多聚化合物在提高蛋白质体外正确折叠及稳定性方面的作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因工程的迅猛发展使大规模生产基因重组蛋白质成为可能,但在蛋白药物工程化和产业化发展过程中,面临着两个关键的“瓶颈”问题。一是通过基因工程生产的重组蛋白往往以包涵体形式存在,必须经过复性才能获得最终的目的产物,纵观国内外在蛋白复性方面的研究,目前仍然以经验方法为多,产业化推广价值不大。近几年发展起来的折叠助剂促蛋白复性技术对实现蛋白高效复性创造了新的希望,但绝大多数折叠助剂与复性蛋白的结合是不可逆的,这又给后续蛋白分离纯化带来了诸多困难。二是正确折叠的功能蛋白,在实际应用过程中,常常存在稳定性差、体内半衰期短的缺陷,使得蛋白药物保存困难、临床用药频率高、治病成本高,严重制约了蛋白类药物的产业化及临床应用。
     围绕上述“瓶颈”问题,本文开展了两大方面的研究。首先,研究一种新型折叠助剂即智能型多聚化合物Eudragit S-100是否可促进蛋白的复性,并通过与现有方法比较,得出其作用优势,再在此基础上对其作用机制开展深入的研究,具体包括:
     1)以溶菌酶(lysozyme)为模型蛋白,从复性蛋白活性、含量以及结构等方面研究了Eudragit S-100对溶菌酶复性促进作用。活性检测结果表明,在Eudragit S-100浓度为0.4%(w/v)时,1mg/mL浓度溶菌酶的复性回收率达到了81%,而未加EudragitS-100的对照组仅为49.7%,荧光光谱和圆二色谱分析也表明,在Eudragit S-100作用下,复性溶菌酶的结构与天然态一致。
     2)根据Eudragit S-100的理化特性,采用沉淀反应和离子交换实验证明了EudragitS-100对溶菌酶的促复性作用是基于两者发生了离子结合反应,进而Eudragit S-100遮蔽了溶菌酶折叠中间态的疏水基团、抑制了蛋白间疏水基团相互作用引起的聚集效应。而上述离子反应是可逆的,通过调节pH值和离子交换层析即可实现蛋白与EudragitS-100的高效分离,这无疑显示出与现有其它复性方法的优势。
     3)通过对作用机制的研究,本文还得出了一个有意义的推测,即Eudragit S-100仅对碱性蛋白有促复性作用。为了验证这一推测的正确性,选择了成纤维细胞生长因子(FGF)两个典型的家族成员即人酸性FGF(haFGF)和人碱性FGF(hbFGF)为模型蛋白。研究结果表明,Eudragit S-100仅对hbFGF有促复性作用,而对haFGF基无影响,这一结果很好地佐证了上述推测的正确性。此部分研究的最后又将Eudragit S-100应用到另外两种碱性蛋白,即角化细胞生长因子KGF-2和转化生长因子TGF-β1中,也得到了理想的结果。
     本文的第二个大部分主要集中于多聚化合物20kDPEG-异硫氰酸(PIT-PEG20K)对提高蛋白稳定性的研究,具体包括:
     1)选择角化细胞生长因子KGF-2为模型蛋白,采用上述新型修饰制剂对KGF-2进行定位修饰。通过三因素三水平正交实验,考查了反应物摩尔比、温度和pH值等多因素对PIT-PEG20K修饰KGF-2的影响,最终确定出最佳的修饰条件为:PIT-PEG20K对KGF-2摩尔配比为9:1、反应温度为25℃、pH值为6.0;在该修饰条件下,KGF-2的修饰产率达到31.63%。通过肝素亲和层析分离方法获得了纯度超过99%的修饰蛋白PEG-KGF-2。
     2)对修饰的生物学性能进行了系统的研究,结果表明,修饰蛋白相比未修饰蛋白生物学活性保留了60%,热稳定性和结构稳定性均显著提高,蛋白空间结构未发生显著变化,体内半衰期由修饰前的2.6min提高到15.5min;另外,体内免疫原性也显著降低。
     总之,通过上述两大部分的研究,为碱性蛋白的高效复性寻求到一种崭新的方法;另外,采用PEG定位修饰的方法,成功获得了稳定性显著提高、体内半衰期显著延长的功能蛋白KGF-2。从而为解决蛋白工程化过程中面临的两大“瓶颈”问题提供了好的思路和手段。
The rapid development of genetic engineering makes large-scale production of recombinant protein as possible, but during the industrial drug development, two critical "bottleneck" problems have to be solved. First, the over-expression of heterologous protein in microorganisms such as Escherichia coli often results in the formation of intracellular insoluble protein, also known as inclusion bodies. These inclusion bodies must be refolded in vitro to gain solubility and bioactivity. However, the experiential methods are still prevalent in the research of protein refolding at home and abroad, which have little value in promotion of industrialization. The refolding additives have been reported to suppress aggregation by preventing the association of refolding intermediates or unfolded species through hydrophobic or ionic interactions. But the interaction of proteins with the vast majority of refolding additives is irreversible, which makes follow-up protein separation and purification have many difficulties. Second, in the practical application of the process, the correct folding of functional proteins has the defect such as poor stability and short half-life in vivo. This makes protein drugs difficulty to conserve, high frequency use and high cost of medical treatment, which restrict severely the protein drugs industrialization and clinical application.
     To address the above-mentioned "bottleneck" problem, this paper carried out two studies: First, a new type of refolded additive was studied on an intelligent poly-compound Eudragit S-100:whether it can promote protein refolding, obtain its role of advantages compared with existing methods. On this basis, the mechanisms of Eudragit-assisted protein refolding were investigated, specifically including:
     1. It was studied whether Eudragit S-100 can promote protein refolding from the activity, content and structure of refolded protein, with lysozyme as a model protein. This study showed that (ⅰ) the addition of Eudragit S-100 in the refolding buffer significantly increased lysozyme refolding yield to 81%, when the concentration of it was up to 0.4%(w/v) and dilution refolding was conducted at 1 mg/mL lysozyme; (ⅱ) Eudragit-lysozyme interaction did not compromise the refolded protein conformation, as confirmed by fluorescence and circular dichroism spectroscopy.
     2. According to the physical and chemical properties of Eudragit S-100. precipitation and ion-exchange experiments showed the evidence of an electrostatic interaction between oppositely charged lysozyme and the Eudragit S-100 polymer during refolding. These ionic complexes of Eudragit S-100 and lysozyme appeared to shield expose hydrophobic residues of the lysozyme refolding intermediates, thus minimizing hydrophobic-driven aggregation of the molecules. Importantly, due to the electrostatic interaction is reversible; the polymer can be readily dissociated from the protein by ion exchange chromatography.
     3. Through the molecular mechanism of Eudragit S-100 promoting protein refolding, we found an interesting speculation that Eudragit S-100 can only promote the refolding of basic proteins. In order to verify the correctness of this speculation, we selected two ionic forms of human fibroblast growth factor:(ⅰ) human basic fibroblast growth factor (hbFGF) and (ii) human acidic fibroblast growth factor (haFGF) as model proteins. The results showed that Eudragit S-100 only enhanced the refolding yield of hbFGF, but little effect on haFGF. Finally, we successfully applied this strategy to refold another two basic proteins KGF-2 (keratinocyte growth factor-2) and TGF-β1 (transforming growth factor-(31).
     The second part focused on the study of PEG-phenyl-isothiocyanate enhancing protein stability studies, specifically including:
     1. In present study, we modified keratinocyte growth factor-2(KGF-2) by PEGylation at the N-terminal residue using the above-mentioned PEGylation reagent. The effects of reactants molar ratio, temperature and pH on the PEGylation were examined through the three-factor three-level orthogonal experiments. The optimized modification conditions ultimately determined:the molar ratio of PIT-PEG20K to KGF-2 was 9:1, the reaction temperature was 25℃, pH value was 6.0. Under the modified conditions, KGF-2 production rate of the modified was 31.63%. Under this condition, the yield of PEGylated rhKGF-2 reached a significant amount of 37.8%. PEGylated KGF-2 was then purified by a Heparin Sepharose TM CL-6B affinity chromatography and its purity was over 99%.
     2. The biological properties of PEGylated KGF-2 were systematically studied. The results showed that the PEGylated rhKGF-2 retained about 60% of mitogenic activity compared with the non-modified rhKGF-2. Its relative thermal stability at normal physiological temperature and structural stability were significantly enhanced. Spatial structure of protein had no significant change. The half-life time in vivo prolonged from 2.6 min to 15.5 min. Moreover, the immunogenicity of PEGylated rhKGF-2 in mice decreased significantly as compared with non-modified rhKGF-2.
     In conclusion, we found an efficient refolding method by the above-mentioned studies for basic proteins. Furthermore, we also successfully made a more stable KGF-2 by PEG-modified method. These studies provide some good ideas and tools to solve two critical "bottleneck" problems of protein engineering.
引文
[1]Ahn JHL, Young PR, Joon S. Investigation of refolding condition for pseudomonas fluorescens lipase by response surface methodology. J Biotechnol,1997,54:151-160.
    [2]Altamirano MM, Garcia C, Possan LD, Fersht AR. Refolding chromatography with immobilized mini-chaperones. Nature Biotechnol,1999,17:187-191.
    [3]Altamirano MM, Golbik R, Zahn R, Fersht AR. Refolding chromatography with immobilized mini-chaperones. Proc Natl Acad Sci USA,1997,94:3576-3578.
    [4]Alonso DO and Dill KA. Solvent denaturation and stabilization of globular proteins. Biochemistry. 1991,30:5974-5985.
    [5]Anna JH, Hatton TA, Daniel ICW. Protein refolding in reversed micelles. Biotech Bioeng,1990, 35:955-965.
    [6]An JP. Progress in the study of Molecular Chaperone and its unction.Tianjin Teachers College,2004, 24:13-17.
    [7]Arai M, Ikura T, Semisotnov G, Kihara H, Amemiya Y, Kuwajima K. Kinetic refolding of beta-lactoglobulin. Studies by synchrotron X-ray scattering, and circulardichroism, absorption and fluorescence spectroscopy. J Mol Biol,1998,275:149-162.
    [8]Asano R, Kudo T, Makabe K, Tsumoto K, Kumagai I. Antitumor activity of interleukin-21 prepared by novel refolding procedure from inclusion bodies expressed in Escherichia coli. FEBS Lett,2002,528: 70-76.
    [9]Batas B and Chaudhuri JB. Considerations of sample application and elution during size-exclusion chromatography-based protein refolding. J Chromatogr A,1999,864:229-236.
    [10]Bowden GA, Paredes AM, Georgiou G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (NY),1991,9:725-730.
    [11]. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    [12]Brems DN. The kinetics of G-CSF folding. Protein Sci.2002,11:2504-2511.
    [13]Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins:single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analyt Biochem,1992.205:263-270.
    [14]Buchberger A, Schroder H, Hesterkamp T, Schonfeld HJ, Bukau B. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol,1996. 261:328~333.
    [15]Buswell AM, Middelberg AP. A new kinetic scheme for lysozyme refolding and aggregation. Biotechnol Bioeng.2003,83:567-577.
    [16]陈莉.智能高分子材料.第1版.北京:化学工业出版社,2004.
    [17]崔志芳,关怡新,姚善径.分离技术在蛋白质复性过程的集成化应用及分析.科技通报,2004,20:99-104.
    [18]崔志芳.温敏型聚N-异丙基丙烯酞胺凝胶协助蛋白质体外复性的基础研究.浙江人学博士学位论文,2004.
    [19]Carlson JD, Yarmush ML. Antibody assisted protein refolding. Biotechnology,1992,10:86-91.
    [20]Cerlettin, Mcmaster GK, Cox D. Process for the production of biologically active protein. European Patent:0433225,1990-11-27.
    [21]Chen YJ, Huang LW, Chiu HC, Lin SC. Temperature-responsive polymer-assisted protein refolding. Enzyme Microbial Technol,2003,32:120-130.
    [22]Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol,1998,9:157-163.
    [23]Clark EDB. Protein refolding for industrial processes.Curr Opin Biotechnol,2001,12:202-207.
    [24]Chen YJ, Huang, LW, Chiu HC, Lin SC. Temperature-responsive polymer-assisted protein refolding.
    [25]Cleland JL, Randolph TW. Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B. J Biol Chem,1992,267:3147-3153.
    [26]Cleland J, Hedgepeth C, Wang D. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J Biol Chem,1992,267:13327-13334
    [27]Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY, Wang DIC. Polyethylene glycol enhanced protein refolding. Biotechnology,1992,10:1013-1019.
    [28]Das A, Mukhopadhyay C. Atomistic mechanism of protein denaturation by urea. J Phys Chem B,2008, 112:7903-7908.
    [29]Das D, Kriangkum J, Nagata LP, Fulton RE, Suresh MR. Development of a biotin mimic tagged ScFv antibody against western equine encephalitis virus:bacterial expression and refolding. J Virol Methods, 2004,117:169-177.
    [30]Daniielpour D. Dart LL, Flanders KC. Immunodetection and quantitation of two forms of trans-forming growth factor-beta (TGFβ1 and TGFβ2) secreted by cells in culture. J Cell Physiol, 1989,138:79-86.
    [31]Dong XY, Yang H. Lysozyme refolding with immobilized GroEL column chromatography. J Chromatogr A,2000,878:197-204.
    [32]Ebtinger B, Middelberg V. Effect of operating variables on the yield of recombinant trypsinogen for a pulse-fed dilution-refolding reactor. Biotechnol Bioengin.2002,77:435-444.
    [33]Ejima D, Watanabe M, SatoY, Date M, Yamada N, Tahara Y. High yield Refolding and Purifieation Process for reeombinant human interleukin-6 expressed in Escherichia coli. Biotechnol Bioengin, 1999,62:301-310.
    [34]Ellis J. Proteins as molecular chaperones. Nature,1987,328:378-379.
    [35]Ellis RJ. The general concept of molecular chapernes. PhilTrans RSc Lond,1993, B339:257-261.
    [36]Emoto H, Tagashira S, Mattei MG, Yamasaki M, Hashimoto G, Katsumata T, Negoro T, Nakatsuka M, Birnbaum D, Coulier F, Itoh N. Structure and expression of human fibroblast growth factor-10. J Biol Chem,1997.272:23191-23194.
    [37]Fahey EM, Chaudhuri JB. Refolding of low moleeular welght urokinase plasminogen activator by dilution and size-exclusion chromatography-a comparative study. Separation Science Technol,2000, 35:1743-1760.
    [38]Fischer B, Perry B, Sumner I, Goodenough P. A novel sequential procedure to enhance the renaturation of recombinant protein from Escherichia coli inclusion bodies. Protein Eng,1992, 5:593-596.
    [39]Gao YG.GuanYX, Yao S J and Cho MG. Refolding of lysozyme at high concentration in batch and fed-batch operation, Korean J Chem Eng,2002,19:871-875.
    [40]Galvani M, Hamdan M, Righetti PG. Probing protein unfolding through monitoring cysteine a alkylation by matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectr,2000,14:1925-1931.
    [41]Garke G, Radtschenko I, Anspach FB. Continuous-bed chromatography for the analysis and purification of recombinant human basic fibroblast growth factor. J Chromatogr A,1999, 857:137-144.
    [42]Geng XD, Chang XQ. High-Performance hydrophobic interaetion chromatography as a tool for protein refolding. J Chromatogr A,1992,599:185-194.
    [43]Goldberg ME, Rudolph R, Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denaturedreduced egg white lysozyme. Biochemistry,1991, 30:2790-2797.
    [44]Goto M, HashimotoY, Fujita T. Important parameters affecting effieiency of protein refolding by reversed micelles. Biotechnol Progress,2000,16:1079-1085.
    [45]Gorovits BM, McGee WA, Horowitz PM. Rhodanese folding is controlled by the partitioning of its folding intermediates. Biochim Biophys Acta,1998,1382:120-128.
    [46]Guo QD, Kaul, R, Mattiasson B. Integration of aqueous two-phase extraction and affinity precipitation for the purification of lactate dehydrogenase. J Chromatogr A,1994,668:145-152.
    [47]Han B, Hall FL. Nimni ME. Refolding of a recombinant collagen-targeted TGF-beta2 fusion protein expressed in Escherichia coli. Protein Expr Purif,1997,11 (2):169-178.
    [48]Hamaker KH. Chromatography for rapid buffer exchange and refolding of secretory leukoeyte protease inhibitor. Biotechnol Prog,1996,12:184-189.
    [49]Hameed M, Ahmad B, Fazili KM, Andrabi K, Khan RH. Different molten globule-like folding intermediates of hen egg white lysozyme induced by high pH and tertiary butanol. J Biochem,2007, 141:573-583.
    [50]Hashimoto Y, Ono T, Goto M. Protein refolding by reversed micesses utilizing solid-liquid extraction technique. Biotechnol Bioeng,1998,57:620-623.
    [51]Hevehan DL, Clark EDB. Oxidative renaturation of lysozyme at high concentrations. Biotehcnol Bioengin,1997,54:221-230.
    [52]Honda J, Andou H, Mannen T, Sugimoto S. Direct refolding of recombinant human growth differentiation factor 5 for large-scale production process. J Biosci Bioeng,2000,89:582-589
    [53]Huang Z, Ni C, Zhou X, Liu Y, Tan Y, Xiao J, Feng W, Li X, Yang S. Mechanism of pH-sensitive polymer-assisted protein refolding and its application in TGF-betal and KGF-2. Biotechnol Prog, 2009, in press.
    [54]Jin HJ, Dunn MA, Borthakur D, Kim YS. Refolding and purification of unprocessed porcine myostatin expressed in Escherichia coli. Protein Expr Purif,2004,35:1-10.
    [55]Katoh S, Katoh Y. Continuous refolding of lysozyme with fed-batch addition of denatured protein solution. Process Biochem,2000,35:1119-1124.
    [56]Katoh S, Sezai Y, Yamaguchi T, Katoh Y, Nohara D. Refolding of enzymes in a fed-batch operation. Process Biochem,1999,35:297-300.
    [57]Kawahara H, Koda N, Oshio M, Obata H. A cold acclimation protein with refolding activity on frozen denatured enzymes.Bioscience Biotechnol Biochem,2000,64(12):2668-2674.
    [58]Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins,1989,6:87-103
    [59]Kuboi R., Yashimoto M., Walde P. Refolding of carbonic anhydrase assited by 1-Palmitoyl-2-oleoyl-sn-3-phosphocholine liposomes. Biotechnol Prog,1997,13:828-832.
    [60]Kuboi R, Morita S, Ota H, Umakoshi H. Protein refolding using stimuli-responsive Polymer-modified aqueous two-phase systems. J Chromatogr B,2000,743:215-222.
    [61]Kwon OS and Churchich JE. Refolding of pyridoxine-5'-P oxidase assisted by GroEL. Biochimie, 1999,81:1057-1064
    [62]Mondal K, Raghava S, Barua B, Varadarajan R, Gupta MN. Role of Stimuli-Sensitive Polymers in Protein Refolding:r-Amylase and CcdB (Controller of Cell Division or Death B) as Model Proteins. Langmuir,2007,23:70-75.
    [63]李校堃,吴晓萍,郑青.人转化生长因子β1在大肠杆菌RR1中的表达及产物纯化.暨南人学学报.
    2001.21:98-101.
    [64]李校堃,吴晓萍,郑青.人酸性成纤维细胞生长因子的高效表达.华南理工大学学报.2001b,29:61-64.
    [65]刘进元.分子生物学实验指导.第3版.北京:清华大学出版社,2002.
    [66]凌明圣,许祥裕,施凤霞,丁树标,张永恒.聚乙二醇增加重组人粒-单系集落刺激因子复性效率的研究.药物生物技术,1997,1:34-38.
    [67]Ladokhin AS, Jayasinghe S, White SH. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem,2000,285:235-245.
    [68]Lai B, Cap A, Lai L. Organic cosolvents and hen egg white lysozyme folding. Biochim Biophys Acta, 2000,1543:115-122.
    [69]Lee JC and Lee LLY. Preferential folvent interactions between proteins and polyethylene glycol. J Biol Chem,1981,256:625-631.
    [70]Lennox CR, Ellis RJ. The carboxylase-large-subunit-binding protein:photoregulation and reversible dissociation. Biochem Soc Trans,1986,14:9-11.
    [71]Li S, Bai JH, Park YD. Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase. Int J Biochem Cell Biol,2001,33:279-286.
    [72]Lin SC, Lin KL, Chiu HC, Lin S. Enhanced protein renaturation by temperature-responsive polymers. Biotechnol Bioengin,2000,67:505-512.
    [73]Li DW, Yu JF, Chen YJ, Ma HB, Wang ZF, Zhu YB, Zhang XG. Refolding and characterization of recombinant human GST-PD-1 fusion protein expressed in Escherichia coli. Acta Biochim Biophys Sin (Shanghai),2004,36:141-146.
    [74]Lin SC, Lin KL, Chiu HC, Lin S. Enhanced protein renaturation by temperature-responsive polymers. Biotechnol Bioengin,2000,67:505-512.
    [75]Liu T, Geng XD. The separation effieieney of biopolymers with short column in liquid chromatography. Chin Chem Lett,1999,10:219-212.
    [76]Li M, Zhang GF, Su ZG. Dual gradient ion-exchange chromatography improved refolding yield of lysosyme. J Chromatogr A,2002,959:113-120.
    [77]Liu YD, Li JJ, Wang FW, Chen J, Li P, Su ZG. A newly proposed mechanism for arginine-assisted protein refolding-not inhibiting soluble oligomers although promoting a correct structure, Protein Expres Puricat,2007,51:235-242.
    [78]Long J, Wang H, Liu L. Expression of human transforming growth factorβ1 inE.coli(Ⅰ)-Direct expression in Cytoplasm. Sci China (Ser.C).1998,41:548-5548
    [79]Luo Y, Kong X, Xu A, Jin S, Wu D. Expression, purification, and functional characterization of recombinant human interleukin-7, Protein Expr Purif.2009,63:1-4.
    [80]Lu DD, Liu ZX, Zhang ML, Liu Z, Zhou H. The mechanism of PNIPAAm-assisted refolding of lysozyme denatured by urea. Biochemical Engin J,2004,5:55-64.
    [81]Lu DD, Liu ZX, Zheng ML. The mechanism of PNIPAAm-assisted refolding of lysozyme denatured by urea. Biochem Engin J,2005,24:55-64.
    [82]Lu DD, Liu ZX, Zhang ML, Wang X, Liu Z. Dextran-grafted-PNIPAAm as an artificial chaperpone for protein refolding. Biechem Engin J,2006,27:336-343.
    [83]Matourchek A, Kellis JT, Serrano L, Bucroft M, Fersht AR. Transient folding intermediates characterized by protein engineering. Nature,1990,346:440-445.
    [84]Markossian KA, Kurganov BI. Protein folding, misfolding, and aggregation. Formation of inclusion b bodies and aggresomes. Biochemistry (Mosc),2004,69:971-984.
    [85]Makabe K, Asano R, Ito T, Tsumoto K, Kudo T, Kumagai I. Tumor-directed lymphocyte-activating cytokines:refolding-based preparation of recombinant human interleukin-12 and an antibody variable domain-fused protein by additive-introduced stepwise dialysis. Biochem Biophys Res Commun, 2005,328:98-105.
    [86]Machida S, Ogawa S, Xiaohua S, Takaha T, Fujii K, Hayashi K. Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Letters,2000,486:131-135.
    [87]Middelberg. Preparative protein refolding.Trends Biotechnol,2002.20:437-443.
    [88]Mitsuru H, Yoshihiro K, Ayumi S, Hirofumi T. Molecularly Imprinted Polymer-Assisted Refolding of Lysozyme. Biotechnol Prog,2007,23:1254-1257.
    [89]Morjana N, Tal R. Expression and equilibrium denaturation of cardiac troponin I:stabilization of a folding intermediate during denaturation by urea. Biotechnol Appl Biochem,1998,28:7-17
    [90]Muzammil S, Kumar Y, Tayyab S. Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres. Biochim Biophys Acta,2000,1476:139-148.
    [91]Muller C, Rinas U. Renaturation of heterodimerie platelet-derived growth faetor from inclusion bodies of recombinant Escherichia coli using size-exelusion chromatography. J Chromatogr A,1999, 855:203-213.
    [92]Nicola SP, Douglas JB, Stephen PB. Leghaemoglobin from Trifolium subterraneum. Purification and characterization. Biochim Biophys Acta,1999,1426:99-109.
    [93]O'Brien EP, Dima RI, Brooks B. Thirumalai D. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions:lessons for protein denaturation mechanism. J Am Chem Soc.2007,129:7346-7353.
    [94]Petri T, Langer G. Bringmann P, Cashion L, Shallow S, Schleuning WD, Donner P. Production of vampire bat plasminogen activator DSPA alpha 1 in CHO and insect cells. Biotechnology,1995.39: 75-83.
    [95]Ptitsyn OB. Protein folding:hypotheses and experiments. J Prot Chem,1987,273:293-297.
    [96]Rancy PC, Thorpe C. Oxidative protein folding in vitro:a study of the cooperation between quiescin-sulfhydryl oxidase and protein disulfide isomerase. Biochemistry,2008,47:12047-12056.
    [97]Rachwal PA, Fox KR. Quadruplex melting. Methods,2007,3:291-301.
    [98]Raman B, Ramakrishna T, Rao CM. Refolding of denatured and denatured/reduced lysozyme at high concentrations. J Biol Chem,1996,271:17067-17072.
    [99]Reddy K, Hauke LL, Rainer R, Christian L. L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci,2005,14:929-935.
    [100]Rentzeperis D, Jonsson T, Sauer RT. Acceleration of the refolding of Arc repressor by nucleic acids and other polyanions. Nat Struct Biol,1999,6:569-573.
    [101]Rmoso C, Forster LS. Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem,1975, 50):3738-3745.
    [102]Rozema D, Gellman SH. Artifical chaperone-assisted refolding of carbonic anhydrase B. J Biol Chem,1996,273:33961-33971.
    [103]Roy I, Gupta MN. pH-responsive polymer-assisted refolding of urea- and organic solvent-denatured a-chymotrypsin. Protein Eng,2003,16:1153-1157.
    [104]Rto N. Molecular cloning and expression study of Xenopus latent TGF-b binding protein-1 (LTBP-1). Gene,2002.290:53-61.
    [105]Sardar M, Roy II, Gupta MN. Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit(TM) L-100. Enzyme Microb Technol,2000,27 672-679.
    [106]Sharma, A, Gupta, MN. Macroaffinity ligand-facilitated three-phase partitioning (MLFTPP) for purification of xylanase. Biotechnol Bioeng,2002,80:228-232.
    [107]Shimizu H, Fujimoto K, Kawaguchi H. Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres. Colloids Surfaces B,2000,18:137-144.
    [108]Silverthorne J, Ellis RJ. Protein synthesis in chloroplasts. Ⅷ. Differential synthesis of chloroplast proteins during spinach leaf development. Biochim Biophys Acta,1980,607:319-330.
    [109]Soler G, Bastida A, Blanco RM, Fernandez-Lafuente R, Guisan JM. Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents. Biochim Biophys Acta,1997,1339:167-175.
    [110]Song JL, Wang CC, Tsou CL. Chaperone-like activity of protein disulfide isomerase in the refolding of rhodanese. Eur J Biochem,1995,231:312-316. [107] Suttnar J. Procedure for refolding and purification of recombinant proteins from Escherichia coli inclusion bodies using a strong anion exchanger. J Chromatogr B,1994,56:123-126.
    [111]Stockal J, Doring K, Malotka J. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimer class Ⅱ major histocompatibility complex (MHC) molecules. Eur J Biochem, 1997,248:684-691.
    [112]Sundari CS, Raman B, Balasubramanian D. Artifical chaperoning of insulin, human carbonic anhydrase and hen egg lysozyme using linear dextrin chains-a sweet route to the native stateof globular proteins. FEBS Letters,1999,443:215-221.
    [113]Taguchi H, Makino Y, Yoshida M. Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J Biol Chem,1994,269(11):8529-8534.
    [114]Tourbah A, Oliver L, Jeanny J.C, Gumpel M. Acidic fibroblast growth factor (aFGF) is expressed in the neuronal and glial spinal cord cells of adult mice. J Neurosci Res,1991,29:560-568.
    [115]Tsumoto KD, Ejima I, Arakawa KT. Practical considerations in refolding proteins from inclusion bodies. Protein Expres Purif,2003,28:1-8.
    [116]Tsumoto K, Shinoki K, Kondo H, Uchikawa M, Juji T, Kumagai I. Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent-application to a human single-chain Fv fragment. J Immunol Methods,1998,219:119-129
    [117]Tsumoto K, Umetsu M, Kumagai I, Ejima D, Arakawa T. Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine. Biochem Biophys Res Commun,2003, 312:1383-1386.
    [118]Vallejo LF, Rinas U. Optimized Proeedure for renaturation of recombinant human bone morphogenetie protein-2 at high Protein concentration. Bioteehnol Bioeng,2004,85:601-609.
    [119]Vuillard L, Rabilloud T, Goldberg ME. Interactions of non-detergent sulfobetaines with early folding intermediates facilitate in vitro protein renaturation. Eur J Biochem,1998,256:128-135.
    [120]王克夷.疏水作用和蛋白质.生命的化学,1999,19:233-235.
    [121]Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ., Williams LT. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA, 1992,89:6896-6900.
    [122]Wen Q, Ma L, Luo W, Zhou MQ, Wang XN. Expression, purification, and refolding of recombinant fusion protein hIL-2/mGM-CSF. Biomed Environ Sci,2008,21:509-513.
    [123]Wetlaufer DB, Xie Y. Control of aggregation in protein refolding:a variety of surfactants promote renaturation of carbonic anhydrase Il. Protein Sci,1995,4:1535-1543.
    [124]West SM, Chaudhuri JB, Howell JA. Improved Protein refolding using hollow-fibre membrane dialysis. Bioteehnol Bioeng.1998,57:590-599.
    [125]Werner MH. Refolding proteins by gel filtration chromatography. FEBS Letter,1994,345:125-130.
    [126]Wider G. Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy. Biotechniques,2000,29:1278-1288.
    [127]Winter J, Klappa P, Freedman RB, Lilie H, Rudolph R. Catalytic activity and chaperone function of human protein-disulfide isomerase are required for the efficient refolding of proinsulin. J Biol Chem, 2002,277:310-317.
    [128]Xu M, Meng W, Ma X. PDI-, PPI- and chaperone-catalyzed refolding of recombinant human IL-2 and GM-CSF. Sci China B,1995,38:429-437.
    [129]Xu Z H, Arthur L, Horwich, et al. Nature,1997,388(21):741-750.
    [130]Yamamoto Y, Watabe S, Kageyama T, Takahashi SY. Arch Insect Biochem Physiol. Proregion of Bombyx mori cysteine proteinase functions as an intramolecular chaperone to promote proper folding of the mature enzyme. Archives Insect Biochem Phys,1999,42(3):167-178.
    [131]Yoshimoto M, Kuboi R, Yang Q. Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase. J Chromatography B:Med Sci Appl,1998,712:59-71.
    [132]Yoshimoto M, Shimanouchi T, Umakoshi H, Kuboi R. Immobilized liposome chromatography for refolding and purification of protein. J Chromatography B,2000,743:93-99.
    [133]Yoshimoto N, Hashimoto T, Felix MM, Umakoshi H, Kuboi R. Artificial chaperone-assisted refolding of bovine carbonic anhydrase using molecular assemblies of stimuli-responsive polymers. Biomacromolecules.2003,4:1530-1538.
    [134]郑平华,陆峰,郭嘉.高技术通讯,1995,8:44-47.
    [135]Zahn R. Human prion proteins expressed in Escherichia coli and purified by high affinity column refolding. FEBS lett,1997,417:400-404.
    [1]Alderson R, Gohari-Fritsch S, Olsen H, Roschke V, Vance C, Connolly K. In vitro and in vivo effects of repifermin (keratinocyte growth factor-2, KGF-2) on human carcinoma cells. Cancer Chemother Pharmacol,2002,50:202-212.
    [2]Algranati NE, Sy S, Modi M. Abranched methoxy 40KDA polyethylene glycol (PEG) moiety optimizes the pharmacokinetics (PK) of PEG-interferon alpha-2a (PEG-IFN) and may explain its enhanced eficacy in chronic hepatitis C (CHC). Hepatology,1999,30:120-134.
    [3]Bellelli A, Ippoliti R, Currell D, Condo SG, Giardina B, Brunori M. On the oxygen-linked anion-binding sites in human hemoglobin. Functional properties of human hemoglobin reacted with 4-isothiocyanatobenzenesulphonic acid and its hybrids. Eur J Biochem,1986,161:329-333.
    [4]Bowen S, Tare N, Inoue T. Relationship between molecule mass and duration of activity of polyethylene glycol conjugated granulocyte colony stimulating factor mutein. Exp Hematol,1999, 27:425-446.
    [5]Braun S, Keller U, Steiling HU, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B:Biol Sci,2004,359:753-757.
    [6]Cohen O, Kronman C, Chitlaru T. Effects of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochem J.2001(357): 795-802.
    [7]Currell DL, Nguyen DM, Ng S, Hom M. The effect of 4-isothiocyanatobenzoic acid on the oxygen-linked chloride binding sites in human hemoglobin:influence on the alkaline Bohr effect. Biochem Biophys Res Commun,1982,106:1325-1330.
    [8]Deckert PM, Jungbluth A, Montalto N, Clark MA, Finn RD, Williams CJr, Richards EC, Panageas KS, Old LJ, Welt S. Pharmacokinetics and micro-distribution of polyethylene glycol-modified humanized A33 antibody targeting colon cancer xenografts. Int Jcancer,2000,87:382-390.
    [9]Emoto H, Tagashira S, Mattei MG, Yamasaki M, Hashimoto G, Katsumata T, Negoro T, Nakatsuka M, Birnbaum D, Coulier F, Itoh N. Structure and expression of human fibroblast growth factor-10. J Biol Chem,1997,272:23191-23194.
    [10]Esslinger HU, Haas S, Maurer R, Lassmann A, Dubbers K, Muller-Peltzer H. Pharmacodynamic and safety results of PEG-hirudin in healthy volunteers. Thromb Haemost,1997,77:911-919.
    [11]Farruggia B, Nerli B, Nuci HD. Thermal features of thebovine serum albumin unfolding by polyethylene glycols. Inter J Biological Macromol,1999,26:23-33.
    [12]Freytes CO, Ratanatharathorn V, Taylor C. Phase Ⅰ/Ⅱ randomized trial evaluating the safety and
    clinical effects of repifermin administered to reduce mucositis in patients undergoing hematopoietic stem cell transplantation. Clin Cancer Res,2004,10:8318-8324.
    [13]Gabizon A, Martin F. polyethylene glycol-coated (pegylated) liposo2 mal doxorubicin:rationale for use in solid tumors. Drugs,1997,54:15-21.
    [14]Ganti S and Vik SB. Chemical modification of mono-cysteine mutants allows a more global look at conformations of the epsilon subunit of the ATP synthase from Escherichia coli. J Bioenerg Biomembranes,2007,39:99-107.
    [15]Gentz RL, Chopra A, Kaushal P, Spitznagel T, Unsworth E, Khan F. Keratinocyte growth factor-2 formulations.2003, US Patent 6653284.
    [16]Goodson RT, Katre NV. Site-directed PEGylation of recombinant Interleukin-2 at its glycosylation site. Biotechnology,1990,8:343-346.
    [17]Han DS, Li F, Holt L, Connolly K. Hubert M, Miceli R, Okoye Z, Santiago G, Windle K.Wong E, Sartor R.B. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am J Physiol Gastrointest L Physiol,2000,279:G1011-G1022.
    [18]Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS. Effective targeting of solid tumors in patients with locally advanced cancers by radiolar beled pegylated liposomes. Clin Cancer Res,2001,7:243-254.
    [19]Han DS, Li F, Holt L, Connolly K, Hubert M, Miceli R, Okoye Z, Santiago G, Windle K, Wong E, Sartor RB. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am J Physiol Gastrointest Liver Physiol,2000,279:1011-1022.
    [20]Hershfield MS. Biochemistry and immunology of poly (ethyleneglycol) Modified adenosine deaminase. In:Harris JM, Zalip sky eds. S-Poly (ethylene glycol) Chemistry and Biological plications. Washington:American Chemical Society,1998:145-154.
    [21]He XH, Shaw PC, Xu LH, Tam SC. Site-directed polyethylene glycol modification of trichosanthin: efects on its biological activities, pharmacokinetics, and antigenicity. Life Sci,1999,64:1163-1175.
    [22]Heinrikson RL, Meredith SC. Amino acid analysis by reverse-phase high-performance liquid chromatography:precolumn derivatization with phenylisothiocyanate. Anal Biochem,1984,136: 65-74.
    [23]Hershfield MS. Biochemistry and immunology of poly (ethyleneglycol) modified adenosine deaminase. In:Harris JM, Zalip2 sky eds. S2Poly (ethylene glycol) Chemist ry and Biological A p2plications. Washington:American Chemical Society,1998:145-154.
    [24]Huang Z, Zheng Q, Wu X, Su Z, Xu H, Tan Y, Feng W, Li X,Cai L. Enhanced protection of modified human acidic fibroblast growth factor with polyethylene glycol against ischemia/reperfusion-induced retinal damage in rats. Toxicol Lett,2007,170:146-156.I
    [25]Inada Y, Furukawa M, Sasaki H. Applications of PEG and PM-modified Proteins. Trends Biotechnol, 1995,13:86-91.
    [26]姜忠义,许松伟,王艳强.蛋白质和肽类分子的聚乙二醇化化学.有机化学,2003,23:1340-1347.
    [27]Jiang ZY, Xu SSW, Gao R. Pegylation of pharmaceutical proteins. Poly Bull,2002,1:34 (in Chinese).
    [28]Jimenez PA, Rampy MA. Keratinocyte growth factor-2 accelerates wound healing in incisional wounds. J Surg Res,1999,81:238-242.
    [29]Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L, Yang BB, Gardner S, Miller-Messana MA, Shoemaker D, Garst J, Schwab G. Randomized dose-escalation study of SD/01 compared with daily filgrastim inpatients receiving chemotherapy. J Clin Oncol,2000,18: 2522-2528.
    [30]Kavanaugh MP, Shih DT, Jones RT. Affinity labeling of hemoglobin with 4,4'-diisothiocyanostilbene-2,2'-disulfonate:covalent cross-linking in the 2,3-diphosphoglycerate binding site. Biochemistry,1988,27:1804-1808.
    [31]Kdera Y, Matsuchima A, Hiroto M. Pegylation of proteins and bioactive substances for medical and t technical applications. Prog Polymer Sci,1998,23:1233-1271.
    [32]Kovacs D, Cota C, Cardinali G, Aspite N, Bolasco G, Amantea A, Torrisi MR, Picardo M. Expression of keratinocyte growth factor and its receptor inclear cell acanthoma. Exp Dermatol,2006, 15:762-768
    [33]Kurfurst MM. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem,1992, 200:244-248.
    [34]Kuan CT, Wang QC, Pastan I. Pseudomonas exotoxin A mutants. Replacement of surface exposed residues in domain II with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. J Biol Chem,1994,69:7610-7616。
    [35]Ladokhin AS, Jayasinghe S, White SH. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem,2000,285:235-245。
    [36]Lee VH. Advanced Drug Delivery Reviews:cornerstone in the stimulation and dissemination of innovative drug delivery research. Adv Drug Deliv Rev,2004,56:1-2.
    [37]Lee GK, Maheshri N, Kaspar B, Schaffer DV. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng,2005,92:24-34.
    [38]Lee KC, Tak KK, Park MO, Lee JT, Woo BH, Yoo SD, Lee HS, DeLuca PP. Preparation and characterization of polyethylene glycol-modified salmon calcitonins. Pharm Dev Technol,1999, 4:269-275.
    [39]Lee BK, Know JS, Kim HJ, Yamamoto S, Lee EK. Solid-Phase PEGylation of recombinant interferon
    r-2a for site-specific modification:process performance, characterization, and in vitro bioactivity. Bioconjugate Chem,2007,18:1728-1734.
    [40]Li L, Zhang YD. Research development on the protein drug PEGylation technology. Chin J Clin Pharmacol,2003,19:226-229.
    [41]Malik F, Brew J, Maidment SA. PEG modified erythropoietin with improved eficacy. Abstra/Exp Hemato,2000,28:106-115.
    [42]Marsac Y, Cramer J, Olschewski D, Alexandrov K, Becker CF. Site-specific attachment of polyethylene glycol-like oligomers to proteins and peptides. Bioconjugate Chem,2006,17: 1492-1498.
    [43]Manning LR, Morgan S, Beavis RC, Chait BT, Manning JM, Hess JR, Cross M, Currell DL, Marini M.A, Winslow RM. Preparation, properties, and plasma retention of human hemoglobin derivatives: comparison of uncrosslinked carboxymethylated hemoglobin with crosslinked tetrameric hemoglobin. Proc Natl Acad Sci USA,1991,88:3329-3333.
    [44]Milton HJ. Poly (Ethylene Glycol) Chemistry:Biotechnical and Biomedical Application. New York: Plenum Press,1992:1-4.
    [45]Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA. Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science,1991,251:72-75.
    [46]Miceli R, Hubert M, Santiago G, Yao DL, Coleman TA, Huddleston KA, Connolly K. Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis. J Pharmacol Exp Ther, 1999,291:464-471.
    [47]Molineux G, Kinstler O, Briddell B, Hartley C, McElroy P, Kerzic P, Sutherland W, Stoney G, Kern B, Fletcher FA, Cohen A, Korach E, Ulich T, McNiece I, Lockbaum P, Miller-Messana MA, Gardner S, Hunt T, Schwab G. A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp Hematol,1999,27:1724-1734.
    [48]Morjana N and Tal R. Expression and equilibrium denaturation of cardiac troponin I:stabilization of a folding intermediate during denaturation by urea. Biotechnol. Appl Biochem,1998,28:7-17.
    [49]Kuan CT, Wang QC, Pastan I. Pseudomonas exotoxin A mutants. Replacement of surface exposed residues in domain Ⅱ with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. J Biol Chem,1994,269:7610-7616.
    [50]Pai LH, Gallo MG, FitzGerald DJ, Pastan I. Antitumor activity of a transforming growth factor alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE40). Cancer Res,1991,51:2808-2812.
    [51]Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J.FGF/FGFR-2 (Ⅲb) signaling is essential for inner ear morphogenesis. J Neurosci,2000,20: 6125-6134.
    [52]Rameshraja P, Huashan W, Anil G. Current aspects in pharmacology of modified hemoglobin. Adv Drug Deliv Review,2000,40:185-198.
    [53]Rmoso C, Forster LS. Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem,1975,250: 3738-3745.
    [54]Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev,2002,54:459-476.
    [55]Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aatonson SA. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci USA,1989,86:802-806.
    [56]田弘,姚文兵,吴梧桐,沈子龙.聚乙二醇对干扰素α-2b的初步化学修饰研究.中国药科大学学报,2000,31:74-77.
    [57]Sandborn WJ, Sands BE, Wolf DC, Valentine JF, Safdi M, Katz S, Isaacs KL, Wruble LD, Katz J, Present DH, Loftus EV Jr, Graeme-Cook F, Odenheimer DJ, Hanauer SB. Repifermin (keratinocyte growth factor-2) for the treatment of active ulcerative colitis:a randomized, double-blind, placebo-controlled, dose-escalation trial. Aliment Pharmacol Ther,2003,17:1355-1364
    [58]Scott MD, Chen AM. Beyond the red cell:pegylation of other blood cells and tissues. Transfus Clin Biol,2004,11:40-46.
    [59]Shaw PC, Chan WL, Yeung HW, Ng TB. in ireview:trichosanthin-a protein with multiple pharmacological properties. Life Sci,1994,55:253-262.
    [60]Steiling H, Werner S. Fibroblast growth factors:key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol,2003,14:533-537.
    [61]Sung C, Parry TJ, Riccobene TA, Mahoney A, Roschke V, Murray J, Gu ML, Glenn JK, Caputo F, Farman C, Odenheimer DJ. Pharmacologic andpharmacokinetic profile of repifermin (KGF-2) in monkeys and comparative pharmacokinetics in humans. AAPS Pharm Sci,2002,4:E8.
    [62]Tracey KJ, Ceram IA. Tumo r necro sis factor:a pleiotropic cytokine and therapeutic target. Annu Rev Med,1994,45:491-503.
    [63]Tsutsumi Y, Kihira T, Yamamoto S, Kubo K, Nakagawa S, Miyake M, Horisawa Y, Kanamori T, Ikegami H, Mayumi T. Chemical modification of natural human tumor necrosis factor-alpha with polyethylene glycol increases its anti-tumor potency. Jpn J Cancer Res,1994,85:9-12
    [64]Tsutsumi Y, Kihira T, Tsunoda S, Kanamori T, Nakagawa S, Mayumi T. Molecular design of hybrid tumor necrosis factor alpha with polyethylene glycol increase its anti-tumour potencv. Br J Cancer, 1995,71:963-968.
    [65]Tsunoda S, Ishikawa T, Yamamoto Y, Kamada H, Koizumi K, Matsui J, Tsutsumi Y, Hirano T, Mayumi T. Enhanced antitumor potency of polyethylene glycolylated tumor necrosis factor a:A novel
    polymer-conjugation technique with a reversible amino-protective reagent. J Pharmacol Exp Ther, 1999,290:368-372.
    [66]Upadhyay D, Chang W, Wei K, Gao M, Rosen GD. Fibroblast growth factor-10 prevents H_2O_2-induced cell cycle arrest by regulation of G_1 cyclins and cyclin dependent kinases. FEBS Lett, 2007,581:248-252.
    [67]Veronese FM. Peptide and Protein PEGylation:A Review of Problems and Solutions. Biomaterials, 2001,22:405-417.
    [68]Veronese FM and Pasut G. PEGylation, successful approach to drug delivery.Drug Discov Today. 2005(10):1451-1458
    [69]Wang Q, Pai L H, Debinski W, FitzGetald D J. & Pastan I. Polyethylene glycol-modified chimeric toxin composed of transforming growth factor alpha and Pseudomonas exotoxin. Cancer Res,1993, 53:4588-4594.
    [70]Wang Y, Yuan S, Wang P, Liu X, Zhan D, Zhang Z. Expression, purification, and characterization of recombinant human keratinocyte growth factor-2 in Pichia pastoris. J Biotechnol,2007,132:44-48.
    [71]Wu X, Liu X, Xiao Y, Huang Z, Xiao J, Lin S, Cai L, Feng W, Li X. Purification and modification by polyethylene glycol of a new human basic fibroblast growth factor mutant-hbFGF (Ser25,87,92). J. Chromatogr A,2007,1161:51-55.
    [72]Xia YP, Zhao Y, Marcus J, Jimenez PA, Ruben SM, Moore PA, Khan F, Mustoe TA. Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol,1999,188:431-438.
    [73]Xiao J, Burn A, Tolbert T. J Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjugate Chem,2008,19:1113-1118.
    [74]张镜如,主编.生理学.第4版.北京:人民卫生出版社,1996.
    [75]郑宝胜,徐明波,沈倍奋.重组人白介素-2的化学修饰.军事医学科学院刊,1994,18:60-62.
    [76]冯学胜,汤钊遒,刘康达.聚乙二醇的rhIL-2体内抗小鼠肝癌活性的研究.中华肿瘤杂志,1993,16:256-258.
    [77]Zalipsky S, Menon-Rudolph S. Hydrazide derivatives of poly (ethylene glycol) and their conjugates. In:Harris JM ed. Poly (ethylene glycol) Chemistry:Biotechn Biomed Appl. New York:Plenum press, 1998:319-341.
    [78]Zeuzem S, Feinman SV, Rasenack J. PEG-interferon alfa-2a in patients with chronic hepatitis C. N Engl J Med,2000,343:1666-1672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700