基于聚氨基酸分子的高聚物靶向输送载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因输送技术在几十年发展中,取得了令人瞩目的成果,但还存在一些问题急需解决。目前最重要的是构建安全有效的能将基因输送到特定位置的基因输送载体,其中非病毒载体由于安全性、易于修饰等优点受到广泛关注。非病毒载体除骨架外,为了达到某些特定的目的需要进行表面修饰以增加体外、体内的输送效果,如在载体表面修饰配体可以增加基因输送的靶向性,提高在特定组织或细胞中的基因表达;在载体表面修饰亲水性聚合物如聚乙二醇(PEG)等可以延长基因输送系统在体内的循环时间。
     本文对修饰后的载体结构进行了深入研究之后,发现现有的方法制备出的非病毒基因输送载体系统存在难以定量控制、表征修饰过程和产物的问题。因而提出采用寡聚谷氨酸将功能分子间接地修饰到复合粒子的表面,有利于对复合粒子表面修饰的结构和数量更有效地控制,并且在细胞试验中取得了较好的转染效果的方法。
     首先本文简要介绍了基因治疗方法、回顾了基因治疗载体的研究进展,并对各种基因治疗载体做了介绍。着重对非病毒载体作了系统地阐述包括聚赖氨酸(PLL)、脂质体、聚乙二亚胺(PEI)、阳离子多肽等的目前状况、研究进展。还介绍了阳离子聚合物载体的主要组成成分和表征方法以及阐述了本论文的意义。
     本论文工作首先应用毛细管电泳技术研究了靶向分子——表皮生长因子(EGF)和表面保护分子——PEG化学接枝的聚赖氨酸载体的结构和分布。EGF、PEG与PLL通过交联剂连接后,常常获得的是具有多种结构的混合物。我们将DNA和PLL或PEG-g-PLL以一定的比例混合形成复合粒子,复合粒子的组成也相当复杂。
     为了对表面修饰分子以及复合粒子有更好的质量控制,我们设计了一个20个谷氨酸的聚合物,PEG或EGF修饰后,再通过聚谷氨酸上游离羧基的负电性以静电引力吸附到DNA/PLL复合粒子表面,表征了不同比例的PLL、DNA与PLG、EGF-g-PLG或PEG-g-PLG混合形成的复合物的物理化学性质包括粒径、表面电位、荧光替代和表面形貌等。我们提出了一种方便、快捷的高聚物载体修饰方法,同时对这些复合粒子的生物学性质进行了表征,包括在有血清和无血清的培养基中的细胞转染效率。获得了一些有意义的结果,对以后的工作具有一定的指导作用。
     本论文不仅为目前的载体系统提供一个可供借鉴的质量控制方法,而且展示了一种可以广泛使用的阳离子高聚物载体系统组装方法,为以后使用的新型阳离子高聚物载体遇到类似的问题也能够从本论文的研究方法得到借鉴。
During the development of gene delivery techniques in recent decades, there are so many problem needing to be dissolved, although a lot of fruits have been made. Now it is the most important that construct the gene delivery vector which can safely and efficiently deliver gene to the specific tissue or cell. However the amount of modification on the surface of vector or complexes through the existing preparation methods was difficultly determined. In our paper, the function molecule was indirectly modified on the surface of complexes by poly-l-glutamic acid as a bridge, which can well control the amount of modification on the surface of complexes and obtained preferable transfection efficiency.
     Firstly, the development of gene therapy vector, the brief introduction of various vector, the main components in and characterization of polycation vector and the meaning about our paper was reviewed in our paper.
     Then capillary electrophoresis was used to characterize the reaction products between PLL and EGF or PEG. And the complexes formed with PLL, PEG-g-PLL and DNA at certain charge ratio was characterized by capillary electrophoresis.
     The PLG modified with EGF or PEG through the sole end amino of PLG, which was characterized by capillary electrophoresis, was electrostaticly adsorbed to the surface of DNA/PLL complexes, because there is too close charge to mass ratio in the reaction products between PLL and EGF or PEG to be separated by capillary electrophoresis. Then PLL, DNA, EGF-g-PLG and/or PEG-g-PLG at various charge ratio was formed into complexes, and characterization about the physicochemical properties of these complexes such as size, zeta potential, EtBr displacement and morphology was done. Also the biological property of these complexes was characterized, which include the cell transfection efficiency in medium with or without serum.
     In sum, we systemically studied a vector with convenient and fast modification, which was done the characterization of physicochemical properties and cell transfection experiments in which the preferable results was obtained. All these results can direct future work in assembly system.
引文
[1] Breyer B, Jiang W, Cheng H etc. Adenoviral vector-mediated gene transfer for human gene therapy, Curr. Gene Ther. 2001. 1: 149– 162
    [2] Rosenberg S.A, Aebersold P, Cornetta K etc. Gene transfer into humans– immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med, 1990. 323(9): 570-578
    [3] Raper SE, Chirmule N, Lee FS etc. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003. 80:148-158
    [4] Zauner W, Ogris M, Wagner E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews 1998. 30:97–113
    [5] LinksDaga SR, Verma B, Gosavi DV etc. Declining seroprevalence of HIV infection among paediatric inpatients.Trop Doct. 2007. 37(4):233-5
    [6] Miller D.G, Adam M.A, Miller A.D, Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell Biol. 1994. 10:4239–4242
    [7] Quantin B, Perricaudet L.D, Tajbakhsh S etc. Adenovirus as an expression vector in muscle cells in vivo, Proc. Natl. Acad. Sci. U. S. A. 1992. 89:2581–2584
    [8] Li Q, Kay M.A, Finegold M etc. Assessment of recombinant adenoviral vectors for hepatic gene therapy, Hum. Gene Ther. 1993. 4:403– 409
    [9] Smith G.L, Moss B, Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA, Gene. 1983. 25:21– 28
    [10] Samulski R.J, Zhu X, Xiao X etc. Targeted integration of adeno-associated virus (AAV) into human chromosome 19, EMBO J. 1991. 10:3941–3950
    [11] Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. J Virol. 2005. 79(1):193-201
    [12] Buller R.M, Janik J.E, Sebring E.D etc. Herpes simplex virus types 1 and 2 completely help adenovirusassociated virus replication, J. Virol. 1981. 40:241–247
    [13] Janik J.E, Huston M.M, Cho K etc. Efficient synthesis of adeno-associated virus structural proteins requires both adenovirus DNA binding protein and VA I RNA, Virology 1989. 168:320– 329
    [14] Parker J.N, Gillespie G.Y, Love C.E etc. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors, Proc. Natl. Acad. Sci. U. S. A. 2000. 97:2208-2213
    [15] Latchman D.S, Gene delivery and gene therapy with herpes simplex virus-based vectors, Gene. 2001. 264:1–9
    [16] Felgner, P.L. Particulate systems and polymers for in vitro and in vivo deliveryof polynucleotides. Adv. Drug Deliv. Rev. 1990. 5:163–187
    [17] Vaheri A, Pagano J.S, Infectious poliovirus RNA: a sensitive method of assay. Virology 1965. 27:434–436
    [18] Graham F.L, Eb A.J.V.D, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973. 52:456–467
    [19] Felgner PL, Gadek TR, Holm M etc. Lipofection : a highly efficient ,lipid - mediated DNA - transfection procedure. Proc Natl Acad Sci USA. 1987. 84:7413-7417
    [20] Radler J.O, Koltover I, Salditt T etc. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes, Science. 1997. 275:810– 814
    [21] Sternberg B, Sorgi F.L, Huang L, New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy, FEBS Lett. 1994. 356:361– 366
    [22] Almofti M.R, Harashima H, Shinohara Y etc. Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization, Arch. Biochem. Biophys. 2003. 410:246–253
    [23] Pedroso de Lima M.C, Simoes S, Pires P etc. Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications, Adv. Drug Deliv. Rev. 2001. 47:277– 294
    [24] Ross P.C, Hui S.W, Lipoplex size is a major determinant of in vitro lipofection efficiency, Gene Ther. 1999. 6:651–659
    [25] Liu Y, Mounkes L.C, Liggitt H.D etc. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery, Nat. Biotechnol. 1997. 15:167– 173
    [26] Bennett MJ, Nantz MH, Balasubramaniam RP etc. Cholesterol enhances cationic liposome-mediated DNA transfection of human respiratory epithelial cells, Biosci. Rep. 1995. 15:47– 53
    [27] Hui SW, Langner M, Zhao YL etc. The role of helper lipids in cationic liposome-mediated gene transfer, Biophys. J. 1996. 71:590-599
    [28] Farhood H, Serbina N, Huang L, The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer, Biochim. Biophys. Acta. 1995. 1235:289-295
    [29] Gao X; Huang L, Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996. 35(3):1027-1036
    [30] Li S, Huang L, Novel lipidic vectors for gene transfer, Nonviral Vectors for Gene Therapy, Academic Press, San Diego, 1999. 289– 309
    [31] Ueno NT, Bartholomeusz C, Xia W etc. Systemic gene therapy in human xenograft tumor models by liposomal delivery of the E1A gene, Cancer Res. 2002. 62:6712– 6716
    [32] Sorgi FL, Bhattacharya S, Huang L, Protamine sulfate enhances lipid-mediated gene transfer, Gene Ther. 1997. 4:961– 968
    [33] Seville PC, Kellaway IW, Birchall JC, Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying, J. Gene Med. 2002. 4:428– 437
    [34] Wu GY, Wu CH, Receptor-mediated in vitro gene transformation by a soluble DNA carrier system, J. Biol. Chem. 1987. 262:4429– 4432
    [35] Okuda T, Kidoaki S, Ohsaki M etc. Time-dependent complex formation of dendritic poly(L-lysine) with plasmid DNA and correlation with in vitro transfection efficiencies. Org.Biomol.Chem. 2003, 1:1270–1273
    [36] Ward CM, Pechar M, Oupicky D etc. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo, J. Gene Med. 2002. 4:536–547
    [37] M?nnist? M, R?nkk? S, M?tt? M etc.The role of cell cycle on polyplex-mediated gene transfer into a retinal pigment epithelial cell line.J Gene Med. 2005. 7(4):466-76
    [38] Nishikawa M, Takemura S, Takakura Y etc. Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties, J. Pharmacol. Exp. Ther. 1998. 287:408– 415
    [39] Wolfert MA, Dash PR, Nazarova O etc. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA, Bioconjug. Chem. 1999. 10:993– 1004
    [40] Pouton CW, Lucas P, Thomas BJ etc. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids, J. Control. Release. 1998. 53:289– 299
    [41] Brown MD, Schatzlein A, Brownlie A etc. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents, Bioconjug. Chem. 2000. 11:880– 891
    [42] Ward CM, Read ML, Seymour LW, Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood. 2001. 97:2221-2229
    [43] Dash PR, Read ML, Barrett LB etc. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery, Gene Ther. 1999. 6:643– 650
    [44] Lee H, Jeong JH, Park TG, PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. Journal of Controlled Release. 2002. 79:283–291
    [45] Suh W, Chung JK, Park SH etc. Anti-JL1 antibody-conjugated poly(L-lysine) for targeted gene delivery to leukemia T cells, J. Control. Release. 2001. 72:171– 178
    [46] Faraasen S, Voros J, Csucs G etc. Ligand-specific targeting of microspheres tophagocytes by surface modification with poly(L-lysine) grafted poly(ethylene glycol) conjugate, Pharm. Res. 2003. 20:237– 246
    [47] Nah JW, Yu L, Han S etc, Artery wall binding peptide-poly(ethylene glycol)-graftedpoly(L-lysine)-based gene delivery to artery wall cells. Journal of Controlled Release 2002. 78:273–284
    [48] Boussif O, Lezoualch F, Zanta MA etc, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U.S.A. 1995. 92:7297-7301
    [49] Godbey WT, Wu KK, Mikos AG, Poly-(ethylenimine) and its role in gene delivery. J. Controlled Release. 1990. 60:149-160
    [50] Pollard H, Remy JS, Loussouarn G etc, Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 1998. 273:7507-7511
    [51] Dunlap DD, Maggi A, Soria MR etc, Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 1997. 25:3095-3101
    [52] Erbacher P, Remy JS, Behr JP, Gene transfer with synthetic virus-like particles via the integrinmediated endocytosis pathway. Gene Ther. 1999. 6:138-145
    [53] Remy JS, Abdallah B, Zanta MA etc, Gene transfer with lipospermines and polyethyleneimines. Adv. Drug Delivery Rev. 1998. 30:85-95
    [54] Godbey WT, Wu KK, Mikos AG, Poly-(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials. 2001. 22:471-480
    [55] Ogris M, Brunner S, Schuller S etc, PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999. 6:595-605
    [56] Haines AM, Irvine AS, Mountain A etc, CL22-a novel cationic peptide for efficient transfection of mammalian cells, Gene Ther. 2001. 8:99–110
    [57] Ohmori N, Niidome T, Kiyota T etc, Importance of Hydrophobic Region in Amphiphilic Structures ofα-Helical Peptides for Their Gene Transfer-Ability into Cells, Biochem. Biophys. Res. Commun. 1998. 245:259–265
    [58] Wyman TB, Nicol F, Zelphati O etc, Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers, Biochemistry. 1997. 36:3008– 3017
    [59] Niidome T, Takaji K, Urakawa M etc, Chain length of cationic alpha-helical peptide sufficient for gene delivery into cells, Bioconjug. Chem. 1999. 10:773–780
    [60] Kim HH, Lee WS, Yang JM etc, Basic peptide system for efficient delivery of foreign genes, Biochim. Biophys. Acta. 2003. 1640:129–136
    [61] Plank C, Tang MX, Wolfe AR etc, Branched cationic eptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes, Hum. Gene Ther. 1999. 10:319–332
    [62] Rittner K, Benavente A, Bompard-Sorlet A etc, New basicmembrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo, Mol. Ther. 2002. 5:104–114
    [63] Mao HQ, Roy K, Troung L etc, Chitosan DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency, J. Control. Rel. 2001. 70:399–421
    [64] Roy K, Mao HQ, Huang SK etc, Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy, Nat. Med. 1999. 5:387–391
    [65] Kukowska-Latallo JF, Bielinska AU, Johnson J etc, Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers, Proc. Natl. Acad. Sci. USA. 1996. 93:4897–4902
    [66] Singh B, Florence AT, Hydrophobic dendrimer-derived nanoparticles. International Journal of Pharmaceutics. 2005. 298:348–353
    [67] Putnam D, Langer R, Poly(4-hydroxy-L-proline ester): Low- temperature polycondensation and plasmid DNA complexation, Macromolecules. 1999. 32:3658–3662
    [68] Lim YB, Choi YH, Park JS, A self-destroying polycationic polymer: Biodegradable poly(4-hydroxy-L-proline ester), J. Am. Chem. Soc. 2000. 122:6524–6525
    [69] Gonzalez H, Hwang SJ, Davis ME, New class of polymers for the delivery of macromolecular therapeutics, Bioconjug. Chem. 1999. 10:1068–1074
    [70] Lim YB, Han SO, Kong HU etc, Biodegradable polyester, poly[alpha-(4-amino- butyl)-L-glycolic acid], as a non-toxic gene carrier, Pharm. Res. 2000. 17:811–816
    [71] Koh JJ, Ko KS, Lee M etc, Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice, Gene Ther. 2000. 7:2099–2104
    [72] Haensler J, Szoka Jr FC, Polyamidoamine cascade polymers mediate efficient transfection of cells in culture, Bioconjug. Chem. 1993. 4:372–379
    [73] Dekie L, Toncheva V, Dubruel P etc, Poly-L-glutamic acid derivatives as vectors for gene therapy, J. Control. Rel. 2000. 65:187–202
    [74] Capan Y, Woo BH, Gebrekidan S etc, Influence of formulation parameters on the characteristics of poly(D,L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA. J. Cont. Rel. 1999. 60:279-286
    [75] Capan Y, Woo BH, Gebrekidan S etc, Preparation and characterization of poly(D,L-lactide-co-glycolide) microspheres for controlled release of poly(L-lysine) complexed plasmid DNA. Pharm. Res. 1999. 16:509-513
    [76] Gebrekidan S, Woo BH, DeLuca PP, Formulation and in vitro transfection efficiency of poly(D,L-lactide-co-glycolide) microspheres containing plasmid DNA for gene delivery. AAPS Pharm. Sci. Tech. 2000. 1(4):E28
    [77] Aral C, Akbuga J, Preparation and in vitro transfection efficiency of chitosan microspheres containing plasmid DNA:poly(L-lysine) complexes.J Pharm Pharm Sci. 2003. 6(3):321-6
    [78] De Rosa G, Bochot A, Quaglia F etc, A new delivery system for antisensetherapy: PLGA microspheres encapsulating oligonucleotide/polyethyleneimine solid complexes, Int. J. Pharm. 2003. 254:89–93
    [79] Howarda KA, Lia XW, Somavarapua S etc, Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochimica et Biophysica Acta. 2004. 1674:149–157
    [80] Li Z, Huang L. Sustained delivery and expression of plasmid DNA based on biodegradable polyester, poly(D,L-lactide-co-4-hydroxy-L-proline). Journal of Controlled Release. 2004. 98:437– 446
    [81] Jeong JH, Park TG. Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. Journal of Controlled Release. 2002. 82:159–166
    [82] Beer SJ, Hilfinger JM, Davidson BL, Extended release of adenovirus from polymer microspheres: potential use in gene therapy for brain tumors. Adv. Drug Delivery Rev. 1997. 27:59-66
    [83] Beer SJ, Matthews CB, Stein CS etc, Poly (lactic-glycolic) acid copolymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo. Gene Ther. 1998. 5:740– 746
    [84] Cavanagh HM, Dingwall D, Steel J etc, Cell contact dependent extended release of adenovirus by microparticles in vitro. J. Virol. Methods. 2001. 95:57–64
    [85] Mah C, Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther. 2002. 6:106– 112
    [86] Parrott MB, Barry MA, Metabolic biotinylation of recombinant proteins in mammalian cells and in mice. Mol. Ther. 2000. 1:96– 104
    [87] Parrott MB, Barry MA, Metabolic biotinylation of secreted and cell surface proteins from mammalian cells. Biochem. Biophys. Res. Commun. 2001. 281:993– 1000
    [88] Lee JH, Engineering novel cell surface receptors for virus-mediated gene transfer. J. Biol. Chem. 1999. 274:21878– 21884
    [89] Midoux P, Monsigny M, Efficient gene transfer by histidylated polylysine/pDNA complexes, Bioconjug. Chem. 1999. 10:406– 411
    [90] Plank C, Tang M, Wolfe A etc, Branched cationic peptides for gene delivery. Role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther. 1999. 10:319-3?33
    [91] Schaffer DV, Fidelman NA, Dan N etc, Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng. 2000. 67(5):598-606
    [92] Davis SS, Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol. 1997. 15(6):217-24
    [93] Patel HM. Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit Rev Ther Drug Carrier Syst. 1992. 9(1):39-90
    [94] Oupicky D, Carlisle RC, Seymour LW, Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemiccirculation in vivo. Gene Ther. 2001. 8:713–724
    [95] Pechar M, Ulbrich K, Subr V etc, Poly(ethylene glycol) multiblock copolymer as a carrier of anti-cancer drug doxorubicin. Bioconjugate Chem. 2000. 11:131–139
    [96] Itaka K, Yamauchi K, Harada A etc, Polyion complex micelles from plasmid DNA and poly(ethylene glycol)–poly(l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials. 2003. 24:4495–4506
    [97] Kircheis R, Schuller S, Brunner S etc, Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gene Med. 1999. 1:111–120
    [98] Kircheis R, Blessing T, Brunner S etc, Tumor targeting with surface-shielded ligand–polycation DNA complexes. J. Control. Rel. 2001. 72:165–170
    [99] Rudolph C, Schillinger U, Plank C etc, Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim. Biophys. Acta. 2002. 1573:75–83
    [100] Oupicky D, Ogris M, Howard KA etc, Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther. 2002. 5:463–472
    [101] Choi YH, Choi JS, Kim SW etc, Characterization of a targeted gene carrier, lactose-polyethylene glycolgrafted poly-L-lysine and its complex with plasmid DNA, Hum. Gene Ther. 1999. 10:2657–2665
    [102] Kim JS, Kim BI, Maruyama A etc, A new non-viral DNA delivery vector: the terplex system, J. Control. Release. 1998. 53:175–182
    [103] Kim JS, Maruyama A, Akaike T etc, Terplex DNA delivery system as a gene carrier, Pharm. Res. 1998. 15:116–121
    [104] Wagner E, Plank C, Zatloukal K etc, Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferring polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle, Proc. Natl. Acad. Sci. USA. 1992. 89:7934–7938
    [105] Parente RA, Nir S, Szoka FC, Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA, Biochemistry. 1990. 29:8720–8728
    [106] Plank C, Oberhauser B, Mechtler K etc, The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems, J. Biol. Chem. 1994. 269:12918–12924
    [107] Wagner E, Effects of membrane-active agents in gene delivery, J. Controlled Release. 1998. 53:155–158
    [108] Wagner E, Application of membrane-active peptides for non-viral gene delivery, Adv. Drug Deliv. Rev. 1999. 38:279–289
    [109] Takuro N, Naoya O, Akitoyo I etc, Binding of cationic a-helical peptides to plasmid DNA and their gene transfer abilities into cells, J. Biol. Chem. 1997. 272:15307–15312
    [110] Ouahabi E, The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett. 1997. 414:187–192
    [111] Ma H, Diamond SL, Nonviral Gene Therapy and its Delivery Systems. Current Pharmaceutical Biotechnology, 2001, 2:1-17
    [112] Holmes AR, Dohrman AF, Ellison AR etc, Intracellular compartmentalization of DNA fragments in cultured airway epithelial cells mediated by cationic lipids. Pharm. Res. 1999. 16:1020–1025
    [113] Branden LJ, Mohamed AJ, Smith CI, A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 1999. 17:784–787
    [114] Ziemienowicz A, Gorlich D, Lanka E etc, Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc. Natl. Acad. Sci. USA. 1999. 96:3729–3733
    [115] Stolnik S, Illum L, Davis SS, Long circulating microparticulate drug carriers. Adv Drug Delivery Rev. 1995. 16:195–214
    [116] Gref R, Domb A, Quellec P etc, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Delivery Rev. 1995. 16:215–33
    [117]傅若农,色谱分析概论,北京,化学工业出版社,1999:45-47
    [118] Wang J, Liu K, Sun G etc, High-throughput screening for the asymmetric transformation reaction of L-histidine to D-histidine by capillary array electrophoresis. Anal Chem. 2006. 78(3):901-4
    [119] Kawabata T, Watanabe M, Nakamura K etc, Liquid-phase binding assay of alpha-fetoprotein using DNA-coupled antibody and capillary chip electrophoresis. Anal Chem. 2005. 77(17):5579-82
    [120] Anurukvorakun O, Suntornsuk W, Suntornsuk L, Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists. J Chromatogr A. 2006. 1134(1-2):326-32
    [121] Kuhn DN, Borrone J, Meerow AW etc, Single-strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis. Electrophoresis. 2005. 26(1):112-25
    [122] Tian H, Emrich CA, Scherer JR etc, Christiansen M. High-throughput single-strand conformation polymorphism analysis on a microfabricated capillary array electrophoresis device. Electrophoresis. 2005. 26(9):1834-42
    [123] Saito S, Shimidzu JI, Yoshimoto K etc, Selective ultratrace detection of Al(III) and Ga(III) complexed with a calcein isomer by capillary zone electrophoresis with laser-induced fluorescence detection Comparison of emissive polyaminocarboxylates as derivatizing ligands. Journal of Chromatography A. 2007. 1140(1-2):230-235
    [124] Guan Y, Wang W, Zu Y etc, Capillary zone electrophoresis method for fingerprint of allantoic fluid in normal and infected SPF embryonated chicken eggs. JVirol Methods. 2007. 139(1):12-6
    [125] Berzas Nevado JJ, Rodriguez FJ, Castaneda PG etc, Determination of ibuprofen and tetrazepam in human urine by micellar electrokinetic capillary chromatography. Anal Bioanal Chem. 2006. 384(1):208-14
    [126] Liu L, Liu X, Chen X etc, Separation and determination of tetrandrine and fangchinoline in herbal medicines by flow injection-micellar electrokinetic capillary chromatography with internal standard method. J Chromatogr A. 2005. 1098(1-2):177-82
    [127] Hutterer KM, Jorgenson JW, Separation of hyaluronic acid by ultrahigh-voltage capillary gel electrophoresis. Electrophoresis. 2005. 26(10):2027-33
    [128] Heegaard NH, He X, Blomberg LG, Binding of Ca2+, Mg2+, and heparin by human serum amyloid P component in affinity capillary electrophoresis. Electrophoresis. 2006. 27(13):2609-15
    [129] Adachi K, Noda N, Nakashige M etc, Affinity capillary electrophoresis with a DNA-nanoparticle conjugate as a new tool for genotyping. Journal of Chromatography A. 2006. 1109(2):127-131
    [130] Zeisbergerova M, Kost'al V, Sramkova M etc, Separation of microcystins by capillary electrochromatography in monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci. 2006. 841(1-2):140-4
    [131] Yan LJ, Zhang QH, Feng YQ etc, Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography. Journal of Chromatography A. 2006. 1121(1):92-98
    [132] Horka M, Ruzicka F, Hola V etc, Capillary isoelectric focusing of microorganisms in the pH range 2-5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem. 2006. 385(5):840-6
    [133] Horka M, Ruzicka F, Horky J etc, Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006. 841(1-2):152-9
    [134] Bo T, Pawliszyn J, Characterization of bovine serum albumin–tryptophan interaction by capillary isoelectric focusing with whole column imaging detection. J Chromatogr A. 2006. 1105(1-2):25-32
    [135] Zhang B, Miura S, Fan P etc, ApoA-I/phosphatidylcholine discs remodels fast-migrating HDL into slow-migrating HDL as characterized by capillary isotachophoresis. Atherosclerosis. 2006. 188(1):95-101
    [136] Tagliaro F, Turrina S, Smith FP, Capillary electrophoresis: principles and applications in illicit drug analysis. Forensic Sci Int. 1996. 77(3):211-29
    [137] Choi YH, Liu F, Kim JS etc, Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier, J. Control. Release. 1998. 54:39– 48
    [138] Xu B, Wiehle S, Roth JA etc, The contribution of poly-L-lysine, epidermal growth factor and streptavidin to EGF/PLL/DNA polyplex formation. Gene Ther. 1998. 5(9):1235-43
    [139] Wagner E, Zenke M, Cotten M etc, Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Nati. Acad. Sci. USA. 1990. 87:3410-3414
    [140] Guo Y, Sun Y, Li G etc, The molecular structures of poly(ethylene glycol)-modified nonviral gene delivery polyplexes. Mol Pharm. 2004. 1(6):477-82
    [141] Zhang P, Ren J, Shen Z, A new quantitative method for circulating DNA level in human serum by capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2004. 25:1823–1828
    [142] Lai E, van Zanten JH, Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. Biophys. J. 2001. 80:864-873
    [143] Wolfert MA, Seymour LW, Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther. 1996. 3:269-273
    [144] Hill IRC, Garnett MC, Bignotti F etc, In vitro cytotoxicity of poly(amidoamine)s: relevance to DNA delivery, Biochim. Biophys. Acta. 1999. 1427:161– 174
    [145] Choksakulnimitr S, Masuda S, Tokuda H etc, In vitro cytotoxicity of macromolecules in different cell culture systems, J. Control. Release. 1995. 34:233–241
    [146] Fischer D, Bieber T, Li Y etc, A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity, Pharm. Res. 1999. 16:1273–1279
    [147] Issaq HJ, Atamna IZ, Muschik GM etc, The Effect of Electric Field Strength, Buffer Type and Concentration on Separation Parameters in Capillary Zone Electrophoresis. Chromatographia. 1991. 32(3/4):155-161
    [148] Lee M, Han S, Ko KS etc, Repression of GAD Autoantigen Expression in Pancreas _-Cells by Delivery of Antisense Plasmid/PEG-g-PLL Complex. MOLECULAR THERAPY. 2001. 4(4):339-346
    [149] Xu Y, Hui SW, Frederik P etc, Physicochemical Characterization and Purification of Cationic Lipoplexes. Biophysical Journal. 1999. 77:341–353
    [150] Rungsardthong U, Deshpande M, Bailey L etc, Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. Journal of Controlled Release. 2001. 73:359–380
    [151] Trubetskoy VS, Loomis A, Hagstrom JE etc, Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles. Nucleic Acids Res. 1999. 27:3090–3095
    [152] Trubetskoy VS, Wong SC, Subbotin V etc, Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther. 2003. 10:261–271
    [153] Finsinger D, Remy JS, Erbacher P etc, Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery. Gene Ther. 2000. 7:1183-1192
    [154] Sukhorukov GB, Donath E, Davis S etc, Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol. 1998. 9:1–9
    [155] Zaitsev S, Cartier R, Vyborov O etc, Polyelectrolyte Nanoparticles Mediate Vascular Gene Delivery. Pharmaceutical Research. 2004. 21(9):1656-61
    [156] Maruyama K, Iwasaki F, Takizawa T etc, Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials. 2004. 25:3267–3273
    [157] Koyama Y, Yamada E, Ito T etc, Sugar-containing polyanions as a self-assembled coating of plasmid/polycation complexes for receptor-mediated gene delivery. Macromol Biosci. 2002. 2:251–6
    [158] Yoshiyukikoyama, Ito T, Hidetoshimatsumoto etc, Novel poly(ethylene glycol) derivatives with carboxylic acid pendant groups: synthesis and their protection and enhancing effect on non-viral gene transfection systems. J. Biomater. Sci. Polymer Edn. 2003. 14(6):515–531
    [159] Dubruel P, Dekie L, Christiaens B etc, Poly-L-glutamic Acid Derivatives as Multifunctional Vectors for Gene Delivery. Part B. Biological Evaluation. Biomacromolecules. 2003. 4:1177-1183
    [160] Katayose S, Kataoka K, Water-Soluble Polyion Complex Associates of DNA and Poly(ethylene glycol)-Poly(L-lysine) Block Copolymer. Bioconjugate Chem. 1997. 8:702-707
    [161] Bakeev KN, Izumrudov VA, Kuchanov SI etc, Kinetics and mechanism of interpolyelectrolyte exchange and addition reactions. Macromolecules. 1992. 25:4249-4254
    [162] M?nnist? M, Vanderkerken S, Toncheva V etc, Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery.J Control Release. 2002. 83(1):169-82
    [163] Tang MX, Szoka FC, The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 1997. 4:823-832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700