皱纹盘鲍(Haliotis discus hannai Ino.)L-古洛糖酸-1,4-内酯氧化酶(GLO)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先介绍了脊椎动物维生素C合成关键酶——L-古洛糖酸-1,4-内酯氧化酶(GLO)研究进展,包括脊椎动物中GLO的性质,影响脊椎动物GLO活性的因素,GLO在脊椎动物中的存在、分布以及与脊椎动物进化的关系。然后,通过分子生物学手段,围绕皱纹盘鲍(Haliotis discus hannai Ino.)是否具有GLO活性,是否具有VC合成能力这一主题进行了研究。主要研究内容包括:(1)皱纹盘鲍GLO基因的克隆和组织及不同发育阶段的表达;(2)饲料维生素C对皱纹盘鲍成鲍生长、各组织抗坏血酸含量以及GLO mRNA表达量的影响;(3)皱纹盘鲍VC缺乏条件下肝胰腺和肾脏差异表达cDNA文库的构建。研究结果总结如下:
     (1)皱纹盘鲍GLO基因的克隆和组织及不同发育阶段的表达。配制VC0.0 mg/kg的精制饲料,在室内流水养殖系统中,投喂初重为74.32±0.43 g,初始壳长为84.36±0.24 mm的皱纹盘鲍成鲍,养殖周期170天。以肾脏组织mRNA为模板,通过简并引物PCR法克隆GLO核心片段,通过RACE法调取基因全长。通过特异引物PCR和荧光实时定量PCR法确定皱纹盘鲍不同组织和不同发育阶段的表达。结果如下:获得了皱纹盘鲍GLO cDNA全长序列,包括1606个核苷酸,其中开放阅读框包括1365个核苷酸,编码一个由454个氨基酸组成的蛋白质,其氨基酸序列与脊椎动物的GLO序列有很高的同源性(>48%),确定其为皱纹盘鲍GLO基因;GLO mRNA在包括肝胰腺、肾脏、外套膜、肌肉、鳃和血细胞等6个组织中都有表达;GLO mRNA在从担轮幼虫到幼鲍的7个发育阶段都有表达,并且相对表达量在上足分化幼虫中达到最高,呈现随幼体发育先升高后下降的趋势。本研究在国际上首次从无脊椎动物中克隆到GLO全长序列,证明皱纹盘鲍具有VC合成能力。
     (2)饲料维生素C对皱纹盘鲍成鲍生长、各组织抗坏血酸含量以及GLOmRNA表达量的影响。配制VC0.0,70.3,829.8和4967.5 mg/kg的共4个水平的精制饲料,在室内流水养殖系统中,投喂初重为74.32±0.43 g,初始壳长为84.36±0.24 mm的皱纹盘鲍成鲍,养殖周期170天。结果表明,饲料中不同VC含量对皱纹盘鲍成鲍的存活率,增重率,贝壳日增长率等生长指标没有显著影响(p>0.05)。皱纹盘鲍不同组织间抗坏血酸含量存在极显著差异(p<0.01),鳃在各处理组均极显著的高于其他各组织(p<0.01);而血清除在70.3mg/kg处理组显著低于外套膜(p<0.05)外,其他均极显著的低于其他组织(p<0.01);总体而言,皱纹盘鲍组织抗坏血酸含量为鳃>肾脏、肝胰腺>外套膜、肌肉>血清。饲料中不同添加水平的维生素C对皱纹盘鲍各个组织抗坏血酸含量产生不同的影响,对肾脏、外套膜、鳃和血清抗坏血酸含量没有显著影响(p>0.05);而对肌肉和肝胰腺抗坏血酸含量产生显著影响(p<0.05):当饲料中维生素C含量达到4967.5 mg/kg时,肌肉中的抗坏血酸含量极显著的高于0.0 mg/kg处理组(p<0.01),显著高于829.8 mg/kg处理组(p<0.05);肝胰腺中的抗坏血酸含量显著高于0.0 mg/kg处理组(p<0.05)。不同组织中两种看家基因β-actin和核糖体蛋白S9 mRNA的表达量均存在极显著差异(p<0.01),总体而言,β-actin mRNA的表达量血细胞>鳃、肌肉、外套膜、肾脏>肝胰腺;核糖体蛋白S9 mRNA的表达量鳃>血细胞、外套膜、肾脏、肝胰腺>肌肉。不同饲料维生素C对皱纹盘鲍β-actin mRNA的表达量在肝胰腺、肾脏、肌肉和外套膜中不受饲料维生素C含量的影响(p>0.05),但在鳃和血细胞中受饲料维生素C含量的影响(p<0.05);核糖体蛋白S9 mRNA的表达量在肝胰腺、肾脏、肌肉、外套膜和鳃中均无显著影响(p>0.05)。以核糖体蛋白S9为内参基因时,饲料维生素C对各组织中GLOmRNA相对表达量均没有影响(p>0.05);以β-actin为内参基因时,除鳃之外的其他各组织中GLO mRNA相对表达量均不受饲料维生素C的影响(p>0.05);在鳃中,O.Omg/kg处理组显著高于829.8mg/kg处理组(p<0.05)。各组织间GLOmRNA相对表达量存在极显著差异(p<0.01),总体而言,GLO mRNA相对表达量肾脏>鳃>血细胞、外套膜、肝胰腺>肌肉。
     (3)皱纹盘鲍VC缺乏条件下肝胰腺和肾脏差异表达cDNA文库的构建。配制了维生素C缺乏(0 mg/kg)和正常(4967.5 mg/kg)2个水平的精制饲料,在室内流水养殖系统中,投喂初重为74.32±0.43 g,初始壳长为84.36±0.24 mm的皱纹盘鲍成鲍,养殖周期170天。采用抑制消减杂交法(suppression subtractive hybridization, SSH),构建了维生素C缺乏条件下肝胰腺和肾脏组织差异表达cDNA文库。消减杂交效率分析显示,构建的2个差异表达cDNA文库中差异表达的基因分别至少被富集了25和25-10倍。从文库中随机挑选阳性克隆测序。在肝胰腺差异表达cDNA文库中,获得了63个基因片段。在肾脏差异表达cDNA文库中,获得了39个基因片段。这些片段有可能为VC缺乏条件下差异表达的基因,这些片段的获得为进一步从分子水平研究皱纹盘鲍VC代谢机理奠定基础。
A detailed review of studying status on L-gulono-1,4-lactone oxidase (GLO), a key enzyme required for biosynthesis of ascorbic acid in vertebrate. A series of experiments were conducted to elucidate whether or not the abalone(Haliotis discus hannai Ino.) has GLO activity and the ability to synthesize VC by using molecular biology techniques. The current studies include the followings:(1) Isolation, cDNA cloning and gene expression of GLO in different tissue and development phase of abalone (Haliotis discus hannai Ino.). (2) The effects of dietary vitamin C on growth, tissue concentration of ascorbic acid and GLO mRNA relative expression level in different tissue of Haliotis discus hannai Ino..(3) Construction of the hepatopancreas and kidney cDNA subtractive library of Haliotis discus hannai Ino. fed with vitamin C-deficiency diet. The results are summarized as follows.
     (1) The study was conducted to isolate and clone full-length cDNA sequence of GLO from Haliotis discus hannai Ino., and to investigate the relative expression level of GLO mRNA in different tissue and different development phase. Abalone, (initial weight:74.66±1.0 g; initial shell length:84.36±1.07 mm) were fed 170 days with purified vitamin C deficiency diet (VC 0.0 mg/kg). The full-length sequence (1606 bp) was determined from kidney of abalone fed with vitamin C deficiency diet. The open reading frames contained 454 amino acid which exhibited high amino acid identity (>48%) with vertebrate GLOs. The GLO mRNA expression was demonstrated in the abalone hepatopancreas, kidney, muscle, mantle, gill, blood cells and different development phase from trochosphere to 140d-old juvenile abalone. The GLO mRNA relative expression level of different development phase was also conducted by real-time quantitative PCR (RT-PCR). The result shows that the GLO mRNA relative expression level reaches the highest in the larva with pallial tentacle. W ith the development of abalone, relative expression level increased first and then decreased. The result suggested Haliotis discus hannai Ino. has the ability to synthesize VC.
     (2) The study was conducted to investigate the effects of dietary vitamin C on growth, tissue ascorbic acid concentration and GLO mRNA relative expression level in different tissue of Haliotis discus hannai Ino.. Abalone, (initial weight:74.66±1.0 g; initial shell length:84.36±1.07 mm) were fed 170 days with purified diets containing 4 levels of vitamin C:0.0,70.3,829.8 and 4967.5 mg/kg. The result shows that survival and growth were not significantly affected by dietary treatments (p>0.05). Ascorbic acid concentration had significantly difference in different tissue (p<0.01). It was significantly higher (p<0.01) in gill and lower (p<0.05) in serum than the other tissues. Ascorbic acid concentration in different tissue ranked as follows:gill>kidney and hepatopancreas> muscle and mantle>serum. Ascorbic acid concentration was not significantly affected in kidney, gill, mantle and serum by dietary vitamin C (p>0.05), but significantly increased in hepatopancreas and muscle (p<0.05) with the increase dietary vitamin C. The mRNA relative expression level of two species of housekeeping geneβ-actin and ribosome protein S9 had significantly difference in different tissue(p<0.01). The mRNA relative expression level ofβ-actin in different tissue ranked as follows:blood cells> gill, muscle, mantle, and kidney> hepatopancreas. The mRNA relative expression level of ribosome protein S9 in different tissue ranked as follows:gill> blood cells, mantle, kidney and hepatopancreas> muscle. The mRNA relative expression level ofβ-actin was not significantly affected in hepatopancreas, kidney, mantle and muscle (p>0.05), but significantly affected in gill and blood cell (p<0.05) by dietary vitamin C. The mRNA relative expression level of ribosome protein S9 was not significantly affected in every tissue by dietary vitamin C (p>0.05). The mRNA relative expression level of GLO was not significantly affected in every tissue by dietary vitamin C when ribosome protein S9 was selected as reference gene (p>0.05). The mRNA relative expression level of GLO was not significantly affected in other tissues except gill by dietary vitamin C whenβ-actin was selected as reference gene (p>0.05). The mRNA relative expression level of GLO had significantly difference in different tissue(p<0.01).It was ranked as follows:kidney> gill, blood cells, mantle, and hepatopancreas> muscle.
     (3) The study was conducted to clone the diffierentially expressed genes in the hepatopancreas and kidney of abalone (Haliotis discus hannai Ino.) under vitamin C deficiency. Abalone, (initial weight:74.66±1.0 g; initial shell length:84.36±1.07 mm) were fed 170 days with purified diets containing 2 levels of vitamin C:0.0 mg/kg and 4967.5 mg/kg. The cDNA subtractive library of the hepatopancreas·and kidney of abalone vitamin C deficiency-treated was constructed using the method of suppression subtractive hybridization Analysis of subtraction efficiency shows that diffierentially expressed genes had at least 25 and 25-10 - fold enrichment in two cDNA subtractive librarys respectively. Sixty three and thirty nine cDNA fragments which might be differentially expressed genes in the vitamin C deficiency group were obtained from the hepatopancreas and kidney cDNA subtractive library respectively by randomly picking and sequencing positive clones. This study plays an important role in researching the vitamin C metabolic mechanism of abalone at the molecular level.
引文
[1]Nick J A, Leung C T, Loewus F A. Isolation and identification of erythroascorbic acid in Saccharomyces cerevisiae and Lypomyces starkeyi. Plant Science,1986,46:181-187
    [2]Loewus F A, Saito K, Suto R K et al. Conversion of D-arabinose to D-erythroascorbic acid and oxalic acid in Sclerotinia sclerotiorum. Biochemical and Biophysical Research Communications,1995,212:196-203
    [3]Smirnoff N, Conklin P, Loewus F A. Biosynthesis of ascorbic acid in plants:a renaissance. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:437-467
    [4]Isherwood F A, Chen Y T, Mapson L W. Synthesis of L-ascorbic acid in plants and animals. The Biochemical Journal,1954,56:1-2
    [5]Loewus M W, Bedgar D L, Saito K et al. Conversion of L-sorbosone to L-ascorbic acid by a NADP dependent dehydrogenase in bean and spinach leaf. Plant Physiology,1990, 94:1492-1495
    [6]Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature,1998,393:365-369.
    [7]Davey M W, van Montagu M, Inze D, et al. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture,2000,80:825-860.
    [8]Conklin P L. Recent advance in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environment,2001,24:383-394
    [9]Chatterjee I B, Majumder A K, Nand B K, et al. Evolution and the Biosynthesis of Ascorbic Acid. Science,1973,182:1271-1272.
    [10]Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. American Journal of Clinical Nutrition.1991,54(6):1203-1208
    [11]ul-Hassan M, Lehninger A L. Enzymatic formation of ascorbic acid in rat livers extracts. Journal of Biological Chemistry,1956,223:123-138
    [12]Chatterjee I B, Chatterjee G C, Ghosh N C, et al. Biological synthesis of l-ascorbic acid in animal tissues:conversion of L-gulonolactone into L-ascorbic acid. The Biochemical Journal, 1960,74:193-203.
    [13]Chatterjee I B, Chatterjee G C, Ghosh N C, et al. Biological synthesis of L-ascorbic acid in animal tissues:conversion of D-glucuronolactone and L-gulonolactone into L-ascorbic acid. The Biochemical journal,1960,76:279-292.
    [14]Bublitz C, Lehninger A L. The role of aldonolactonase in the conversion of L-gulonate to L-ascorbate. Biochimica et Biophysica Acta,1961,47:288-297.
    [15]Chatterjee I B, McKee R W. Peroxidation and biosenthesis of L-ascorbic acid in rat liver microsomes. Archives of Biochemistry and Biophysics,1965,110:254-61
    [16]Banhegyi G, Csala M, Braun L, Garzo T & Mandl J. Ascorbate synthesis-dependent glutathione consumption in mouse liver. FEBS Lett,1996,381:39-41.
    [17]Halliwell, B., and Gutteridge, J. M. C.. "Free Radicals in Biology and Medicine."Clarendon Press, Oxford.1989.
    [18]Puskas, E, Braun, L., Csala, M., Kardon, T., Marcolongo, E, Benedetti, A., Mandl, J., and Banhegyi. G. Gulonolaetone oxidase activity-dependent intravesieular glutathione oxidation in rat liver microsomes. FEBS Lett,1998,430:293-296.
    [19]Eliceiri G L, Lai E K, McCay P B. Gulonolactone oxidase. Solubilization, properties, and partial purification. Journal of Biological Chemistry,1969,244:2641-2645.
    [20]Nishikimi M, Tolbert B M, Udenfriend S. Purification and characterization of L-gulono-gamma-lactone oxidase from rat and goat liver. Archives of Biochemistry and Biophysics,1976,175:427-435.
    [21]Kiuchi K, Nishikimi M, Yagi K. Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry,1982,21:5076-5082.
    [22]Bublitz C, Lehninger A L. The role of aldonolactonase in the conversion of L-gulonate to L-ascorbate. Biochimica et Biophysica Acta,1961,47:288-297.
    [23]Koshizaka T, Nishikimi M, Ozawa T et al. Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. Journal of Biological Chemistry,1988,263 (4):1619-1621.
    [24]Ha M N, Graham F L,D'Souza C K, et al. Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine L-gulono-γ-lactone oxidase. Genomics,2004,83:482-492.
    [25]Nam Y K, Cho Y S, Douglas S E et al. Isolation and transient expression of a cDNA encoding 1-gulono-γ-lactone oxidase, a key enzyme for 1-ascorbic acid biosynthesis, from the tiger shark Scyliorhinus torazame. Aquaculture,2002,209:271-284
    [26]Cho Y S, Douglas S E, Gallant J W, et al. Isolation and characterization of cDNA sequences of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, from extant primitive fish groups. Biochemical and Biophysical Research Communications,2007, 147(2):178-190
    [27]Roy R N, Guha B C. Species Difference in regard to the Biosynthesis of Ascorbic Acid. Nature,1958,182:319-320.
    [28]Chaudhuri C R, Chatterjee I B. L-ascorbic acid synthesis in birds:phylogenetic trend. Science,1969,164(878):435-436.
    [29]Jenness R, Birney E C, Ayaz K L. Ascorbic acid and L-gulonolactone oxidase in lagomorphs. Comparative Biochemistry and Physiology,1978,61(3):395-399.
    [30]Fracalossi D M, AllenM E, Yuyanma L K, et al. Ascorbic acid biosynthesis in Amazonian Fish. Aquaculture,2001,192:321-332
    [31]Moreau, R., Dabrowski, K. Body pool and synthesis of ascorbic acid in sea lamprey (Petromyzon marinus):an agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci.1998a.U.S.A.9510279-10282.
    [32]Jenness, R., Birney, E.C., Ayaz, K.L.,1980. Variation of L-gulonolactone oxidase activity in placental mammals. Comp. Biochem. Physiol., Part B 67,195-204.
    [33]R. Jenness, E.C. Birney, K.L. Ayaz, D.M. Buzzell, Ontogenetic development of L-gulonolactoneoxidase activity in several vertebrates, Comp. Biochem. Physiol. B 78 1984 167-173.
    [34]Nandi A, Mukhopadhyay C K, Ghosh M K et al. Evolutionary Significance of Vitamin C Biosynthesis in Terrestrial Vertebrates. Free Radical Biology and Medicine,1997, 22:1047-1054
    [35]Tsao C S, Young M. Effect of exogenous ascorbic acid intake on biosynthesis of ascorbic acid in mice. Life Science,1989,45:1553-1557.
    [36]Hooper C L, Maurice D V, Lightsey S F, et al. Factors affecting ascorbic acid (AsA) biosynthesis in chickens.Ⅱ. Effect of dietary AsA and strain of chicken. Journal of Animal Physiology and Animal Nutrition,2002,86:326-332
    [37]Moreau R, Dabrowski K, Sato P H. Renal L-gulono-1,4-lactone oxidase activity as affected by dietary ascorbic acid in lake sturgeon (Acipenser fulvescens). Aquaculture,1999, 180:359-372
    [38]Xie Z G, Niu C J, Zhang Z B et al. Dietary ascorbic acid may be necessary for enhancing the immune response in Siberian sturgeon (Acipenser baerii), a species capable of ascorbic acid biosynthesis. Comparative Biochemistry and Physiology-part A:Molecular & Integrative Physiology 2006,145:152-157
    [39]Moreau R, Dabrowski K. Alpha-tocopherol downregulates gulonolactone oxidase activity in sturgeon. Free Radical Biology and Medicine.2003,34(10):1326-32.
    [40]Moreau R, Dabrowski K. Fish acquired ascorbic acid synthesis prior to terrestrial vertebrate emergence. Free Radical Biology & Medicine,1998,25:989-990
    [41]Dabrowski K. Gulonolactone oxidase is missing in teleost fish — the direct spectrophotometric assay. Biological Chemistry Hoppe-Seyler,1990,371:207-214.
    [42]Dabrowski K. Primitive Actinopterigian fishes can synthesize ascorbic acid. Experientia, 1994,50:745-748.
    [43]Touhata K, Toyohara H, Mitani T et al. Distribution of L-gulono-1,4-lactone oxidase among fishes. Fish Science,1995,61:729-730.
    [44]M(?)land A, Waagbo R. Examination of the qualitative ability of some cold water marine teleosts to synthesise ascorbic acid. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,1998,121:249-255.
    [45]Moreau R, Dabrowski K. Biosynthesis of ascorbic acid by extant actinopterygians. Journal of Fish Biology,2000,57:733-745
    [46]Moreau, R., Kaushik, S.J., Dabrowski, K.,1996. Ascorbic acid status as affected by dietary treatment in the Siberian sturgeon Acipenser baeri Brandt:tissue concentration, mobilisation and L-gulonolactone oxidase activity. Fish Physiol. Biochem.15:431-438.
    [47]Ikeda S, Sato M. Biochemcal studies on L-ascorbic acid in aquatic animalsⅢ. Biosybthesis of L-ascorbic acid by carp [J]. Bulletin of the Japanese Society of Scientific Fisheries,1964, 30:365-374.
    [48]Sato M, Yoshinaka R, Yamamoto Y et al. Nonessentiality of ascorbic acid in the diet of carp. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:1151-1156.
    [49]Yamamoto Y, Sato M, Ikeda S. Existence of L-gulonolactone oxidase in some teleosts. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:775-779.
    [50]Soliman A K, Jauncey K, Roberts R J. Qualitative and quantitative identification of L-gulonolactone oxidase activity in some teleosts. Aquaculture and Fisheries Management, 1985,1:249-256.
    [51]Thomas P, Bally M B, Neff J M. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues:Ⅱ. Seasonal fluctuations and biosynthetic ability. Journal of Fish Biology,1985,27:47-57.
    [52]Birney E C, Jenness J J, Humer I D. Ascorbic acid biosynthesis in the mammalian kidney. Experientia,1979,35:1425-1426
    [53]Chatterjee I B, Majumder A K, Nandi B K, et al. Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences.1975,258:24-47
    [54]Burns J J. Missing Step in Man, Monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature,1957,180:553.
    [55]Birney E C, Jenness R, Ayaz K M. Inability of bats to synthesise L-ascorbic acid. Nature, 1976,260:626-628.
    [56]Subramanian N, Nandi B K, Majumdar A K et al. Role of L-ascorbic acid on detoxification of histamine. Biochemical pharmacology,1973,22(13):1671-3
    [57]Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. American Journal of Clinical Nutrition.1991, 54(6):1203-1208
    [58]Nishikimi M, Fukuyama R, Minoshima S et al. Cloning and chromosomal mapping of the human nonfunctional gene for 1-gulonogamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. Journal of Biological Chemistry,1994,269:13685-13688.
    [59]Nishikimi M, Kawai T, Yagi K. Guinea pigs possess a highly mutated gene for L-gulono-gammalactone oxidase, the key enzyme for l-ascorbic acid biosynthesis missing in this species. Journal of Biological Chemistry,1992,267:21967-21972.
    [60]Challem J J, Taylor E W. Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radical Biology & Medicine,1998,25:130-132.
    [61]Kawai T, Nishikimi M, Ozawa T. A missense mutation of L-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize L-ascorbic acid. Journal of Biological Chemistry,1992,267:21973-21976.
    [62]Mizushima Y, Harauchi T, Yoshizaki T et al. A rat mutant unable to synthesize vitamin C. Experientia,1984,40:359-361.
    [63]Hasan L, Vogel P, Stoll P, et al. Intragenic deletion in the gene encoding L-gulonolactone oxidase causes vitamin C deficiency in pigs. Mammalian Genome,2004,15:323-333.
    [64]Yagi K, Koshizaka T, Kito M et al. Expression in monkey cells of the missing enzyme in L-ascorbic acid biosynthesis, L-gulono-gamma-lactone oxidase. Biochemical and Biophysical Research Communications.1991,177(2):659-663.
    [65]Krasnov A, Reinisalo M, Pitkanen T I et al. Expression of rat gene for L-gulono-gamma-lactone oxidase, the key enzyme of L-ascorbic acid biosynthesis, in guinea pig cells and in teleost fish rainbow trout (Oncorhynchus mykiss). Biochimica et Biophysica Acta.1998,1381(2):241-8.
    [66]Tohohara H, Nakata T, Touhata K et al. Transgenic expression of L-gulono-gamma-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for L-ascorbic acid biosynthesis. Biochemical Biophysical Research Communications,1996, 223:650-653.
    [67]Arrigoni O, De Tullio M C. Ascorbic acid:much more than just an antioxidant. Biochimica et Biophysica Acta,2002,1569(1-3):1-9.
    [68]Massie H R, Shumway M E, Whitney S J P et al. Ascorbic acid in Drosophila and changes during aging. Experimental Gerontology,1991,26(5):487-494.
    [69]Mai K. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.:Ⅶ. Effects of dietary vitamin C on survival, growth and tissue concentration of ascorbic acid. Aquaculture,1998,161:383-392
    [1]Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. American Journal of Clinical Nutrition.1991,54(6):1203-1208
    [2]Fracalossi D M, AllenM E, Yuyanma L K, et al. Ascorbic acid biosynthesis in Amazonian Fish. Aquaculture,2001,192:321-332
    [3]Moreau, R., Dabrowski, K. Body pool and synthesis of ascorbic acid in sea lamprey (Petromyzon marinus):an agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci.1998a.U.S.A.9510279-10282.
    [4]Dabrowski K. Gulonolactone oxidase is missing in teleost fish — the direct spectrophotometric assay. Biological Chemistry Hoppe-Seyler,1990,371:207-214.
    [5]Dabrowski K. Primitive Actinopterigian fishes can synthesize ascorbic acid. Experientia, 1994,50:745-748.
    [6]Touhata K, Toyohara H, Mitani T et al. Distribution of L-gulono-1,4-lactone oxidase among fishes. Fish Science,1995,61:729-730.
    [7]Maeland A, Waagbo R. Examination of the qualitative ability of some cold water marine teleosts to synthesise ascorbic acid. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,1998,121:249-255.
    [8]Moreau R, Dabrowski K. Biosynthesis of ascorbic acid by extant actinopterygians. Journal of Fish Biology,2000,57:733-745
    [9]Moreau, R., Kaushik, S.J., Dabrowski, K.,1996. Ascorbic acid status as affected by dietary treatment in the Siberian sturgeon Acipenser baeri Brandt:tissue concentration, mobilisation and L-gulonolactone oxidase activity. Fish Physiol. Biochem.15:431-438.
    [10]Ikeda S, Sato M. Biochemcal studies on L-ascorbic acid in aquatic animalsⅢ. Biosybthesis of L-ascorbic acid by carp [J]. Bulletin of the Japanese Society of Scientific Fisheries,1964, 30:365-374.
    [11]Sato M, Yoshinaka R, Yamamoto Y et al. Nonessentiality of ascorbic acid in the diet of carp. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:1151-1156.
    [12]Yamamoto Y, Sato M, Ikeda S. Existence of L-gulonolactone oxidase in some teleosts. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:775-779.
    [13]Soliman A K, Jauncey K, Roberts R J. Qualitative and quantitative identification of L-gulonolactone oxidase activity in some teleosts. Aquaculture and Fisheries Management, 1985,1:249-256.
    [14]Thomas P, Bally M B, Neff J M. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues:Ⅱ. Seasonal fluctuations and biosynthetic ability. Journal of Fish Biology,1985,27:47-57.
    [15]Chatterjee I B, Majumder A K, Nand B K, et al. Evolution and the Biosynthesis of Ascorbic Acid. Science,1973,182:1271-1272.
    [16]Roy R N, Guha B C. Species Difference in regard to the Biosynthesis of Ascorbic Acid. Nature,1958,182:319-320.
    [17]Chaudhuri C R, Chatterjee I B. L-ascorbic acid synthesis in birds:phylogenetic trend. Science,1969,164(878):435-436.
    [18]Jenness, R., Birney, E.C., Ayaz, K.L.,1980. Variation of L-gulonolactone oxidase activity in placental mammals. Comp. Biochem. Physiol., Part B 67,195-204.
    [19]Bimey E C, Jenness J J, Humer I D. Ascorbic acid biosynthesis in the mammalian kidney. Experientia,1979,35:1425-1426
    [20]Chatterjee I B, Majumder A K, Nandi B K, et al. Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences.1975,258:24-47
    [21]Burns J J. Missing Step in Man, Monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature,1957,180:553.
    [22]Koshizaka T, Nishikimi M, Ozawa T et al. Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. Journal of Biological Chemistry,1988,263 (4):1619-1621.
    [23]Ha M N, Graham F L, D'Souza C K, et al. Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine L-gulono-γ-lactone oxidase. Genomics,2004,83:482-492.
    [24]Nam Y K, Cho Y S, Douglas S E et al. Isolation and transient expression of a cDNA encoding l-gulono-γ-lactone oxidase, a key enzyme for l-ascorbic acid biosynthesis, from the tiger shark Scyliorhinus torazame. Aquaculture,2002,209:271-284
    [25]Cho Y S, Douglas S E, Gallant J W, et al. Isolation and characterization of cDNA sequences of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, from extant primitive fish groups. Biochemical and Biophysical Research Communications,2007,147(2):178-190
    [26]Mai K. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.:VII. Effects of dietary vitamin C on survival, growth and tissue concentration of ascorbic acid. Aquaculture,1998,161:383-392
    [27]Tan B., Mai K.. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.. Aquaculture,192,2001:67-84
    [28]Uki, N., A. Kemuyama. T. Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish.,1985,51:1825-1833.
    [29]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture,1995a,136:165-180.
    [30]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino.Ⅱ. Response of abalone to various levels of dietary lipid. Aquaculture,1995b,134:65-80.
    [31]周歧存,麦康森,谭北平,徐玮。维生素E对皱纹盘鲍幼鲍生长、存活及体成分的影响。海洋与湖沼,32(2),2001:125-131.
    [32]Krogh,A., Larsson,B., von,H.G., Sonnhammer,E.L. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. Journal of Molecular Biology,2001,305:567-580
    [33]Rost,B. PHD:predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol,1996,266:525-539
    [34]Chou, P. Y., Fasman, G. D. Prediction of the secondary structure of proteins from their amino acid sequence[J].Advances in Enzymology & Related Areas of Molecular Biology, 1978,47:145-148.
    [35]Schwede, T., Kopp, J., Guex, N., Peitsch, M. C. SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Research,2003,31 (13):3381-3385.
    [36]Thompson,J.D., Higgins,D.G., Gibson,T.J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,1994,22:4673-4680.
    [37]Kumar,S., Tamura,K., Jakobsen,I.B., Nei,M. MEGA2:molecular evolutionary genetics analysis software. Bioinformatics,2001,17:1244-1245.
    [38]Birney E C, Jenness R, Ayaz K M. Inability of bats to synthesise L-ascorbic acid. Nature, 1976,260:626-628.
    [39]Subramanian N, Nandi B K, Majumdar A K et al. Role of L-ascorbic acid on detoxification of histamine. Biochemical pharmacology,1973,22(13):1671-3
    [40]Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. American Journal of Clinical Nutrition.1991,54(6):1203-1208
    [41]Kiuchi K, Nishikimi M, Yagi K. Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry,1982,21:5076-5082.
    [42]Banhegyi G, Csala M, Braun L, Garzo T & Mandl J. Ascorbate synthesis-dependent glutathione consumption in mouse liver. FEBS Lett,1996,381:39-41.
    [43]Halliwell, B., and Gutteridge, J. M. C.. "Free Radicals in Biology and Medicine."Clarendon Press, Oxford.1989.
    [44]Arrigoni 0, De Tullio M C. Ascorbic acid:much more than just an antioxidant. Biochimica et Biophysica Acta,2002,1569(1-3):1-9.
    [45]Moreau R, Dabrowski K. Alpha-tocopherol downregulates gulonolactone oxidase activity in sturgeon. Free Radical Biology and Medicine.2003,34(10):1326-32.
    [46]Jenness R, Birney E C, Ayaz K L. Ascorbic acid and L-gulonolactone oxidase in lagomorphs. Comparative Biochemistry and Physiology,1978,61(3):395-399.
    [47]R. Jenness, E.C. Bimey, K.L. Ayaz, D.M. Buzzell, Ontogenetic development of L-gulonolactoneoxidase activity in several vertebrates, Comp. Biochem. Physiol. B 78 1984 167-173.
    [48]Nandi A, Mukhopadhyay C K, Ghosh M K et al. Evolutionary Significance of Vitamin C Biosynthesis in Terrestrial Vertebrates. Free Radical Biology and Medicine,1997, 22:1047-1054
    [1]Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. American Journal of Clinical Nutrition.1991, 54(6):1203-1208
    [2]Jenness R, Birney E C, Ayaz K L. Ascorbic acid and L-gulonolactone oxidase in lagomorphs. Comparative Biochemistry and Physiology,1978,61(3):395-399.
    [3]Tsao C S, Young M. Effect of exogenous ascorbic acid intake on biosynthesis of ascorbic acid in mice. Life Science,1989,45:1553-1557.
    [4]Hooper C L, Maurice D V, Lightsey S F, et al. Factors affecting ascorbic acid (AsA) biosynthesis in chickens.Ⅱ. Effect of dietary AsA and strain of chicken. Journal of Animal Physiology and Animal Nutrition,2002,86:326-332
    [5]Moreau R, Dabrowski K, Sato P H. Renal L-gulono-1,4-lactone oxidase activity as affected by dietary ascorbic acid in lake sturgeon (Acipenser fulvescens). Aquaculture,1999, 180:359-372
    [6]Xie Z G, Niu C J, Zhang Z B et al. Dietary ascorbic acid may be necessary for enhancing the immune response in Siberian sturgeon (Acipenser baerii), a species capable of ascorbic acid biosynthesis. Comparative Biochemistry and Physiology-part A:Molecular & Integrative Physiology 2006,145:152-157
    [7]Chatterjee I B, Majumder A K, Nand B K, et al. Evolution and the Biosynthesis of Ascorbic Acid. Science,1973,182:1271-1272.
    [8]Mai K. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.:VII. Effects of dietary vitamin C on survival, growth and tissue concentration of ascorbic acid. Aquaculture,1998,161:383-392
    [9]Tan B., Mai K.. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.. Aquaculture,192,2001:67-84
    [10]Uki, N., A. Kemuyama. T. Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish.,1985,51:1825-1833.
    [11]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture,1995a,136:165-180.
    [12]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino.Ⅱ. Response of abalone to various levels of dietary lipid. Aquaculture,1995b,134:65-80.
    [13]周歧存,麦康森,谭北平,徐玮。维生素E对皱纹盘鲍幼鲍生长、存活及体成分的影响。海洋与湖沼,32(2),2001:125-131.
    [14]Xiaojie Wang, Kang-Woong Kim, Sungchul C. Bai. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture 225 (2003) 387-395.
    [15]Qinghui Ai, Kangsen Mai, Chunxiao Zhang, Wei Xu, Qingyuan Duan, Beiping Tan, Zhiguo Liufu. Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture 242 (2004) 489-500.
    [16]Fracalossi D M, AllenM E, Yuyanma L K, et al. Ascorbic acid biosynthesis in Amazonian Fish. Aquaculture,2001,192:321-332
    [17]Moreau, R., Dabrowski, K. Body pool and synthesis of ascorbic acid in sea lamprey (Petromyzon marinus):an agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci.1998a.U.S.A.9510279-10282.
    [18]Dabrowski K. Gulonolactone oxidase is missing in teleost fish — the direct spectrophotometric assay. Biological Chemistry Hoppe-Seyler,1990,371:207-214.
    [19]Dabrowski K. Primitive Actinopterigian fishes can synthesize ascorbic acid. Experientia, 1994,50:745-748.
    [20]Touhata K, Toyohara H, Mitani T et al. Distribution of L-gulono-1,4-lactone oxidase among fishes. Fish Science,1995,61:729-730.
    [21]Maeland A, Waagbo R. Examination of the qualitative ability of some cold water marine teleosts to synthesise ascorbic acid. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,1998,121:249-255.
    [22]Moreau R, Dabrowski K. Biosynthesis of ascorbic acid by extant actinopterygians. Journal of Fish Biology,2000,57:733-745
    [23]Moreau, R., Kaushik, S.J., Dabrowski, K.,1996. Ascorbic acid status as affected by dietary treatment in the Siberian sturgeon Acipenser baeri Brandt:tissue concentration, mobilisation and L-gulonolactone oxidase activity. Fish Physiol. Biochem.15:431-438.
    [24]Ikeda S, Sato M. Biochemcal studies on L-ascorbic acid in aquatic animalsⅢ. Biosybthesis of L-ascorbic acid by carp [J]. Bulletin of the Japanese Society of Scientific Fisheries,1964, 30:365-374.
    [25]Sato M, Yoshinaka R, Yamamoto Y et al. Nonessentiality of ascorbic acid in the diet of carp. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:1151-1156.
    [26]Yamamoto Y, Sato M, Ikeda S. Existence of L-gulonolactone oxidase in some teleosts. Bulletin of the Japanese Society of Scientific Fisheries,1978,44:775-779.
    [27]Soliman A K, Jauncey K, Roberts R J. Qualitative and quantitative identification of L-gulonolactone oxidase activity in some teleosts. Aquaculture and Fisheries Management, 1985,1:249-256.
    [28]Thomas P, Bally M B, Neff J M. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues:Ⅱ. Seasonal fluctuations and biosynthetic ability. Journal of Fish Biology,1985,27:47-57.
    [29]Chaudhuri C R, Chatterjee I B. L-ascorbic acid synthesis in birds:phylogenetic trend. Science,1969,164(878):435-436.
    [30]Chatterjee I B, Majumder A K, Nandi B K, et al. Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences.1975,258:24-47
    [31]Burns J J. Missing Step in Man, Monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature,1957,180:553.
    [32]Birney E C, Jenness R, Ayaz K M. Inability of bats to synthesise L-ascorbic acid. Nature, 1976,260:626-628.
    [33]Qinghui Ai, Kangsen Mai, Beiping Tan, Wei Xu, Wenbing Zhang,Hongming Ma, Zhiguo Liufu. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea。 Aquaculture 261 (2006) 327-336.
    [34]Konrad Dabrowskia, Kyeong-Jun Lee, Leszek Guz,Viviane Verlhac, Jacques Gabaudan. Effects of dietary ascorbic acid on oxygen stress (hypoxia or hyperoxia), growth and tissue vitamin concentrations in juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 233 (2004) 383-392.
    [35]Moreau R, Dabrowski K. Alpha-tocopherol downregulates gulonolactone oxidase activity in sturgeon. Free Radical Biology and Medicine.2003,34(10):1326-32.
    [36]Birney E C, Jenness J J, Humer I D. Ascorbic acid biosynthesis in the mammalian kidney. Experientia,1979,35:1425-1426
    [37]Jenness, R., Birney, E.C., Ayaz, K.L.,1980. Variation of L-gulonolactone oxidase activity in placental mammals. Comp. Biochem. Physiol., Part B 67,195-204.
    [38]陈凤花,王琳,胡丽华。实时荧光定量RT-PCR内参基因的选择。临床检验杂志,2005,23(5):393-395.
    [39]Revillion F, Pawlowski V, Hornez L, et al. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer,2000,36 (8):1038-1042.
    [40]Vila M R, Nicolas A, Morote J, et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer,2000,89 (1):152-164.
    [41]Zhu G, Chang Y, Zuo J, et al. Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. Biochem Biophys Res Commun,2001,281 (4):951-956.
    [42]Tricarico C, Pinzani P,Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem,2002,309 (2):293-300.
    [43]Lossos I S, Czerwinski D K, Wechser M A, et al. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia,2003,17 (4) 789-795.
    [44]Radonic A, Thulke S,Mackay IM, et al. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun,2004,313 (4):856-862.
    [45]Schmittgen T D, Zakrajsek B A. Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods,2000, 46 (122):69-81.
    [46]Hamalainen H K, Tubman J C, Vikman S, et al. Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Anal Biochem,2001,299 (1):63-70.
    [47]Schmid H, Cohen C D, Henger A, et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int,2003,64 (1) 356-360.
    [48]Vandesompele J, Preter K D, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol,2002, 3(7):research0034.1-0034.11.
    [1]Gershoff,1993. S.N. Gershoff, Vitamin C (ascorbic acid) new roles, new requirements?. Nutr. Rew.51 (1993):313-326.
    [2]Oreste Arrigoni, Mario C. De Tullio. Ascorbic acid:much more than just an antioxidant. Biochimica et Biophysica Acta 1569 (2002) 1-9.
    [3]Dabrowski K,Matusiewicz M, Blom J H. Hydrolysis, absorption and bioavailability of ascorbic acid esters in fish. Aquaculture,1994,124:169-191.
    [4]Gouillou-Coustans M F, Bergot P, Kaushik S J. Dietary ascorbic acid needs of commom carp (Cypinus carpio) larvae. Aquaculture,1998,161:453-461
    [5]Wang X J, Kim K W,Bai S C,et al. Effect of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus) Aquaculture,2003,215:203-211.
    [6]Chien L T, Hwang D F, Jeng S S. Effect of thermal stress on dietary requirements of vitamin C in thornfish Terapon jarbua. Fish Sci,1999 65:731-735.
    [7]Sandnes K, Torrissen O, Waagboe R. The minimum dietary requirement of vitamin C in Atlantic salmon(Salmo salar) fry using Ca ascrobate-2-monophosphate as dietary source. Fish Physiol Biochem,1994,10:315-319.
    [8]Sealey W M, Gatlin III M. Dietary vitamin C requirement of hybrid striped bass Morone chrysops×M saxatilis. J World Aquacult Soc,1999,30 (3):297-301.
    [9]Li M H,Wise D J, Robinson E H. Effect of dietary vitamin C on weight gain, tissue ascorbate concentration, stress response, and disease resistance of Channel catfish Ictalurus punctatus. J World Aquacult Soc,1998,29 (1):1-8.
    [10]Xiaojie Wang, Kang-Woong Kim, Sungchul C. Bai. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture 225 (2003) 387-395.
    [11]Qinghui Ai, Kangsen Mai, Chunxiao Zhang, Wei Xu, Qingyuan Duan, Beiping Tan, Zhiguo Liufu. Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture 242 (2004) 489-500.
    [12]Qinghui Ai, Kangsen Mai, Beiping Tan, Wei Xu, Wenbing Zhang,Hongming Ma, Zhiguo Liufu. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea。Aquaculture 261 (2006) 327-336.
    [13]Ortuno J, Esteban A,Meseguer J. Effects of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol,1999,9:429-443.
    [14]Anbarasu K, Chandran M R. Effects of ascorbic acid on the immune response of the catfish, Mystus gulio (Hamilton), to different bacterins of Ameromonas hydrophila.Fish Shellfish Immunol,2001,11:347-355.
    [15]Cuesta A, Esteban M A,Meseguer J. Natural cytotoxic activity in seabream(Sparus aurata L.) and its modulation by vitamin C. Fish Shellfish Immunol,2002,13:97-109.
    [16]Mai K. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.:VII. Effects of dietary vitamin C on survival, growth and tissue concentration of ascorbic acid. Aquaculture,1998,161:383-392
    [17]冯秀妮。维生素C和B6对皱纹盘鲍(Haliotis discus hannai Ino.)代谢反应和贝壳生物矿化影响的研究。2005,中国海洋大学毕业论文。
    [18]Diatehenko L, Chris Lau Y F, Campbell A P. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci USA,1996,93:6025-6030.
    [19]OD von Stein, WG Thies, and M Hofmann. A high throughput screening for rarely transcribed differentially expressed genes Nucl. Acids Res.1997 25:2598-2602.
    [20]Kuang W W, Thompson D A, Hoch R V, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line [J]. Nucleic Acids Research,1998,26(4): 1116-1123.
    [21]Gurskaya N G, Diatchenko L, Chenchik A, et al. Equalizing cDNA subtraction based on selective suppression of polymerasechain reaction:cloning of J urkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate [J]. Analytical Biochemistry,1996,240:90-97.
    [22]Tan B., Mai K.. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.. Aquaculture,192,2001:67-84
    [23]Uki, N., A. Kemuyama. T. Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish.,1985,51:1825-1833.
    [24]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. Ⅳ. Optimum dietary-protein level for growth. Aquaculture,1995a,136:165-180.
    [25]Mai, K., J. P. Mercer, J. Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino.Ⅱ. Response of abalone to various levels of dietary lipid. Aquaculture,1995b,134:65-80.
    [26]周歧存,麦康森,谭北平,徐玮。维生素E对皱纹盘鲍幼鲍生长、存活及体成分的影响。海洋与湖沼,32(2),2001:125-131.
    [27]Julien Bobe, Frederick William Goetz. A novel osteopontin-like protein is expressed in the trout ovary during ovulation. FEBS Letters 489 (2001) 119-124.
    [28]Jianjun Wen, Jing Xie, Jianfan Gui. cDNA cloning and characterization of a novel SNX genedifferentially expressed in previtellogenic oocytes of gibel carp. Comparative Biochemistry and Physiology Part B 136 (2003) 451-461.
    [29]Ronan T. Bree,Sarah McLoughlin,Suk-Won Jin,Oonagh M. McMeel,Didier Y.R.Stainier,Maura Grealy,Lucy Byrnes. nanor, a novel zygotic gene, is expressed initially at the midblastula transition in zebrafish. Biochemical and Biophysical Research Communications 333 (2005) 722-728.
    [30]Ziping Zhang, Yilei Wang, Yonghua Jiang, Peng Lin, Xiwei Jia, Zhihua Zou. Ribosomal protein L24 is differentially expressed in ovary and testis of the marine shrimp Marsupenaeus japonicus. Comparative Biochemistry and Physiology, Part B 147 (2007) 466-474.
    [31]James L. Stafford, Kristofor K. Ellestad, Katharine E. Magor, Miodrag Belosevic, Brad G. Magor. A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Developmental and Comparative Immunology 27 (2003) 685-698.
    [32]Camino Gestal, Marimar Costa, Antonio Figueras, Beatriz Novoa. Analysis of differentially expressed genes in response to bacterial stimulation in hemocytes of the carpet-shell clam Ruditapes decussatus:Identification of new antimicrobial peptides. Gene 406 (2007) 134-143.
    [33]Sangrador-Vegas, T.J. Smith, M.T. Cairns. Cloning and characterization of a homologue of the alpha inhibitor of NF-kB in Rainbow trout (Oncorhynchus mykiss). Veterinary Immunology and Immunopathology 103 (2005) 1-7.
    [34]Zhongliang Wang,Zaohe Wu,Jichang Jian,Yishan Lu. Cloning and expression of heat shock protein 70 gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850) responding to bacterial challenge. Fish & Shellfish Immunology 26 (2009) 639-645
    [35]Deng Pan, Nanhai He, Zhiyuan Yang, Haipeng Liu, Xun Xu. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Developmental and Comparative Immunology 29 (2005) 103-112.
    [36]Kaun-Yu Lu, Hsin-Ju Sung, Chang-Lun Liu, Hung-Hung Sung. Differentially enhanced gene expression in hemocytes from Macrobrachium rosenbergii challenged in vivo with lipopolysaccharide. Journal of Invertebrate Pathology 100 (2009) 9-15.
    [37]M. Prado-Alvarez, C. Gestal, B. Novoa, A. Figueras. Differentially expressed genes of the carpet shell clam Ruditapes decussatus against Perkinsus olseni. Fish & Shellfish Immunology (2009) 26,72-83.
    [38]Arnaud Tanguy, Ximing Guo, Susan E. Ford. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338 (2004) 121-131.
    [39]Franc-ois Guillou,Guillaume Mitta, Richard Galinier, Christine Coustau. Identification and expression of gene transcripts generated during an anti-parasitic response in Biomphalaria glabrata. Developmental and Comparative Immunology 31 (2007) 657-671.
    [40]Wei Wei, Hongyan Xu, QiyaoWang, Xiao Zhang, Kangmei Chang, ChangwenWu, Yuanxing Zhang. Identification of differentially expressed genes in large yellow croaker (Pseudosciaena crocea) induced by attenuated live Vibrio anguillarum. Aquaculture 291 (2009) 124-129.
    [41]C.J. Bayne, L.Gerwick, K. Fujikia, M. Nakao, T. Yano. Immune-relevant (including acute phase) genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive hybridization. Developmental and Comparative Immunology 25 (2001)205-217.
    [42]Li Wang, Xinzhong Wu. Isolation and characterization of a regulator of G protein signaling (RGS16) gene homologue in yellow grouper Epinephelus awoara. Aquaculture 270 (2007) 493-498.
    [43]M.X. Chang, P. Nie, B.J. Sun, W.J. Yao. Molecular cloning of TRAF2 binding protein gene and its promoter region from the grass carp Ctenopharyngodon idellus. Veterinary Immunology and Immunopathology 105 (2005) 105-113.
    [44]Marit Seppola, Jorgen Stenvik, Kari Steiro, Terese Solstad, Borre Robertsen, Ingvill Jensen. Sequence and expression analysis of an interferon stimulated gene (ISG15) from Atlantic cod (Gadus morhua L.). Developmental and Comparative Immunology 31 (2007) 156-171.
    [45]S. Dios, L. Poisa-Beiro, A. Figueras, B. Novoa. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. Molecular Immunology 44 (2007) 2195-2204.
    [46]Arnaud Huvet, Amaury Herpin, Lionel De'gremont, Yannick Labreuche, Jean-Francois Samain, Charles Cunningham. The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343 (2004) 211-220.
    [47]Shang Wei Li, Zhang Fu Long, Juan Du,Shi Gui Liu,Jian Jun Wen. Analysis of differential expression and characterization of PIN in the gonads during sex reversal in the red-spotted grouper. Molecular and Cellular Endocrinology 309 (2009) 32-38.
    [48]Lake, Jennifer, Gravel, Catherine, Koko, Gabriel Koffi D., Robert, Claude, Vandenberg, Grant W., Combining supressive subtractive hybridization and cDNA microarrays to identify dietary phosphorus-responsive genes of the rainbow trout (Oncorhynchus mykiss) kidney. Comparative Biochemistry and Physiology-Part D:Genomics and Proteomics (2009).
    [49]刘晶,张文兵,麦康森,付京花,冯秀妮,马洪明,徐玮,刘付志国。皱纹盘鲍外套膜耐维生素E缺乏消减cDNA文库的构建。中国水产科学,2007,14(3):383-389。
    [50]Einar Lilleeng, Marianne K. Froystad, Kristin Vekterud, Elin C. Valen, Ashild Krogdahl. Comparison of intestinal gene expression in Atlantic cod (Gadus morhua) fed standard fish meal or soybean meal by means of suppression subtractive hybridization and real-time PCR. Aquaculture 267 (2007) 269-283.
    [51]Wei Xu, Mohamed Faisal. Development of a cDNA microarray of zebra mussel (Dreissena polymorpha) foot and its use in understanding the early stage of underwater adhesion. Gene 436 (2009) 71-80.
    [52]Isabelle Boutet, Arnaud Tanguy,Dario Moraga. Response of the Pacific oyster Crassostrea gigas to hydrocarbon contamination under experimental conditions. Gene 329 (2004) 147-157.
    [53]Robert C. Richards, John C. Achenbach, Connie E. Short, Jennifer Kimball, Michael E. Reith, William R. Driedzic, K. Vanya Ewart. Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter. Gene 424 (2008) 56-62.
    [54]Mbaye Tine, Julien de Lorgeril, Helena D'Cotta, Elodie Pepey, Francois Bonhomme, Jean Francois Baroiller, Jean-Dominique Durand. Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Marine Genomics 1 (2008) 37-46.
    [55]Burns, J. J., Rivers, J. M. and Machlin, L. J. (1987). Third conference on vitamin C. Ann. N.Y. Acad. Sci.498,538.
    [56]岳振峰,陈小霞,彭志英。α-葡萄糖苷酶研究现状及进展。食品与发酵工业,1999,26(3):63-67。
    [57]Itaru Yamamoto, Norio Muto, Emi Nagata, Tomoe Nakamura and Yukio Suzuki. Formation of a stable 1-ascorbic acid a-glucoside by mammalian a-glucosidase-catalyzed transglucosylation. Biochimica et Biophysica Acta.1035(1990):44-50.
    [58]Norio Muto, Yasuko Ban, Masanori Akiba and Itaru Yamamoto. Evidence for the in vivo formation of ascorbic acid-2-O-a-glucoside in guinea pigs and rats. Biochemical Pharmacology,42(3) 1991:625-631.
    [59]Assunta Giordano, Giuseppina Andreotti, Ernesto Mollo, Antonio Trincone.Transglycosylation reactions performed by glycosyl hydrolases from the marine anaspidean mollusc Aplysia fasciata. Journal of Molecular Catalysis B:Enzymatic 30 (2004) 51-59.
    [60]Theil, E. C. (1987). Ferritin:structure, gene regulation, and cellular function in animals, plants, and microorganisms. Ann. Rev. Biochem.56,289-315.
    [61]Drysdale, J. W. (1988). Human ferritin gene expression. Prog. Nucleic Acid Res.35, 127-155.
    [62]Balla, G., Jacob, H. S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J. W. and Vercellotti, G. M. (1992a). Ferritin:a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem.267,18148-18153.
    [63]Balla, J., Jacob, H. S., Balla, G., Nath, K. and Vercellotti, G. M. (1992b). Endothelial cell heme oxygenase and ferritin induction by heme proteins:a possible mechanism limiting shock damage. Trans. Assoc. Am. Physicians 105,1-6.
    [64]Cermak, J., Balla, J., Jacob, H. S., Balla, G., Enright, H., Nath, K. and Vercellotti, G. M. (1993). Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity:possible role in chemotherapy efficacy. Can. Res.53,5308-5313.
    [65]Lipschitz, D. A., Bothwell, T. H., Seftel, H. C., Wapnick, A. A. and Charlton, R. W. (1971). The role of ascorbic acid in the metabolism of storage iron. Br. J. Haematol.20,155-163.
    [66]Bridges, K. R. (1987). Ascorbic acid inhibits lysosomal autophagy of ferritin. J. Biol. Chem. 262,14773-14778.
    [67]Bridges, K. R. and Hoffman, K. E. (1986). The effects ofascorbic acid on the intracellular metabolism of iron and ferritin. J. Biol. Chem.261,14273-14277.
    [68]McGahan, M. C., Harned, J., Grimes, A. M. and Fleisher, L. N. (1994). Regulation of ferritin levels in cultured lens epithelial cells. Exp. Eye Res.59,551-556.
    [69]M. GORALSKA, J. HARNED, A.M. GRIMES, L. N. FLEISHER and M. C. McGAHAN. Mechanisms by which Ascorbic Acid Increases Ferritin levels in Cultured Lens Epithelial Cells. Exp. Eye Res. (1997),64,413-421.
    [70]S. L. Baader, E. Bill, A. X. Trautwein, G. Bruchelt and B. F. Matzanke. Mobilization of iron from cellular ferritin by ascorbic acid in neuroblastoma SK-N-SH cells:an EPR study. FEBS Letters (1996) 381:131-134.
    [71]Nicholas Smirnoff. L-Ascorbic Acid Biosynthesis.2001.
    [72]Hollman, S., and Touster, O, (1962). Alterations in tissue levels of uridine diphosphate glucose dehydrogenase, uridine diphosphate glucuronic acid pyrophosphatase and glucuronyl transferase induced by substances influencing the production of ascorbic acid. Biochim. Biophys. Acta 26,338-352.
    [73]York, J. L., Grollman, A. P., and Bublitz, C. (1961). TPN-L-gulonate dehydrogenase.Biochim. Biophys. Acta 47,298-306.
    [74]Chatterjee, I. B., Ghosh, N. C., Ghosh, J. J, and Guha, B. C. (1958). Effect of cyanide on the biosynthesis of ascorbic acid by an enzyme preparation from goat liver tissue. Biochem. J. 70,509-515.
    [75]Chatterjee, I. B., Chatterjee, G. C., Ghosh, N. C., Ghosh, J. J., and Guha, B. C. (1960b). Biological synthesis of L-ascorbie acid in animal tissues:Conversion of D-glucuronolactone and L-gulonolactone into L-ascorbic acid. Biochem. J.76,279-292.
    [76]Chatterjee, I. B. (1970). Biosynthesis of L-ascorbate in animals. In "Methods in Enzymology" (D. B. McCormick and L. D. Wright, eds.), Vol.18, pp.28-34. Academic Press, New York.
    [77]Sato, E, Nishikimi, M,, and Udenfriend, S. (1976). Is gulonolaetone-oxidase the only enzyme missing in animals subject to scurvy? Bioehem. Biophys Res. Commun.71, 293-299.
    [78]Mapson, L. W., and Breslow, E. (1958). Biological synthesis of L-ascorbic acid: L-Galactono-γ-lactone dehydrogenase. Biochem. J.68,395-406.
    [79]Eliceiri, G. L. Lai, E. K., and McKay, P. M. (1969). Gulonolactone oxidase. Solubilization, properties and partial purification. J. Biol. Chem.244,2641-2645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700