磷酸川芎嗪鼻用pH敏感型原位凝胶及其PK/PD结合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题执行国家自然科学基金项目(No.30672669,30801551)的部分研究内容。本课题研究是在导师以往工作基础上研制一种在鼻腔中滞留时间较长、疗效持久的磷酸川芎嗪(TMPP)新型制剂——-TMPP鼻用pH敏感型原位凝胶,在正常大鼠体内进行整体药物动力学和局部药物动力学研究,并在急性脑缺血模型大鼠体内进行脑局部PK/PD结合模型研究。
     实验采用星点设计-效应面法优化处方工艺;应用微透析采样技术,将探针分别植入大鼠颈静脉和脑部纹状体区,考察静脉注射、鼻腔给药后TMPP在动物血液和脑部的释药特征和浓度的动态变化规律;建立大鼠急性脑缺血模型,并在模型动物体内对静脉注射TMPP溶液、鼻腔给予TMPP溶液和鼻腔给予TMPP凝胶剂等三种给药方式进行脑局部PK/PD结合模型研究,利用同一份脑部微透析样品分析其药物动力学指标和药效动力学指标,建立时间-药物浓度-药效之间的定量关系,并建立脑局部PK/PD结合模型的评价方法,为TMPP的临床给药方案提供更为科学的依据。
     本实验研究主要分为以下三个部分:
     1 TMPP鼻用pH敏感型原位凝胶剂的制备
     1.1 TMPP鼻用pH敏感型原位凝胶的制备工艺研究
     以Carbopol和HPMC的用量为考察因素,黏度和5 h的药物释放量为效应指标,采用星点设计-效应面法优化了TMPP鼻用pH敏感型原位凝胶的制备工艺。采用SAS 9.0统计软件对数据进行了处理,经二次多项式拟合,得到了优化方程,并绘制出了效应面图和等高线图,从中可以读出考察因素的较优取值,据此制备出的原位凝胶,测定其黏度和5 h的药物释放量,得到实测值,与预测值相比较,偏差较小,说明采用星点设计-效应面法优化原位凝胶制备工艺具有较好的预测效果,确定了TMPP鼻用pH敏感型原位凝胶的最佳制备工艺:取0.5%的Carbopol和1.4%的HPMC分别配成不同浓度的溶液,放置24小时使其充分溶胀,均匀分散,再将两者混合得到空白凝胶;将TMPP溶于蒸馏水后混入空白基质中,搅拌均匀,再用三乙醇胺调节pH值至5.5左右,超声5min,即得到含药凝胶。
     1.2 TMPP鼻用pH敏感型原位凝胶中TMPP的含量测定
     用HPLC考察了TMPP的线性范围和精密度,结果表明TMPP的浓度在8.024~206.0μg/mL之间时与其峰面积呈良好的线性关系,得到回归方程为:Y=17450X+34866,R2=0.999。精密度试验RSD%为1.2%,此外根据3批样品的测定结果,并考虑到保存期等因素,规定本品每1g含TMPP不得少于25mg。
     1.3凝胶剂的质量评价及初步稳定性考察
     本节对TMPP鼻用pH敏感型原位凝胶的质量进行了评价:原位凝胶制备后为乳白色不透明的液体制剂,药物和基质混合均匀;pH值在5.5~6.0范围;黏度为3.1±0.2Pa·S;稳定性考察无异常现象;制剂中TMPP的平均含量为31.00±1.38 mg/g。
     将TMPP原位凝胶置于密封容器中,分别于室温和40±2℃条件下放置三个月,对其稳定性进行了初步探索性研究。结果表明:原位凝胶中TMPP的含量和pH值基本没有变化;随着温度的升高,时间的延长,制剂的黏度呈现下降的趋势;40±2℃条件下放置,第三个月开始外观颜色略带淡黄色,且有少许分层现象,搅拌后无分层现象,表明其稳定性出现下降趋势,说明该制剂不适于高温贮存。
     2 TMPP制剂的药物动力学研究
     2.1微透析探针的选择及植入方法的建立
     根据预实验结果对探针的类型、分子截留量及透析膜的长度进行了筛选,最终确定用于血液微透析的探针为CMA/20,活性透析膜长度为10mm,分子截留量为20000Dalton;用于脑部的微透析探针为CMA/12,活性透析膜长度为4mm,分子截留量为20000 Dalton,并检查了探针植入脑部的位置,结果表明探针透析膜部位处于大脑纹状体区,位置准确,方法可靠。
     2.2微透析样品中TMPP含量测定方法的建立
     用HPLC法考察了TMPP的线性范围和精密度,结果表明TMPP的浓度在45.2ng/mL~7.23μg/mL范围内线性关系良好,浓度与峰面积的回归方程为:Y=15.668X+2.991,R2=0.9998,精密度试验RSD为1.0%。TMPP的最低定量限为17pg。2.3微透析探针的体内回收率及其稳定性考察
     在流速对体内回收率的影响、浓度对体内回收率的影响、体内回收率的稳定性以及采样时间间隔和采样量等多方面进行了研究,考察微透析采样技术在TMPP药动学和PK/PD研究中的可行性,最终确定血液微透析探针和脑部微透析探针灌流的速度均为2.0μL/min,用浓度为1.0μg/mL左右的含药灌流液测定体内回收率,采样的时间间隔为10min,采样量为20μL,且当灌流液的流速为2.0μL/min时,血液微透析探针和脑部微透析探针的TMPP体内回收率在10小时内基本保持稳定。
     2.4 TMPP制剂的整体药物动力学和局部药物动力学研究
     实验采用微透析采样技术,同步开展静脉注射TMPP溶液、鼻腔给予TMPP溶液和鼻腔给予TMPP凝胶剂后皿液和脑脊液中TMPP的药物动力学研究,采用Kinetica4.4药动学软件对所得到的药物动力学数据进行了房室模型和非房室模型分析,结果表明:各给药组血液和脑中的药物动力学数据均符合二室开放模型,且房室模型和非房室模型得到的血液和脑中的AUC分别都比较接近。
     从静脉注射TMPP溶液和鼻腔给予TMPP溶液两种给药途径来看,非房室模型的数据显示,鼻腔给药后脑中的MRT大于静脉注射给药后脑中的MRT,且鼻腔给药后脑中的MRT大于血液中的MRT;此外鼻腔给药和静脉注射给药后两者脑中的AUC均大于血液中的AUC,且鼻腔给药后脑中的AUC明显大于静脉注射给药后脑中的AUC。这种结果表明,鼻腔给药后TMPP在脑中的消除速度比血液中消除速度慢,且鼻腔给药后TMPP在脑中的消除速度比静脉注射给药后消除的更缓慢,证明药物TMPP更易从鼻腔到达脑靶部位,驻留时间更长,更有利于药物在病灶部位发挥疗效。
     TMPP容液和TMPP凝胶剂均通过鼻腔给药,从药物动力学模型分析结果来看,两种剂型给药后脑中TMPP的浓度均高于血液中TMPP的浓度,证明药物通过鼻腔给药后容易在脑中富集,这对于缺血性脑血管疾病的治疗有很大帮助;此外,从房室和非房室模型分析得到的药物动力学参数来看,TMPP凝胶剂的消除半衰期长于TMPP溶液,TMPP凝胶剂组的Tmax为35min长于TMPP溶液的15min,且前者的AUC也大于后者,TMPP凝胶剂鼻腔给药后TMPP在脑中的滞留时间明显长于TMPP溶液,表明TMPP凝胶剂可明显延长药物在大鼠脑和血液中的滞留时间,起到缓释效应。
     3 TMPP制剂脑局部PK/PD结合模型的研究
     3.1大鼠急性脑缺血模型的建立及评价指标
     选择改良的Zea-longa线栓法建立大鼠急性脑缺血模型,将鱼线插入颈总动脉经颈内动脉送至颅内,造成大鼠一侧大脑缺血。神经功能评分结果显示,模型大多有向瘫痪侧旋转征象,被提尾悬空时脑缺血对侧前肢呈屈曲、抬高、肩内收、肘关节伸直;大鼠脑缺血侧眼眶与对侧相比无血色,目光呆痴,反应迟钝;TTC染色结果显示模型成功大鼠大脑经TTC染色后,大脑缺血侧组织成白色。本手术操作简单易行、造模成功率高。
     3.2药效指标的选择与测定
     采用高效液相-荧光检测器系统OPA柱前衍生的方法考察了五种氨基酸的线性范围和精密度,结果表明五种氨基酸的线性关系良好。Asp的标准曲线方程:Y=83.248X+7.442,R2=0.999;Glu的标准曲线方程:Y=282.54X+26.551,R2=0.998;Gly的标准曲线方程:Y=447.9X+97.42,R2=0.997;Tau的标准曲线方程:Y=249.7X+15.57,R2=0.999;GABA的标准曲线方程:Y=297.3X+30.14,R2=0.999;各标准品的精密度良好,Asp、Glu、Gly、Tau、GABA的RSD (%)分别为0.9%、1.0%、1.9%、2.8%、1.7%;五种氨基酸的检测限分别为5.19ng/mL、2.12ng/mL、0.55ng/mL、1.89ng/mL、2.16ng/mL
     3.3 TMPP制剂脑局部PK/PD结合模型研究
     运用微透析采样技术,采集急性脑缺血模型大鼠缺血侧脑部的微透析液,试验共分为4组:TMPP溶液静脉注射给药组、TMPP溶液鼻腔给药组、TMPP凝胶剂鼻腔给药组、空白模型组。其中空白模型组的微透析样品只测定药效动力学指标,其他三个给药组的微透析样品分为两部分,一部分用于测定药物动力学指标TMPP的浓度,一部分用于测定药效动力学指标氨基酸类神经递质。测定结果显示氨基酸类神经递质中除Gly之外的其他四个指标均与模型组在变化趋势上有统计学差异。
     用微透析采样技术采集给药后的急性脑缺血模型大鼠脑部的微透析样品,TMPP在脑脊液中的浓度作为药物动力学指标,Asp、Glu、Tau、GABA的浓度作为药效动力学指标,将各个给药组得到的药物动力学和药效动力学数据用Winnonlin4.0.1软件进行分析,选择合适的药物动力学模型和药效动力学模型,得到的最佳药效动力学模型为Sigmoid-Emax模型,并选取适当的参数,对所得的数据进行PK/PD结合模型拟合,得到主要药效动力学参数和药物浓度与药效之间的定量关系,并得到各个给药组的各个药效指标的效应与药物浓度之间的定量方程,为临床设计药物给药方案提供参考依据,建立的Cp-E之间的关系,可用于预测(?)TMPP在脑部浓度和效应随时间变化的规律。
This task executes the National Natural Science Foundation of China (No.30672669,30801551) of part of the content. This project is to work on the basis of past mentors develop in nasal in a long time, the effect of persistent tetramethylpyrazine phosphate (TMPP) new preparations-TMPP nasal pH-sensitive in situ gel. In normal rats make overall pharmacokinetics and local pharmacokinetics and acute ischemia rats for local brain PK/PD modeling.
     Experiment with design-Response Surface Optimization of formulation and preparation. Application of microdialysis sampling technique, the probes were implanted into the rat jugular vein and brain striatum. Visited intravenous injection, nasal administration of blood and later TMPP in animals release characteristics of the brain and the dynamic changes of concentration. Established the acute cerebral ischemia model in rats, Reserched animals in the model of intravenous injection of TMPP solution, intranasal administration of TMPP solution and nasal administration of three agents to TMPP-gel method for regional cerebral PK/PD modeling. Using the same brain microdialysis sample analysis index of its pharmacokinetics and pharmacodynamics indicators. Established the time-concentration-the quantitative relationship between efficacy and evaluation of regional cerebral PK/PD modeling. The clinical dosage regimen for the TMPP provide a more scientific basis.
     The study was consisted of three parts as following as:
     1 preparation of TMPP nasal pH-sensitive in situ gel
     1.1 preparation of TMPP nasal pH-sensitive in situ gel
     To the amount of Carbopol and HPMC was investigated factors. viscosity, and 5 h for the effect of the drug release index by design-Response Surface Optimization of the TMPP nasal pH-sensitive in situ gel were prepared. Using SAS 9.0 statistical software data were processed by the quadratic polynomial fitting equation has been optimized. Mapped out a response surface graph and contour map, from which you can read the study factors. According to the map gained the optimum values. In situ gel was prepared to determine their viscosity and 5 h of drug release. Deviation is smaller through measured values compared with the predicted values. indicating design-effect of surface analysis in situ gel technology has a good prediction. Determined TMPP nasal pH-sensitive in situ gel with best preparation:Take 0.5% Carbopol and 1.4% of HPMC solutions were paired with different concentrations, for 24 hours to fully swelling, dispersed and then two are mixed by a blank gel. Dissolved TMPP into distilled water and mixed with blank matrix after the ultrasound. After 5min Stir, then adjust pH value of triethanolamine to 5.5 or so that are drug-containing gel.
     1.2 determination of TMPP nasal pH-sensitive in situ gel of TMPP concentration
     TMPP investigated using HPLC linear range and precision. The results show that the concentration of TMPP is between 8.024-206.0μg/mL that has well linear relationship. The regression equation is Y=17450X+34866 and R2=0.999. The precision RSD% was 1.2%, in addition to three batches of samples were determined according to the results.taking into account factors such as shelf life, provides the product with TMPP per lg of not less than 25mg.
     1.3 quality evaluation and initial stability of gel
     This section of the TMPP in situ nasal gel with pH-sensitive quality was evaluated:in situ after gel opaque white liquid formulations, drugs and mixing in uniform; pH value of 5.5~6.0; a viscosity of 3.1±0.2Pa·S; stability of no anomaly; Preparation of TMPP is 31.00±1.38 mg/g of the average content.
     The TMPP nasal pH-sensitive in situ gel in sealed container, respectively, at room temperature and placed for three months under 40±2℃. Its stability is a preliminary exploratory study. The results showed that in situ gel content of TMPP、5h cumulative drug release and the pH value are unchanged. As temperature and time change, preparation of viscosity showed a downward trend. Under 40±2℃, the first three months after the appearance of slightly yellow color and there is little stratification, but mixing even after the restore. The stability of a downward trend indicating that the preparation is not suitable for high temperature storage.
     2 preparations of TMPP pharmacokinetics
     2.1 microdialysis probe implantation method of choice and establishment
     The results of the probe according to pre-type is that molecular interception and the length of dialysis membrane were screened to determine the final microdialysis probe for blood to CMA/20, active dialysis membrane length of 10mm, molecular retention capacity of 20000 Dalton. For the brain microdialysis probe was CMA/12, active dialysis membrane length 4mm, molecular retention capacity of 20000 Dalton. Checked the location of probe implantation in the brain. results showed that the probe is part of the brain membranes striatum, and location accurate and reliable method.
     2.2 Determination of Microdialysis samples of TMPP concentration
     Linear range and precision of TMPP were investigated using HPLC. The results show that the concentration of TMPP in 0.0452~7.23μg/mL. It has a good linear relationship. The concentration and peak area of the regression equation is Y= 15.668X+2.991 and R2= 0.9998 with precision of 1.0% RSD. TMPP minimum quantitative limit of 17pg.
     2.3 In vivo microdialysis probe recovery and its stability
     A flow rate of the recovery, the impact of concentration on the recovery, recovery of stability and sampling intervals and sampling volume and other aspects were studied. study microdialysis sampling in TMPP pharmacokinetics and PK/PD feasibility. final study to the blood and brain microdialysis probe perfusion rate were 2.0μL/min with a concentration of about 1.0μg/mL determination of in vivo drug-containing perfusate recovery. The sampling time interval is 10min and sample volume is 20μL when the flow rate of perfusate is 2.0μL/min. Blood and brain microdialysis probe recovery in vivo of TMPP remained stable within 10 hours.
     2.4 preparation of the overall and local pharmacokinetics of TMPP drug
     Experiments using microdialysis sampling technique. Synchronized with the intravenous injection of TMPP solution, intranasal administration of TMPP solution and gel after intranasal administration of TMPP in the blood and cerebrospinal fluid pharmacokinetic study of TMPP. Using Kinetica 4.4 software pharmacokinetics of drugs received power Study data were non-compartment model and compartment model analysis. The results showed that the treatment group blood and brain pharmacokinetic data are consistent with two-compartment open model and the compartment model and the non-compartment model are in the blood and brain are relatively close to the AUC respectively.
     From the intravenous injection of TMPP solution and nasal route of administration for two terms TMPP solution, non-compartment model of the data shows that MRT brain after nasal administration than after intravenous administration of brain MRT and the brain after nasal administration The MRT is greater than the blood of the MRT. Addition intranasal administration and intravenous administration of the brain of the latter two were more than blood AUC AUC and AUC brain after nasal administration significantly larger than the brain after intravenous administration the AUC. This result showed that after intranasal administration of TMPP in the blood faster than the elimination of the brain to eliminate slow. The brain after intranasal administration of TMPP in the elimination rate of intravenous administration than after the elimination of the more slow. Indicated that more drugs TMPP brain from the nasal cavity to reach the target site、presence of longer and more conducive to play an effective drug in the lesion sites.
     TMPP and TMPP gel solution were administered through the nasal cavity. From the pharmacokinetic model results, the two formulations after administration of brain TMPP concentrations were higher than the concentration of TMPP in the blood.Shows that after intranasal administration of drugs through the easy accumulation in the brain, which for ischemic cerebrovascular diseases of great help. In addition, analysis of compartment model and non-compartment model pharmacokinetic parameters obtained view that TMPP gel elimination half-life longer than TMPP solution TMPP gel group Tmax was longer than TMPP solution. The AUC is also the former than the latter. TMPP nasal gel in the brain after administration of TMPP residence time was longer than TMPP solution that TMPP gel can prolong the drug in rat brain and blood residence time.It play a slow-release effect.
     3 Research of Local Cerebral PK/PD modeling of TMPP
     3.1 Rat model of acute cerebral ischemia and Evaluation
     Selection for the improvement of Zea-longa suture method in rats with acute cerebral ischemia model. Put the fishing line into the common carotid artery after carotid artery and sent to the brain, causing one side of the brain ischemia in rats. The results of neurological function score are the model most had paralyzed side to the rotating sign, when vacancies were raised last contralateral limb ischemia was buckling, elevation, shoulder adduction, elbow extension. Focal cerebral ischemia and the right side of the orbit side pale in comparison, look stupid, unresponsive. TTC staining showed that the successful model of rat brain stained by TTC and ischemic brain tissue into white side. This surgical procedure is simple, the modeling success rate.
     3.2 The choice of indicators and determination of Pharmacodynamic
     By HPLC-FLD system OPA pre-column derivatization of five amino acids was investigated by the linear range and precision. The results show a good linear relationship of five amino acids. Asp of the standard curve equation:Y= 83.248X+7.442, R2=0.999. Glu standard curve equation:Y=282.54X+26.551, R2=0.998. Gly standard curve equation:Y= 447.9X+97.42, R2= 0.997. Tau standard curve equation:Y= 249.7X+15.57, R2= 0.999. GABA standard curve equation:Y= 297.3X+30.14, R2= 0.999. The standard of precision was good, Asp, Glu, Gly, Tau, GABA in the RSD (%) is 0.9%,1.0%,1.9%,2.8%,1.7%. five amino acids of the detection limits were 5.19ng/mL,2.12ng/mL,0.55ng/mL, 1.89ng/mL,2.16ng/mL.
     3.3 preparation of Local Cerebral PK/PD modeling of TMPP
     Using microdialysis sampling, collect ischemic side of the brain microdialysate of acute cerebral ischemia rats. The testing is divided into 4 groups:TMPP solution intravenous administration group, TMPP solution nasal administration group, TMPP gel intranasal administration group, untreated group. Microdialysis samples of blank model group which only use to the determination of pharmacodynamic indices. The other three dose groups microdialysis samples were divided into two parts. One part used to measure the concentration of TMPP. The other part used to measure amino acid neurotransmitters. Measurement results show that amino acid neurotransmitters in addition to the four indicators other than Gly were changing with the model group were significantly different trend.
     Collected brain microdialysis samples by microdialysis sampling after administration of acute cerebral ischemia. TMPP concentrations in cerebrospinal fluid dynamics as a drug target. Asp, Glu, Tau, GABA concentrations as pharmacodynamic indicators of the various treatment group. Received the pharmacokinetics and pharmacodynamics data were analyzed using Winnonlin 4.0.1 software. select the appropriate model of the pharmacokinetics and pharmacodynamics model and get the best pharmacodynamic model the Sigmoid-Emax model. Select the appropriate parameters. The data obtained from PK/PD integration model.we obtained the quantitative relationship between the main pharmacodynamic parameters and efficacy of drug concentration. Get the quantitative equation of all treated groups in the effect of various pharmacodynamic parameters and drug concentration. The design of drug is delivered for clinical reference program. Established the relationship between Cp-E can be used to predict the concentration of TMPP in the brain and the effects of change over time rule.
引文
[1]魏刚,徐晖,郑俊民.原位凝胶的形成机制及在药物控制领域的应用[J].中国药学杂志,2003,38(8):564-568
    [2]钱春梅.药物传递系统(DDS)Ⅳ腔道给药传递系统[J].西北药学杂志,1995,10(6):281-283
    [3]毛磊,王娟.肽类及蛋白类药物鼻腔给药系统[J].中国医药情报,1995,1(3):172-176
    [4]蒋瑛.复方薄荷脑滴鼻液制备的改进[J].天津药学,2000,12(11):73
    [5]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,1998:451-462
    [6]王东兴,高永良.鼻腔给药新剂型研究进展[J].中国新药杂志,2002,11(8):589-592
    [7]Martin E, Romeijn SG Vcrhoef JC, et al. Nassal absorption of dihydroergotamine from liquid and powder formulations in rabbits[J].J Pharm Sci,1997,86(7):802-807
    [8]Pomerleau OF, Flessland KA, Pomerlean CS, et al. Controlled dosing of nicotine via an intranasalnicotine aerosol delivery device[J]. Psychopharmacology,1992,108(4):519-526
    [9]Sutherland G, Russell MAH, Staplcton J, et al. Nassal nicotine spray:a rapid nicotine delivery system[J]. Psychopharmacology,1992,08(4):12-518
    [10]Callens C, Pringels E,Remon JP. Influence of multiple nasal administrations of bioadhesive powders on the insulin bioavailability[J]. Int J Pharm,2003,250:415-422
    [11]Chu JS, Chandra R, Amidon GL. et al, Viscometric study of polyacryli-acid as mucoadhesive sustained-release gels[J]. Pharm Res,1991, (8):1408
    [12]陈庆华,翟文.多肽、蛋白质药物的微球给药系统研究进展[J].国外医学药学分册,1997,24(3):129
    [13]于维萍,牟晓莹,孙萍.脂质体不同给药系统的研究[J].齐鲁药事,2004,3(6):36
    [14]Bernkop-sehnfireh A, Hornof M, Guggi D. Thiolated ehitosans[J]. European Journal of Pharmaceuties and Biopharmaceutics,2004,57(1):9-17
    [15]Garrisona KE, Stephanie AP, Joshua D, et al.A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur J Pharm Sci,2002,17:1
    [16]Janle EM, Kissinger, PT. Microdialysis and ultrafiltration[J]. Adv Food Nutr Res,1996,40:183
    [17]Sabol KE, Freed CR. Brain acetaminophen measurement by in vivo dialysis, in vivo electrochemistry and tissue assay:a study of the dialysis technique in the rat[J].J Neurosci Methods,1988,24:163
    [18]Pena A, Liu P, Derendort H. Microdialysis in peripheral tissues [J]. Adv Drug Deliv Rev,2000,45:189
    [19]Chaurasia CS. In vivo microdialysis sampling:theory and applications [J]. Biomed Chrormatogr,1999,13:317
    [20]Tisdall MM. Smith M. Cerebral microdialysis:research technique or clinical tool [J]. Br J Anaesth,2006,97 (1):18
    [21]Zhou QY, Gallo JM. In Vivo Microdialysis for PK and PD Studies of Anticancer Drugs [J]. The AAPS Journal,2005,7(3) Article:66
    [22]Li YJ, Peris J, Zhong L, et al. Microdialysis as a Tool in Local Pharmacodynamics[J]. The AAPS Journal,2006,8(2)Article:26
    [23]Brunner M and Langer O. Microdialysis Versus Other Techniques for the Clinical Assessment of In Vivo Tissue Drug Distribution[J]. The AAPS Journal,2006,8(2) Article:30
    [24]陈敏.微透析技术在生命科学研究中的应用[J].中国药业.2005,14(11):10-12
    [25]Davies MI, Lunte CE. Simultaneous microdialysis sampling from multiple sites in the liver for the study of phenol metabolism[J]. ife Sci,1996, 59(12):1001
    [26]Parada MA,Hemandez L, Puig de Parada M, et al. Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum[J].J Pharmacol Exp Ther,1997,281(1):582
    [27]Tsai TH, Liu MC. Determination of unbound theophylline in rat blood and brain by microdialysis and liquid chromatograpy[J]. J Chroma togr A,2004, 1032(1-2):97
    [28]Marchand S, Dahyot,Dahyot C, Lamarche I, et al. Microdialysis study of imipenem distribution in skeletal muscle and lung extracellular fluids of noninfected rats[J]. Antimicrob Agents Chemother,2005,49(6):2356
    [29]Li Y, Peris J,Zhong L, et al. Microdialysis as a tool in local phamacodynamics[J]. AAPS J,2006,8(2):222-235
    [30]Awanson CJ, Perry KW, Koch-Krueqer S, et al. Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentration of norepinephrine and dopamine in several brain regions of the rat[J]. Neuropharmacology,2006,50(6):755-760
    [31]Boume JA. Intracerebral microdialysis 30 years as a tool for the neuroscientist[J]. Clin Exp Pharmacol Physiol,2003,30(1-2):16-24
    [32]Khan SH, Shuaib A. The technique of intracerebral microdialysis Methods,2001,23(1):3-9
    [33]张金兰,刘颖,周同惠.微透析取样技术在药物代谢研究中的应用及前景[J].药学学报,2001,36(7):555-558
    [34]刘雯,吴春福,李春莉,等.多巴胺受体激动剂对乙醇引起大鼠纹状体抗坏血酸释放的影响[J].中国药理学通报,2000,16(2):158-161
    [35]孙晓芳,王巍,赵德忠,等.动态监测清醒自由活动大鼠纹状体细胞外液乙酰胆碱和胆碱水平的方法[J].中国药理学通报,2004,20(2):232-234
    [36]Heppert KE, Davies MI. Simultaneous determination of caffeine from blood, brain and muscle using microdialysis in an awake rat and the effect of caffeine on rat activity[J]. Curr Separations,1999,18(1):337
    [37]Weikop P, Egestad B, Kehr J. Application of triple-probe microdialysis for fast pharmacokinetic/pharmacodynamic evaluation of dopamimetic activity of drug candidates in the rat brain[J].J Neurosci Methods,2004, 140(1/2):59-65
    [38]Bush MA, Pollack GM. Pharmacokinetics and pharmacodynamics of 7-nitroindazole, a selective nitric oxide synthase inhibitor, in the rat hippocampus[J].Pharm Res,2001,18(11):1607-1612
    [39]Bostrom E, Simonsson US, Hammarlund-Udenaes M. In vivo blood-brain barrier transport of oxycodone in the rat indications for active influx and implications for pharmacokinetics/pharmacodynamics[J]. Drug Metab Dispos,2006,34(9):1624-1631
    [40]Bouw MR, Gardmark M, Hammarlund-Udenaes M. Pharmacokinetic-Pharmacodynamic modelling of morphine transport across the blood brain barrier as a cause of the antinociceptive effect delay in rats-a microdialysis study[J]. Pharm Res,2000,17(10):1220-1227
    [41]Gunaratna PC, Kissinger PT, Kissinger GB, et al. An automated blood asmpler for simultaneous sampling of systemic blood and brain microdialysater for drug absorption, distribution, metabolism, and elimination studies [J].J Pharmacol Toxicol Methods,2004,49(1):57-64
    [42]Bundgaard C, Jorgensen M, Mork A. An integrated microdialysis rat model for multiple pharmacokinetics/pharmacodynamics investigations of serotonergic agents[J].J Pharmacol Toxicol Methods,2007,55(2):214-223
    [43]Zhang FF, Wan Q, Li CX, et al. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles[J]. Anal Bioanal Chem,2004,380(4):637-642
    [44]Poscia A, Messeri D, Moscone D, et al.A novel continuous subcutaneous lactate monitoring system [J]. Biosens Bioelectron,2005,20(11):2244-2250
    [45]Obreja O, Schmelz M, Poole S, et al. Interleukin-6 in combination with its soluble IL-6 receptor sensitizes rat skin nociceptors to heat, in vivo [J]. Pain,2002,96(1/2):57-62
    [46]Warsame Afrah A, Gustafason H, Olgart L, et al. Capsaicin-evoked substance P release in rat dorsal horn increases after peripheral inflammation:a microdialysis study[J]. Neurosci Lett,2004,368(2):226-230
    [47]Kobayashi N, Fujimori I,Watanabe M, et al. Real-time monitoring of metabolic reactions by microdialysis in combination with tandem mass spectrometry:hydrolysis of CS-866 in vitro in human and rat plasma, livers, and small intestines [J], Anal Biochem,2000,287(2):272-278
    [48]Mathy FX, Vroman B, Ntivunwa D, et al. On-line determination of fluconazole in blood and dermal rat microdialysis by microbore high performance liquid chromatography [J].J Chromatogr B Analyt Technol Biomed Life Sci,2003,787(2):323-331
    [49]Mckenzie JA, Watson CJ, Rostand RD, et al. Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and ami no acids[J].J Chromatogr A,2002,962(1/2):105-115
    [50]Bergstrom SK, Markides KE.On-line coupling of microdialysis to packed capillary column liquid chromatography-tandem mass spectrometry demonstrated by measurement of free concentrations of ropivacaine and metabolite from spiked plasma samples [J].J Chromatogr B Analyt Technol Biomed Life Sci,2002,775(1):79-87
    [51]Yoshitake T, Iizuka R, Kehr J,et al. Determination of serotonin in microdialysis samples from rat brain by microbore column liquid chromatography with post-column derivatization and fluorescence detection [J],J Neurosci Methods,2001,109(2):91-96
    [52]贾兴元,吴安石,刘敬忠,等.微柱高效液相色谱法测定大鼠脑微透析液中的乙酰 胆碱和胆碱[J].色谱,2004,22(1):33-35
    [53]Parrot S,Sauvinet V,Riban V, et al.High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detect ion[J].J Neurosci Methods,2004,140(1/2):29-38
    [54]Zhou JX, Heckert DM, Zuo H, et al. On-line coupling of in vivo microdialysis with capillary electrophoresis/electrochemistry[J]. Anal Chim Acta,1999, 379(3):307-317
    [55]Lada MW, Kennedy RT. In vivo monitoring of glutathione and cysteine in rat caudate nucleus using microdialysis on-line with capillary zone electrophoresis laser induced fluorescence detection[J].J Neurosci Methods,1997,72 (2):153-159
    [56]Hogan BL, Lunte S M, Stobaugh J F, et al. On line coupling of in vivo microdialysis sampling with capilliary electrophoresis[J]. Anal Chem,1994,66(5):596-602
    [57]Meibohm B, Derendorf H. Basic concepts of pharmacokinctic/phamacodynamic(PK/PD)modeling[J]. Int J Clinical Phamaco Therapeutics,1997,35(10):401
    [58]Bellissant E, Selle V, Painaud G, et al. Methodological issues in pharmacokinetic-pharmacodynamic modeling[J]. Clin Pharmacokinet, 1998,5 (2):151-166
    [59]Uhadlcat JD, Bartha F and Sheiner LB. Simultaneous modeling of Pharmacokinetics and pharmacdynamics with nonparametric kinetic and dynamic models[J]. Ciln Pharmacol Ther,1986,40:86-93
    [60]刘皋林,张正行,安登魁.数学模型在药效动力学研究中的应用[J].药学进展,2000,24(2):77-81
    [61]宋建国,刘晓平.药效动力学模型的合理选用.中国临床药理学与治疗学杂志[J].1999,4(2):160-161
    [62]Levy G. Kinetics of pharmacologic effects[J]. Clin Pharmacol Ther,1966, 7:362-372
    [63]Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics:Application to dtubocurarine[J]. Clin Pharmacol Ther,1979,25(3):358
    [64]Washington N, Steele RJC, Jackson SJ, et al. Determination of baseline human nasal pH and the effect of intranasally administered buffers[J]. Int J
    Pharm,2000,1998(2):139-146
    [65]Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery[J]. J Controlled Release,2000,69(3):379-388
    [66]吴伟,崔光华.星点设计-效应面优化法及其在药学中的应用[J].国外医学药学分册,2000,27(5):292-298
    [67]吴伟,崔光华,陆彬.实验设计中多指标的优化:星点设计和总评“归一值”的应用[J].中国药学杂志,2000,35(8):530-533
    [68]刘志东,丁平田,李佳玮,等.依诺沙星眼用缓释凝胶剂的体外研究[J].中国药学杂志,2004,39(11):834-836
    [69]王成伟,唐星,王晓梅,等.温度敏感性壬苯醇醚阴道用缓释凝胶的制备与评价[J].中国新药杂志,2006,15(4):280-284
    [70]CARFORS J, EDSMAN K, PETERSSON R, et al. Rheological evaluation of Gelrite in situ gels for ophthalmic use[J]. Eur J Pharm Sci,1998,6(2):113-119
    [71]王磊,韩慧婉,余晓,等.微柱液相色谱-电化学法检测鼠纹状体单胺类物质的含量[J],高等学校化学学报,2002,23(6):1050-1052
    [72]党红梅,马万云,韩慧婉.川芎嗪对脑缺血下大鼠纹状体区痕量氨基酸类神经递质的影响[J],高等学校化学学报,2005,26(10):1803-1807
    [73]晏亦林,叶勇,周莉玲,等.磷酸川芎嗪微透析体外回收率的研究[J].中药新药与临床药理,2008,19(2):117-119
    [74]Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding [J].J Pharm Sci,2003,92:967-974
    [75]Eriksson MA, Gabrielsson J, Nisson LB.Studies of drug binding to plasma proteins using a variant of equilibrium dialysis[J].J Pharm Biomed Anal,2005,38:381-389
    [76]Tayloe S, Harker A. Modification of the ultrafiltration technique to overcome solubility and nonspecific binding challenges associated with the measurement of plasma protein binding of corticosteroids[J]. Journal of Pharm Biomed Anal,2006,41 (1):299-303
    [77]Tang Y, Zhu H, Zhang Y. Determination of human plasma protein binging of baicalin by ultrafiltration and high-performance liquid chromatography [J]. Biomed Chroma togr,2006,20 (10):1116-1119
    [78]Tsai TH. Assaying protein unbound drugs using microdialysis techniques [J]. Chromatogr B Analyt Technol Biomed Life Sci,2003,797:161-173
    [79]Gao ZB, Ding PT, Xu H, et al. The determination of in vitro pingyangmycin hydrochloride plasma protein binding by microdialysis[J]. Pharmazie,2007, 62(2):115-116
    [80]张英丰,周莉玲,李锐.微透析法测定青藤碱大鼠体外血浆蛋白结合率[J].药学学报,2006,41(9):909
    [81]Chen J, Ohnmacht C, Hage DS. Studies of phenytoin binding to human serum albumin by high-performance affinity chromatography[J].J Chromatogr B Analyt Technol Biomed Life Sci,2004,809:137-145
    [82]Kim HS, Hage DS. Chromatographic analysis of carbamazepine binding to human serum albumin[J].J Chromatogr B Analyt Technol Biomed Life Sci,2005, 816(1-2):57-66
    [83]Mohamed NA, Kuroda Y, Shibukawa A, et al. Enantioselective binding analysis of verapamil to plasma lipoproteins by capillary electophoresis front alalysis[J].J Chromatogr A,2000,875:447-453
    [84]Yeung CY, Fung YS, Sun DX. Capillary electrophoresis for the determination of albumin binding capacity and free bilirubia in jaundiced neonates[J]. Semin Perinatol,2001,25(2):50-54
    [85]周大炜,李发美.采用毛细管电泳-前沿分析法测定血清或血浆中氯氮平的游离浓度[J].化学学报,2004,62(13):1256-1259
    [86]叶勇,周莉玲,晏亦林,等.微透析法研究磷酸川芎嗪体外血浆蛋白结合率[J].中国药学杂志,2009,44(20):1567-1570
    [87]钱春梅.药物传递系统(DDS)Ⅳ腔道给药传递系统[J].西北药学杂志,1995,10(6):281-283
    [88]毛磊,王娟.肽类及蛋白类药物鼻腔给药系统[J].中国医药情报,1999,1(3):172-176
    [89]Zhou Q, Gallo JM. In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J,2005,7(3):E659-E667
    [90]Zea Longa E, Weistein P R, Calson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20(1):84-91.
    [91]Bederson J B, pitts L H, Tsu jim, et al. Rat middle cerebral artery occlusion evaluation of model and development of a neurologic examination [J]. Stroke,1986,17(3):472-476
    [92]黄斌,王兴勇,匡凤梧,等.线栓法制备Wistar大鼠局灶性脑缺血模型的实验研究[J].现代医药卫生,2005,21(15):1935
    [93]刘亢丁,苏志强,李逸平,等.实验性局灶性脑缺血再灌注动物模型的改进与评价 [J].中风与神经疾病杂志,1997,14(2):87-89
    [94]刘斛,赖新生.大脑中动脉闭阻脑缺血模型大鼠的建立与评价[J].中国行为医学科学,2005,14(10):877
    [95]刘敬霞,李建生.线栓法制备大鼠局灶性脑缺血模型的进展及评价[J].中国比较医学杂志,2004,14(6):374
    [96]Klatzol I. Pathophysiological aspect of brain edema[J]. Acta Neu ropathol (Berl),1987,72:236-239
    [97]Menziea SA,Betz AL, Hoff JT. Contributions of ions and album in to the formation and resolution of ischemic brain edema[J]. Neurosurg Rev,1993, 15(3):169-177
    [98]杨牧祥,于文涛,朱孝轩.中风康对局灶性脑缺血大鼠脑水肿的影响[J].中国全科医学,2005,8(18):1500-1501
    [99]王景周,严家川,许红利,等.局灶性脑缺血鼠大脑半球含水量及病理变化的实验研究[J].中国急救医学,2001,21(7):380-381
    [100]游然,幸敏丽,沈海滔,等.缺血性脑血管疾病的发病机制及治疗药物[J].药学进展,2009,33(6):247-253
    [101]Dawson LA, Djali S, Gonzales C, et al. Haracterization of transient focal ischemia-induced in creases in extracellular glutamate and aspartate in spontaneously hypertensive rats[J]. Brain Res Bull,2000,53(6):767-776
    [102]Rao VL,Bowen KK, Dempsey RJ. Transient focal cerebral ischemia down regulates glutamate transporters GLT-1 and EAACL expression in rat brain[J]. Neurochem Res,2001,26(5):407-502
    [103]Niels CD. Glutanate uptake[J]. Progress in Neurobiology,2001,65(1): 101-105
    [104]Kang TC, Park SK, Hwang IK, et al. Spatial and temporal alterations in the GABA Shunt in the gerbil hippocampus following transient ischemia[J]. Brain Res,2002,94(1-2):10-18
    [105]Conti F, Minelliy A, Meline M. GABA transporters in the mammalian cerebral cortex:localization, development and pathological implications [J]. Brain Res Rev,2004,45(3):196-212
    [106]刘惠兰,段晓峰,李国刚,等.血透病人血浆游离氨基酸谱的分析[J].北京医学,1999,21(6):348
    [107]葛煜强,徐京,柳启沛,等.血液透析患者血浆游离氨基酸浓度的分析[J].营养学报,1999,21(3):336-339
    [108]叶惟泠,尹萍波.高效液相色谱法测定动物脑和脊髓内微透析样品中的递质氨 基酸和单胺类递质及其代谢产物[J].色谱,1996,4(1):4-17
    [109]韩进,万海同,别晓东,等。微透析-高效液相色谱法测定大鼠脑脊液中4种氨基酸的含量测定[J].中国病理生理杂志,2007,23(9):1871-1871
    [110]赵剑虹,杨柳桦,李永新,等.柱前衍生-高效液相色谱法测定大熊猫血清中18种游离氨基酸[J].分析试验室,2007,26(11):15-19
    [111]苗虹,杨涛,霍君生,等.柱前衍生高效液相色谱法测定食物中氨基酸含量[J].分析化学,2000,28(9):1091-1095
    [112]李国强,孟建新,邱瑞霞,等.人血浆中游离氨基酸的离子色谱/积分脉冲安培法分析[J].分析测试学报,2008,27(1):94-96
    [113]宣柳,沈佐君,何晓东,等.高效毛细管电泳测定海马组织和脑脊液中氨基酸类神经递质[J].检验医学,2007,22(3):324-328
    [114]郭莲军.GABA受体与脑缺血[J].咸宁学院学报,医学版,2004,18(2):77-80
    [115]Donati F, Varin F, Ducharme J, et al. Pharmacokinetics and pharmacodynamics of atraccurium obtained with arterial and venous blood samples[J]. Clin Pharmacol Ther,1991,49:515-522
    [116]Zhu YL, Audibert G, Donati F, et al. Pharmacokinetic-pharmacodynamic modeling of doxacurium:effect of input rate[J].J Pharmacokinet Biopharm.1997,25(1):23-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700