalentimmobilization of glucose oxidase on film prepared by electrochemicalcopolymerization of thiophene-3-acetic acid and3-methylthiophene for glucosesensing. Polym J (Tokyo, Japan),2001.33:629–31
    [88]Welzel HP, Kossmehl G, Engelmann G, Neumann B, Wollenberer U, Scheller F, etal. Reactive groups on polymer covered electrodes, Part4—lactateoxidase-biosensor based on electrodes modified by polythiophene. MacromolChem Phys,1996.197:3355–63
    [89]Jeffries-El M, Zaiger K, McCullough RD. Design and synthesis of novelglycopolythiophenes. PMSE Preprints,2002.86:166
    [90]Kang SK, Kim J-H, An J, Lee EK, Cha J, Lim G, et al. Synthesis of polythiophenederivatives and their applications for electrochemical DNA sensor. Polym J(Tokyo, Japan),2004.36:937–42
    [91]Gautier C, Cougnon C, Pilard J-F, Casse N. Label-free detection of DNAhybridization based on EIS investigation of conducting properties of functionalpolythiophene matrix. J Electroanal Chem,2006.587:276–83
    [92]Hiller M, Kranz C, Hubber J, Bauerle P, Schuhmann W. Amperometric biosensorsproduced by immobilization of redox enzymes at polythiophene-modifiedelectrode surfaces. Adv Mater,1996.8:219–22
    [93]Korri-Youssouri H, Makrouf B. Electrochemical biosensing of DNAhybridization by ferrocenyl groups functionalized polypyrrole. Anal Chim Acta,2002.469:85–92
    [94]Bera-Aberem M, Ho H-A, Leclerc M. Functional polythiophene as opticalchemo-and biosensors. Tetrahedron,2004.60:11169–73
    [95]Azioune A, Slimane AvB, Hamou LA, Pleuvy A, Chehimi MM, Perruchot C, et al.Synthesis and characterization of active ester-functionalized polypyrrole–silicananoparticles: application to the covalent attachment of proteins. Langmuir,2004.20:3350–6
    [96]Cosnier S, Senillou A. An electrogenerated poly(pyrrolebenzophenone) film forthe photografting of proteins. Chem Commun,2003.414–5
    [97]Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A, et al.Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for thedetection of antibodies to viral antigen. Anal Chem,2005.77:1771–9
    [98]Biloivan OA, Verevka SV, Dzyadevych SV, Jaffrezic-Renault N, Zine N, BausellsJ, et al. Protein detection based on microelectrodes with thePPy[3,3-co(1,2-C2B9H11)]2solid contact and immobilized proteinases:preliminary investigations. Mater Sci Eng C,2006.26:574–7
    [99]Hamdi N, Wang J, Walker E, Maidment NT. An electroenzymatic L-glutamatemicrobiosensor selective against dopamine. J Electroanal Chem2006;591:33–40.
    [100] Guerrieri A, Lattanzio V, Palmisano F, Zambonin PG. Electrosynthesizedpoly(pyrrole/poly(2-naphthol) bilayer membrane as an effective anti-interferencelayer for simultaneous. Biosensors Bioelectron,2006.21:1710–8
    [101]Carelli D, Centonze D, De Giglio A, Quinto M, Zambonin PG. Aninterference-free first generation alcohol biosensor base don a gold electrodemodified by an overoxidized nonconducting polypyrrole film. Anal Chim Acta,2006.565:27–35
    [102]Guiseppi-Elie A, Brahim S, Slaughter G, Ward KR. Design of a subcutaneousimplantable biochip for monitoring of glucose and lactate. IEEE Sensors J,2005.5:345–55
    [103]Gade VK, Shirale DJ, Gaikwad PD, Savale PA, Kakde KP, Kharat HJ, et al.Immobilization of GOD on electrochemically synthesized Ppy–PVS compositefilm by cross-linking via glutaraldehyde for determination of glucose. ReactFunct Polym,2006.66:1420–6
    [104]Singh S, Solanki PR, Pandey MK, Malhotra BD. Cholesterol biosensor based oncholesterol esterase, cholesterol oxidase and peroxidase immobilized ontoconducting polyaniline films. Sensors Actuators B,2006.B115:534–41
    [105]Cen L, Neoh KG, Kang ET. Surface functionalization of polypyrrole film withglucose oxidase and viologen. Biosensors Bioelectron,2003.18:363–74
    [106]Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalizedconductive polypyrrole as a bioactive platform for cell adhesion.Biomacromolecules,2006.7:1692–5
    [107]Liu J, Bian C, Han J, Chen S, Xia S. A silicone-based bulk micromachinedamperometric microelectrode biosensor with consecutive platinization andpolymerization of pyrrole. Sensors Actuators B,2005.B106:591–601
    [108]Ebarvia BS, Cabanilla S, Sevilla III F. Biomimetic properties and surface studiesof a piezoelectric caffeine sensor based on electrosynthesized polypyrrole.Talanta,2005.66:145–52
    [109]Bjork P, Persson NK, Peter K, Nilson R, Asberg P, Inganas O. Dynamics ofcomplex formation between biological and luminescent conjugatedpolyelectrolytes—a surface plasmon resonance study. BiosensorsBioelectron,2005.20:1764–71
    [110]Le Floch F, Ho H-A, Leclerc M. Label-free electrochemical detection of proteinbased on ferrocene-bearing cationic polythiophene and aptamer. Anal Chem,2006.78:4727–31
    [111]Le Floch F, Ho H-A, Harding-epage P, Bedard M, Neagu-Plesu R Leclerc M.Ferrocene-functionalized cationic PT for the label-free electrochemical detectionof DNA. Adv Mater,2005.17:1251–4
    [112]Parthasarathy RV, Martin CR. Synthesis of polymeric microcapsule arrays andtheir use for enzyme immobilization. Nature,1994.369:298–301
    [113]Ionescu RE, Abu-Rabeah K, Cosnier S, Marks R S. Improved enzyme retentionfrom an electropolymerized polypyrrole–alginate matrix in the development ofbiosensors. Electrochem Commun,2005.7:1277–82
    [114]Retama JR, Mecerreyes D, Lopez-Ruiz B, Lopez-Cabarcos E. Synthesis andcharacterization of semiconducting polypyrrole/polyacrylamide microparticleswith GOx for biosensor applications. Colloids Surf A,2005.270–271:239–44
    [115]Ionescu RE, Abu-Rabeah K, Cosnier S, Durrieu C, Chovelon J-M, Marks RS.Amperometric algal Chlorella vulgaris cell biosensors based on alginate andpolypyrrole–alginate gels. Electroanalysis,2006.18:1041–6
    [116] Ferrer-Anglada N, Kaempgen M, Roth S. Transparent and flexible carbonnanotube/polypyrrole and carbon nanotube/polyaniline pH sensors. Phys Stat SolB,2006.243:3519–23
    [117]Cai H, Xu Y, He PG, Fang YZ. Indicator Free DNA Hybridization detection byimpedance measurement based on the DNA-doped conducting polymer filmformed on the carbon nanotube modified electrode. Electroanalysis,2003.15:1864–70
    [118]Cheng G, Zhao J, Tu Y, He P, Fang Y. A sensitive DNA electrochemicalbiosensor based on magnetite with a glassy carbon electrode modified bymulit-walled nanotubes in polypyrrole. Anal Chim Acta,2005.533:11–6
    [119]Xu Y, Ye X, Yang L, He P, Fang Y. Impedance DNA biosensor usingelectropolymerized polypyrrole/mulitwalled carbon nanotubes modifiedelectrode. Electroanalysis,2006.18:1471–8
    [120]Qu L, He P, Li L, Gao M, Wallace G, Dai L. Aligned/micropatterned carbonnanotube arrays: surface functionalization and electrochemical sensing. ProcSPIE Int Soc Opt Eng2005:5732(Quantum Sensing and Nanophotonic DevicesII,84–92)
    [121]Wang J, Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor.Anal Chim Acta,2005.539:209–13
    [122]Tsai Y-C, Li S-C, Liao S-W. Electrodeposition of polypyrrole-multiwalledcarbon nanotube-glucose oxidase nanobiocomposite film for the detection ofglucose. Biosensors Bioelectron,2006.22:495–500
    [123]Bidez PR, Li S, MacDiarmid AG, Venancio EC, Wei Y, Lelkes PI. Polyaniline,an electroactive polymer, supports adhesion and proliferation of cardiacmyoblasts. J Biomater Sci Polym Ed,2006.17:199–212
    [124]Wang CH, Dong YQ, Sengothi K, Tan KL, Kang ET. Invivo tissue response topolyaniline. Synth Met,1999.102:1313–4
    [125]Guterman E, Cheng S, Palouian K, Bidez P, Lelkes P, Wei Y. Peptide-modifiedelectroactive polymers for tissue engineering applications. Polym Preprints (AmChem Soc, Div Polym Chem),2002.43:766–7
    [126]Li ZF, Ruckenstein E. Two liquid adsorptive entrapment of a pluronic polymerinto ths surface of polyaniline films. J Colloid Interface Sci,2003.264:370–7
    [127]Cheng D, Xia H, Chan HS. Synthesis and characterization ofsurface-functionalized conducting polyaniline–chitosan nanocomposite. JNanosci Nanotechnol,2005.5:466–73
    [128]Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinningpolyaniline-containing gelatin nanofibers for tissue engineering applications.Biomaterials,2006.27:2705–15
    [129]Thomas CA, Zong K, Schottland P, Reynolds JR.Poly(3,4-alkylenedioxypyrrole)s as highly stable aqueouscompatible conductingpolymers with biomedical implications. Adv Mater,2000.12:222–5
    [130]Ouerghi O, Touhami A, Jaffrezic-Renault N, Martelet C, Ben Ouada H, CosnierS. Impedimetric immunosensor using avidin–biotin for antibody immobilization.Bioelectrochemistry,2002.56:131–3
    [131]Marks RS, Novoa A, Konry T, Krais R, Cosnier S. Indium tin oxide-coatedoptical fiber tips for affinity electropolymerization. Mater Sci Eng C,2002.21:189–94
    [132]Tessier D, Dao LH, Zhang Z, King MW, Guidoin R. Polymerization and surfaceanalysis of electrically conductive polypyrrole on surface-activated polyesterfabrics for biomedical applications. J Biomater Sci Polym Ed,2000.11:87–99
    [133]Jiang X, Marois Y, Traore′A, Tessier D, Dao LH, Guidoin R, et al. Tissuereaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. TissueEng,2002.8:635–47.
    [134]Zelikin AN, Lynn DM, Farhadi J, Martin I, Shastri V, Langer R. Erodibleconducting polymers for potential biomedical applications. Angew Chem Int Ed,2002.41:141–5
    [135]Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradableelectrically conducting polymer for biomedical applications. Adv Funct Mater,2002.12:33–7
    [136]徐源,G.E.Thompson,B.B.Bethune,壁垒型铝阳极氧化膜的成分及电解质离子在膜中的漂移,中国腐蚀与防护学报,1987,7(3):161
    [137]K.V.Heber, Studies on Porous Al2O3Growthl..Physical MODEL.Electrochim.Acta,1978.23:127-135
    [138]K.V.Heber, Studies on Porous Al2O3Growthl..Physical MODEL.Electrochim.Acta.,1978,23:127-135
    [139]龟山秀雄,村田究,寺井聪.ァルミニウム阳极酸化皮膜しニよろ连续触媒体の开发,表面技术.1995,46(5):425
    [140]Uosaki K, Preparative Method for Fabricating a MicroelectrodeEnsemble:Electrochemical Response of Microporous Aluminum Anodic OxideFilm Modified Gold Electrode, Anal.Chem.,1990,62:652
    [141]Weber. S G.,Signal-to-Noise Ratio in Microeletrode-Array-BasedElectrochemical Detetors. Anal.chem,1989.61:295
    [142]Gong Yunlan(龚运兰).Tianjin University Master Dissertation(天津大学硕士学位论文),2000:53
    [143]Cunfeng Song, Wei Shi, Hairong Jiang et al, pH-sensitive characteristics ofpoly(acrylic acid)-functionalized anodic aluminum oxide (AAO) membranes,[J]Journal of Membrane Science,2011.372:340–345
    [144]星野重夫.阳极酸化皮膜を用いた分离膜の化成方法とその特性.表面技术协会第89回讲演大会要旨集,1994:120
    [145]Chen Jun(陈君).Tianjin University Master Dissertation(天津大学硕士学位论文),2007
    [146]董艳锋,李清山,多孔铝镶嵌8-羟基喹啉铝荧光光谱研究,物理化学学报,2002,7(51):1645-1648
    [147]朱凌健,郭灿城.高纯8-羟基喹啉铝的简便合成方法,化学试剂,2004,26(6):369—370
    [148]Y W Wang,G Z Wang,S X Wang,etc, Fabrication and magnetic properties ofhighly ordered Co16Ag84alloy nanowire array, Appl. Phys. A,2002,74:577-580
    [149]S. Demoustier-Champagne, M. Delvaux, Preparation of polymeric and metallicnanostructures using a template-based deposition method Materials, Science andEngineering C,2001.269–271
    [150]Shirakawa H, Lowis E J,MacDiarmid A G, et al.,Synthesis of ElectricallyConducting Organic Polymers: Halogen Derivatives of Polyacetylene [J]. J.Chem. Soc. Chem. Comm.,1977,16:578-580.
    [151]Macdiarmid A G, Polyaniline: A New Method Concept in Conducting Polymers,Synth.Met,1987.18:285-290.
    [152]Genies E M, Boyle A, Lapkowski M et al, Polyaniline: a historical survey,Synthetic Metals,1990.36:139-182
    [153]Ken HASHIZUME, Martin Vacha. Preparation and optical properties ofcapped-CdSe nanocrystals[J].Journal of Luminescence,2000,89:402-404
    [154]Waugaman M, Sannigrahi B, McGeady P, Khan IM. Synthesis, characterizationand biocompatibility studies of oligosiloxane modified polythiophenes. EurPolym J,2003.39:1405–12
    [155]Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradableelectrically conducting polymer for biomedical applications. Adv FunctMater,2002.12:33–7
    [156]George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Rupali A, et al.Fabrication and biocompatibility of polypyrrole implants suitable for neuralprosthetics. Biomaterials,2005.26:3511–9
    [157]Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, et al. Surfacemodification of neural recording electrodes with conductingpolymer/biomolecule blends. J Biomed Mater Res,2001.56:261–72
    [158]Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC. In vivo studies ofpolypyrrole/peptide coated neural probes. Biomaterials,2003.24:777–87
    [159]Kim D-H, Abidian M, Martin DC. Conducting polymers grown in hydrogelscaffolds coated on neural prosthetic devices. J Biomed MaterRes,2004.71A:577–85
    [160]Yamato H, Ohwa M, Wernet W. Stability of polypyrrole andpoly(3,4-ethylenedioxythiophene) for biosensor application. J Electroanal Chem1995;397:163–70.[161] Cui XY, Martin DC. Electrochemical deposition andcharacterization of poly(3,4-ethylenedioxythiophene) on neural microelectrodearrays. Sensors Actuators B,2003.89:92–102
    [162]Xiao YH, Cui XY, Hancock JM, Bouguettaya M, Reynolds JR, Martin DC.Electrochemical polymerization ofpoly(hydroxymethylated-3,4-ethylenedioxythiophene)(PEDOT–MeOH) onmultichannel neural probes. Sensors Actuators B,2004.99:437–43
    [163]Yang J, Kim D-H, Hendricks JL, Leach M, Northey R, Martin DC. Orderedsurfactant-templated poly(3,4-ethylenedioxythiophene)(PEDOT) conductingpolymer on microfabricated neural probes. Acta Biomater,2005.1:125–36
    [164]Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR. Chronic neuralrecordings using silicon microelectrode arrays electrochemically deposited witha poly(3,4-ethylenedioxythiophen)(PEDOT) film. J Neural Eng,2006.3:59–70
    [165]Entezami AA, Massoumi B. Artificial muscles, biosensors and drug deliverysystems based on conducting polymers: a review. Iranian Polym J,2006.15:13–30.
    [166]Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release ofdexamethasone from conducting polymer polypyrrole coated electrode. J ControlRelease,2006.110:531–41
    [167]Abidian MR, Kim DH, Martin DC. Conducting polymer nanotubes forcontrolled drug release. Adv Mater,2006.18:405–9
    [168]Li Y, Neoh KG, Kang ET. Controlled release of heparin frompolypyrrole–poly(vinyl alcohol) assembly by electrical stimulation. J BiomedMater Res A,2005.73A:171–81
    [169]George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R. Electricallycontrolled drug delivery from biotindoped conductive polypyrrole. Adv Mater,2006.18:577–81
    [170]Kulinsky L, Xu H, Tsai H-KA, Madou M. System-based approach for anadvanced drug delivery platform. Proc SPIE Int Soc Opt Eng,2006.6173(SmartStructures and Integrated Systems,61730M/1-61730M/6)
    [172]Otero TF, Sansinena JM. Bilayer dimensions and movement in artificial muscles.Bioelectrochem Bioenergy,1997.42:117–22
    [173]Otero TF, Cortes MT. A sensing muscle. Sensors Actuators B,2003.96:152–6
    [174]Parthasarathy R, Martin C R, Synthesis of Polymeric Microcapsule Arrays andTheir Use for Enzyme Immobilization, Nature,1994.369:298-301
    [175]Cao Huaqiang, Tie Chenyang, Xu Zheng, Array of Nickel Nanowires Envelopedin Polyaniline Nanotubules and its Magnetic Behavior, Appl. Phys. Lett.,78(11):1592-1594
    [176]Shen Y, Wan M X, Tubular Polypyrrole Synthesized by in Situ DopingPolymerization in the Presence of Organic Function Acids as Dopants. J. Polym.Sci. Part A,1999.37:1443-1449
    [177]Cai Z, Martin C R, Electronically Conductive Polymer Fibers with MesoscopicDiameters Show Enhanced Electronic Conductivities J. Am. Chem. Soc.,1989.111:4138-4139
    [178]Duchet J, Legras R, Demoustier-Champagne S, Chemical Synthesis ofPolypyrrole: Structure-Properties Relationship. Synthetic Metals,1998.98:113-122
    [179]Burford R P, Tongtam T, Conducting polymers with controlled fibrillarmorphology, J. Mater. Sci.,1991.26:3264-3266
    [180]Jiang Jianming, Pan Wei, Yang Shenglina, Li Guang, Electrically conductivePANI-DBSA/Co-PAN composite fibers prepared by wet spinning. SyntheticMetals,2005.149:181–186
    [181]Li Xiaohong, Zhang Xiaogang, Li Hulin, Preparation and characterization ofPyrrole/Aniline copolymer nanofibrils using the template-synthesis method. J.Appl. Polymer Sci,2001.81:3002-3007
    [182]Wu C, Bein Thomas, Conducting Polyaniline Filaments in a MesoporousChannel Host Science,1994.264:1757-1758
    [183]Macdiarmid A G, Polyaniline: A New Method Concept in Conducting Polymers.Synth.Met.,1987.18:285-290
    [184]王杨勇,强军峰,井新利等,导电高分子聚苯胺及其应用,化工新型材料,2003,31(3):1-6.
    [185]Wudl F, Angus R O, Lu F L et al.,Poly(p-phenyleneamineimine): Synthesis andComparison to Polyaniline. J. Am. Chem. Soc.,1987.109:3677-3683
    [186]Xuebu Hu, Zhenghua Deng, Jishuan Suo, Zhonglai Pan. A high rate, highcapacity and long life (LiMn2O4+AC)/Li4Ti5O12hybrid battery-supercapacitorJ. Power Sources,2009.187:635–639
    [187]P. Sivaraman, R.K. Kushwaha, K. Shashidhara et al, All solid supercapacitorbased on polyaniline and crosslinked sulfonated poly[ether ether ketone].Electrochimica Acta,2010.55:2451–2456
    [188]Kyung-won Park, Hyo-jin Ahn, Yung-Eun Sung. All-solid-state supercapacitorusing a Nafion○R polymer membrane and its hybridization with direct mehanolfuel cell. J. Power Sources,2002.109:500-506
    [189]Wang Xiao-feng, Ruan Dian-bo, You Zheng. Application of sphericalNi(OH)2/CNTs composite electrode in asymmetric supercapacitor.Trans.Nonferrous Met. SOC. China,2006.16:1129-1134
    [190]H. Gualous, D. Bouquain, A. Berthon et al,. Experimental study ofsupercapacitor serial resistance and capacitance variations with temperature.Journal of Power Sources,2003.123:86–93
    [191]Wei Sun, Xuyuan Chen. Fabrication and tests of a novel three dimensional microsupercapacitor. Microelectronic Engineering,2009.86:1307–1310
    [192]Da-WeiWang, Feng Li, Hui-Ming Cheng. Hierarchical porous nickel oxide andcarbon as electrode materials for asymmetric supercapacitor. Journal of PowerSources,2008.185:1563–1568
    [193]Ken HASHIZUME, Martin Vacha. Preparation and optical properties ofcapped-CdSe nanocrystals.Journal of Luminescence,2000.89:402-404
    [194]Wei Fen Jiang, Long Yu Li, Shun Hua Xiao et al, Study on the vacuumbreakdown in field emission of a nest array of multi-walled carbonnanotube/silicon nanoporous pillar array, Microelectronics Journal,2008.39:763–767
    [195]Gandhi MR, Murray P, Spinks GM, Wallace GG. Mechanism ofelectromechanical actuation in polypyrrole. Synth Met,1995.73:247–56
    [196]Tahhan M, Truong V-T, Spinks GM,Wallace GG. Carbon nanotube andpolyaniline composite actuators. Smart Mater Struct,2003.12:626–32
    [197]Spinks GM, Campbell TE, Wallace GG. Force generation from polypyrroleactuators. Smart Mater Struct,2005.14:406–12
    [198]Spinks GM, Xi B, Troung V-T, Wallace GG. Actuation behavior of layeredcomposites of polyaniline, carbon nanotubes and polypyrrole. SynthMet,2005.151:85–91
    [199]Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG.Carbon nanotube reinforced polyaniline fibres for high strength artificial muscles.Adv Mater,2006.18:637–40
    [200]Mottaghitalab V, Xi B, Spinks GM, Wallace GG. Polyanline fibres containingsingle walled carbon nanotubes: enhanced performance artificial muscles. SynthMet,2006.156:796–803
    [201]Mazzoldi A, De Rossi D. Conductive-polymer-based structures for a steerablecatheter. Proc SPIE Int Soc Opt Eng,2000.3987:273–80
    [202]Smela E, Gadegaard N. Surprising volume change in PPy(DBS): an atomic forcemicroscopy study. Adv Mater,1999.11:953–7
    [203]Low LM, Seetharaman S, He KQ, Madou MJ. Microactuators towardmicrovalves for responsive controlled drug delivery. Sensors Actuators B,2000.67:149–60
    [204]Smela E. Conjugated polymer actuators for biomedical applications. AdvMater,2003.15:481–94
    [205]Gizdavic-Nikolaidis M, Travas-Sjdic J, Bowmaker GA, Cooney RP, KilmartinPA. Conducting polymers as free radical scavengers. SynthMet,2004.140:225–32
    [206]G.N. Fursey, Field emission in vacuum micro-electronics, Applied SurfaceScience,2003.215:113–134
    [207]D.G. Walkera, C.T. Harrisa, T.S. Fisher et al, Estimation of parameters inthermal-field emission from diamond, Diamond&Related Materials,2005.14:113-120
    [208]Ho HA, Dore K, Biossinot M, Bergeron MG, Tanguay RM, Boudreau D, et al.Direct molecular detection of nucleic acids by fluorescence signal amplification.J Am Chem Soc,2005.127:12673–6
    [209] Dubus S, Gravevl J-F, Le Drogoff B, Nobert P, Veres T, Boudreau D. PCR-freeDNA detection using a magnetic bead-supported polymeric transducer andmicroelectromagnetic traps. Anal Chem,2006.78:4457–64
    [210]Richardson-Burns SM, Hendricks JL, Foster B, Povlich LK, Kim D-H, MartinDC. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene)(PEDOT) around living neural cells. Biomaterials,2007.28:1539–52
    [211]Brahim S, Narinesingh D, Guiseppi-Elie A. Polypyrrole–hydrogel compositesfor the construction of clinically important biosensors. Biosensors Bioelectron,2002.17:53–9
    [212]Brahim S, Guiseppi-Elie A. Electroconductive hydrogels: electrical andelectrochemical properties of polypyrrole–poly(HEMA) composites.Electroanalysis,2005.17:556–70
    [213]Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole viaelectrospinning: electrical and morphological properties. Polymer,2006.47:1597–603
    [214]Zhang X, Manohar SK. Bulk synthesis of polypyrrole nanofibers by a seedingapproach. J Am Chem Soc,2004.126:12714–5
    [215]Zhang X, MacDiarmid AG, Manohar SK. Chemical synthesis of PEDOTnanofibers. Chem Commun (Cambridge, United Kingdom),2005.42:5328–30
    [216]Ramanathan K, Pandey SS, Kumar R, Gulati A, Murthy AS. Covalentimmobilization of glucose oxidase to poly (o-amino benzoic acid) for applicationto glucose biosensor. J Appl Polym Sci,2000.78:662–7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700