大黄鱼和鲈鱼对几种水溶性维生素营养需求及糖类营养生理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国重要的海水养殖鱼类大黄鱼(Pseudosciaena crocea R.)和鲈鱼(Lateolabrax japonicus)为研究对象,在室内养殖系统(养殖桶规格:120L、200L或300L)或海水浮式网箱(1.0×1.0×1.5m或1.5×1.5×2.0m)中进行为期8周的摄食生长实验。探讨饲料中添加肌醇、胆碱、烟酸和糖对大黄鱼、鲈鱼生长和生理状态的影响,根据不同指标评价了大黄鱼和鲈鱼对这些营养素的需要量或适宜添加量。主要研究结果如下:
     1.饲料中烟酸含量对大黄鱼的存活率没有显著影响(P>0.05)。缺乏烟酸组大黄鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)最低,显著低于添加烟酸的各组(P<0.05)。随着饲料中烟酸含量的增加,大黄鱼的WG、SGR和FE显著升高(P<0.05),且在烟酸含量为18.21 mg/kg时达到最大,而随着饲料中烟酸含量的进一步增大,维持在一稳定水平(P>0.05)。饲料烟酸含量对大黄鱼的体成分和肝指数均没有显著影响(P>0.05),但是却显著提高了大黄鱼的肝脏烟酸含量(P<0.05)。当饲料烟酸含量在1.09-12.34 mg/kg时,肝脏烟酸含量随着饲料烟酸含量的升高而显著上升,当饲料烟酸含量进一步增大到≥18.21mg/kg时,肝脏烟酸含量保持稳定,且没有显著差异(P>0.05)。以增重率为评价指标,大黄鱼对饲料烟酸的最适需要量为17.41 mg/kg。而当以肝脏烟酸含量为评价指标,大黄鱼对饲料烟酸最适需要量为21.97mg/kg。
     2.饲料中烟酸含量显著提高了鲈鱼的存活率(P<0.05)。未添加烟酸饲料组存活率最低,与Diet 2组(烟酸添加量为12.34mg/kg)之间没有显著差异,但是显著低于烟酸含量≥18.21mg/kg的各组(P<0.05),添加烟酸的各组之间存活率没有显著差异(P>0.05)。缺乏烟酸组鲈鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)最低,随着饲料中烟酸含量的增加,鲈鱼的WG、SGR和FE显著升高(P<0.05),且在烟酸含量为18.21-153.36 mg/kg时,维持在一相对稳定水平(P>0.05)。饲料烟酸水平对鲈鱼的体成分和肝指数均没有显著影响(P>0.05),但却显著提高了鲈鱼肝脏烟酸含量(P<0.05)。当饲料烟酸含量为1.09-12.34 mg/kg时,肝脏烟酸含量随着饲料烟酸水平的升高而显著上升;当饲料烟酸含量为18.21-153.36mg/kg时维持稳定。以增重率为评价指标,鲈鱼对饲料烟酸的最适需要量为19.45 mg/kg,而当以鲈鱼肝脏烟酸含量为评价指标,鲈鱼对饲料烟酸最适需要量为22.17 mg/kg。
     3.饲料中添加肌醇显著提高了大黄鱼的存活率(P<0.05)。当饲料中肌醇含量在48.45-216.07 mg/kg时,随着饲料中肌醇水平的升高,大黄鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)显著提高(P<0.05),然而,随着饲料中肌醇含量进一步升高到>396.76mg/kg时,其变化趋于稳定,且各处理组之间差异不显著(P>0.05)。随着饲料中肌醇含量的增加,大黄鱼鱼体水分、粗蛋白、灰分和肝指数含量没有显著影响(P>0.05),但是大黄鱼鱼体粗脂肪含量却显著提高(P<0.05)。添加琥珀酰磺胺噻唑但不添加肌醇组(Diet 0)和不添加琥珀酰磺胺噻唑且不添加肌醇组(Diet 1)大黄鱼的肝脏脂肪含量显著高于饲料肌醇含量≥396.76 mg/kg的处理组(P<0.05),添加肌醇的各处理组之间肝脏脂肪含量没有显著差异(P>0.05)。肝脏肌醇含量随着饲料肌醇含量的上升而显著升高(P<0.05),当饲料肌醇含量继续增大到≥216.07 mg/kg时维持稳定。添加琥珀酰磺胺噻唑但不添加肌醇组(Diet 0)的大黄鱼的生长、生理指标与不添加琥珀酰磺胺噻唑且不添加肌醇组(Diet1)相似,二者之间差异不显著(P>0.05),表明大黄鱼肠道中微生物的合成作用不是肌醇的主要来源。分别以大黄鱼的增重率和肝脏肌醇含量为评价指标,用折线模型分析得出大黄鱼对肌醇的适宜需求量为313.35和335.29mg/kg。
     4.饲料中肌醇含量对鲈鱼的存活率没有显著影响(P>0.05),但却显著提高了鲈鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)。鲈鱼的WG、SGR和FE随着饲料中肌醇含量的升高而显著上升(P<0.05),当饲料中肌醇含量>216.07 mg/kg,SGR和FE变化趋于稳定;当饲料中肌醇含量进一步升高到>396.76mg/kg时,WG维持稳定。添加琥珀酰磺胺噻唑但不添加肌醇组(Diet0)的WG、SGR和FE与不添加琥珀酰磺胺噻唑且不添加肌醇组(Diet 1)相似,二者之间差异不显著(P>0.05),表明鲈鱼肠道中微生物的合成作用不是肌醇的主要来源。未添加肌醇的Diet0和Diet1组肝指数和肝脂肪含量最高,显著高于肌醇含量≥216.07 mg/kg的各组,肝指数和肝脂肪在添加肌醇的各处理组之间均没有显著差异(P>0.05)。饲料中肌醇含量显著影响了鲈鱼肝脏肌醇含量(P<0.05),未添加肌醇的Diet0组和Diet 1组,肝脏肌醇含量最低,显著低于肌醇添加量>396.76mg/kg的各处理组(P<0.05),添加肌醇的各组之间肝脏肌醇含量没有显著差异(P>0.05)。分别以鲈鱼的增重率和肝脏肌醇含量为评价指标,用折线模型分析得出鲈鱼对肌醇的需求量为261.22和317.20 mg/kg。
     5.饲料胆碱含量显著影响了大黄鱼的存活率(P<0.05),未添加胆碱组与胆碱含量为372.12mg/kg的处理组之间没有显著差异(P>0.05),但是显著低于胆碱含量≥682.99 mg/kg的各组P<0.05),存活率在各胆碱添加组之间没有显著差异(P>0.05)。大黄鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)随着饲料中胆碱的增加,均呈现显著上升的趋势(P<0.05),当饲料中胆碱含量≥372.12 mg/kg时,SGR趋于稳定,随着饲料中胆碱含量的进一步增加到≥682.99 mg/kg时,WG和FE维持稳定,且各处理组之间差异不显著(P>0.05)。饲料中添加胆碱显著降低了大黄鱼肝脏脂肪含量和肝指数,同时显著提高了血清甘油三酯和胆固醇含量(P<0.05)。饲料胆碱含量也显著影响了大黄鱼肝脏胆碱含量(P<0.05),当饲料胆碱含量在96.83-682.99 mg/kg时,大黄鱼肝脏胆碱含量随着饲料胆碱含量的增加显著提高(P<0.05),而当饲料胆碱含量进一步增加时,其变化趋于稳定,且各处理组之间差异不显著(P>0.05)。分别以大黄鱼的增重率和肝脏胆碱含量为评价指标,用折线模型分析得出大黄鱼对胆碱的需求量分别为1056.64和1124.28 mg/kg饲料。
     6.随着饲料中胆碱含量的增加,各处理组之间的存活率没有显著差异(P>0.05)。饲料中添加胆碱显著提高了鲈鱼的增重率(WG)、特定生长率(SGR)和饲料效率(FE)(P<0.05)。当饲料中胆碱含量在96.83-1253.96mg/kg时,鲈鱼的WG和SGR随着饲料中胆碱水平的升高而显著提高(P<0.05),然而,随着饲料中胆碱含量的进一步升高,其变化趋于稳定,且各处理组之间差异不显著(P>0.05)。未添加胆碱组FE显著低于其他添加胆碱的各组(P<0.05),FE在添加胆碱的各组并没有出现显著差异(P>0.05)。饲料中添加胆碱显著降低了鲈鱼肝脏脂肪含量和肝指数,同时显著提高了血清甘油三酯和胆固醇含量(P<0.05)。饲料胆碱水平也显著影响了鲈鱼肝脏胆碱含量(P<0.05),当饲料胆碱含量在96.83-682.99 mg/kg时,鲈鱼肝脏胆碱含量随着饲料胆碱含量的增加显著提高(P<0.05),而当饲料胆碱含量进一步增加时,其变化趋于稳定,且各处理组之间差异不显著(P>0.05)。以鲈鱼的增重率和肝脏胆碱含量为评价指标,用折线模型分析得出鲈鱼对胆碱的需求量分别为929.40和1013.35 mg/kg。
     7.饲料中糖水平对大黄鱼存活率没有显著差异(P>0.05)。当饲料糖含量在1.86-19.40%时,大黄鱼的体增重(WG)、特定生长率(SGR)和饲料效率(FE)随着饲料中糖含量的增加而显著上升,当糖含量继续增加时,大黄鱼的WG,SGR和FE显著下降(P<0.05)。饲料中糖含量对鱼体粗蛋白、水分和灰分没有显著影响(P>0.05),但是却显著提高了大黄鱼的粗脂肪含量及肝糖原、肌糖元和血糖含量(P<0.05)。饲料中糖含量对大黄鱼的蛋白酶没有显著影响(P>0.05),但是却显著提高了肠道淀粉酶活性(P<0.05)。随着饲料中糖含量的增加,大黄鱼对饲料的消化率显著降低(P<0.05),当饲料糖增加到13.56%时,脂肪消化率显著低于对照组P<0.05),而当饲料中糖含量超过19.40%时,大黄鱼对饲料蛋白质和糖的消化率显著低于对照组(P<0.05)。以大黄鱼的SGR为评价指标,用二次曲线模型分析得出大黄鱼饲料中糖的适宜添加量约为22%。
     8.饲料中糖含量对鲈鱼存活率没有显著差异(P>0.05)。当饲料糖含量在1.86-13.56%时,鲈鱼的体增重(WG)、特定生长率(SGR)和饲料效率(FE)随着饲料中糖含量的增加而显著上升,当糖含量继续增加时,鲈鱼的WG,SGR和FE显著下降(P<0.05)。饲料中糖含量显著提高了鲈鱼粗蛋白和粗脂肪含量,并显著降低了鱼体水分和灰分含量(P<0.05)。肝糖原和血糖含量随着饲料糖含量的增加而呈现显著的先上升后平稳的趋势(P<0.05),肌糖原含量并没有受到饲料糖水平的影响。饲料中添加糖显著提高了鲈鱼肝脏蛋白酶和淀粉酶活性(P<0.05),对己糖激酶活力没有显著影响(P>0.05)。随着饲料中糖含量的增加,鲈鱼对饲料蛋白质、脂肪和糖的消化率显著降低(P<0.05),当饲料中糖含量大于19.40%时,鲈鱼对饲料蛋白质、脂肪和糖的消化率显著低于对照组(P<0.05)。以鲈鱼的SGR为评价指标,用二次曲线模型分析得出鲈鱼饲料中糖的适宜添加量约为19.8%。
Feeding trials were conducted in indoor flow-through system (120L,200L or 300 L/tank) or in seawater floating net cages (1.0 m×1.0m×1.5mor 1.5m×1.5 m×2.0 m) to investigate the effects of inositol, choline, niacin and carbohydrate on nutritional physiology of large yellow croaker(Pseudosciaena crocea) and Japanese seabass (Lateolabrax japonicus). Results of these studies are presented as follows:
     1. Dietary niacin did not signicantly influence survival of large yellow croaker (P>0.05). The weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) were the lowest in fish fed the basal diet, and increased with increasing dietary niacin up to 18.21 mg/kg (P<0.05), and leveled off (P>0.05). No significant difference was observed in whole-body composition and hepatosomatic index of large yellow croaker among all the groups (P>0.05). The hepatic niacin concentration significantly increased when the dietary niacin is 1.09-12.34 mg/kg (P<0.05), and leveled off when the dietary niacin content increased to 18.21 mg/kg (P>0.05). On the basis of SGR and hepatic niacin concentrations, the optimum dietary niacin requirements of juvenile large yellow croaker were estimated using broken-line regression analysis to be 17.41 and 21.97 mg/kg, respectively.
     2. Survival of large yellow croaker was the lowest in fish fed the basal diet, which was significantly lower than fish fed diets supplemented with 18.21mg/kg niacin or higher (P<0.05), but no significant differences in survival were observed among the niacin-supplemented dietary groups (P>0.05). The weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) were the lowest in fish fed the basal diet, and increased with increasing dietary niacin up to 18.21 mg/kg (P<0.05), and leveled off (P>0.05). No significant difference was observed in whole-body composition and hepatosomatic index of Japanese seabass among all the groups (P>0.05). The hepatic niacin concentration significantly increased when the dietary niacin is 1.09-12.34 mg/kg (P<0.05), and leveled off when the dietary niacin content was more than 18.21 mg/kg (P>0.05). On the basis of SGR and hepatic niacin concentrations, the optimum dietary niacin requirements of juvenile Japanese seabass were estimated using broken-line regression analysis to be 19.45 and 22.17 mg/kg, respectively.
     3. Dietary inositol significantly enhanced the survival of large yellow croaker (P<0.05). The weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) were significantly improved with dietary inositol increasing from 48.45 to 216.07 mg/kg (P>0.05), and leveled off with further increasing dietary inositol level (P<0.05). No significant differences were observed in moisture, crude protein, ash and hepatosomatic index of large yellow croaker among all the groups (P>0.05), however, crude lipid of this fish significantly increased with increasing dietary inositol level (P<0.05). Hepatic lipid concentrations of fish fed the basal diet with or without succinylsulfathiazole were significantly higher than fish fed with inositol-supplemented diets (P<0.05), and no significant differences were observed among the inositol-supplemented treatments. Inositol concentrations in livers significantly improved with increasing dietary inositol up to 216.07 mg/kg (P<0.05) and then leveled off (P>0.05). No significant differences were observed between growth performance and physiology indices of fish fed the basal diet with or without succinylsulfathiazole which demonstrated that de novo synthesis of inositol was not performed or insufficient for normal growth of large yellow croaker under these experimental conditions. On the basis of SGR and hepatic inositol concentrations, the optimum dietary inositol requirements of juvenile large yellow croaker were estimated using broken-line regression analysis to be 313.35 and 335.29 mg/kg, respectively.
     4. Survival of Japanese seabass was not significantly influenced with increasing dietary inositol level (P<0.05). However, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) significantly improved with increasing dietary inositol level (P<0.05). SGR and FE leveled off when dietary inositol was more than 216.07 mg/kg while WG leveled off with dietary inositol more than 396.76 mg/kg (P>0.05). No significant differences were observed between the values of fish fed the basal diet with or without succinylsulfathiazole which demonstrated that de novo synthesis of inositol in gut was not performed or insufficient for normal growth of Japanese seabass. Hepatosomatic index and hepatic lipid concentrations of fish fed the basal diet with or without succinylsulfathiazole were highest, and significantly higher than fish fed with diets containing 216.07 mg/kg inositol or more (P<0.05), and no significant differences were observed among the inositol-supplemented treatments. Inositol concentrations in livers were lowest in fish fed the inositol-unsupplemented diets, which were lower than fish fed diets containing 396.76mg/kg inositol or more, and no significant differences were observed among the inositol-supplemented treatments (P>0.05). On the basis of SGR and hepatic inositol concentrations, the optimum dietary inositol requirements of juvenile Japanese seabass were estimated using broken-line regression analysis to be 261.22 and 317.20 mg/kg, respectively.
     5. Survival of large yellow croaker was significantly lower in fish fed the basal diet than those of fish fed diets supplemented with 682.99 mg/kg choline or higher, but no significant differences in survival were observed among the choline-supplemented dietary groups (P>0.05). The weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) significantly improved with increasing dietary choline level. SGR leveled off when dietary choline is 372.12 mg/kg or higher while WG and FE leveled off with dietary inositol more than 682.99 mg/kg (P<0.05). With increasing dietary choline level, hepatic lipid concentrations and hepatosomatic index of large yellow croaker significantly decreased while serum triglyceride and cholesterol significantly increased (P<0.05). Choline concentrations in livers significantly improved with increasing dietary inositol up to 682.99 mg/kg (P<0.05), and then leveled off (P>0.05). On the basis of SGR and hepatic inositol concentrations, the optimum dietary choline requirements of juvenile large yellow croaker were estimated using broken-line regression analysis to be 1056.64 and 1124.28 mg/kg mg/kg, respectively.
     6. No significant differences were observed in survival of large yellow croaker among various dietary treatments (P>0.05). The weight gain (WG) and specific growth rate (SGR) significantly improved with increasing dietary choline up to 1253.96 mg/kg (P<0.05), and then leveled off (P>0.05). Feed efficiency (FE) was significantly lower in fish fed with basal diet than that fed with choline-supplemented diets (P<0.05). With increasing dietary choline level, hepatic lipid concentrations and hepatosomatic index of Japanese sebass significantly decreased while serum triglyceride and cholesterol significantly increased (P<0.05). Choline concentrations in livers significantly improved with increasing dietary inositol up to 682.99 mg/kg (P<0.05), and then leveled off (P>0.05). On the basis of SGR and hepatic inositol concentrations, the optimum dietary choline requirements of juvenile Japanese sebass were estimated using broken-line regression analysis to be 929.40 and 1013.35 mg/kg, respectively.
     7. No significant differences were observed in survival of large yellow craoker among dietary treatments with graded levels of carbohydrate (P>0.05). However, with the increasing of dietary carbohydrate levels, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) increased when dietary CBH content is between 1.86 and 19.40%, and then decreased with dietary CBH further increased (P<0.05). Dietary CBH did not influence content of crude protein, moisture and ash of large yellow croaker, but significantly improved crude lipid, liver glycogen, muscle glycogen and serum glucose (P<0.05). No significant differences were observed in protease among dietary treatments. However, the amylase activities in the intestine significantly increased with increasing dietary CBH levels (P<0.05). Digestibility coefficients (ADCs) of dietary protein, lipid and CBH significantly decreased with increasing dietary CBH levels (P<0.05). ADCs of lipid were significantly lower when dietary CBH level is 13.56% or higher compared to basal diet. However, there was no significant effect on the apparent digestibility coefficients (ADC) of protein and CBH when dietary CBH level was no more than 19.40%. On the basis of SGR, the optimum dietary carbohydrate level for the growth of large yellow croaker was estimated using second-order polynomial regression analysis to be 22%.
     8. No significant differences were observed in survival of Japanese seabass among dietary treatments (P>0.05). However, with the increasing of dietary carbohydrate levels, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) increased when dietary CBH content is between 1.86 and 19.40%, and then decreased with dietary CBH further increased (P<0.05). Dietary CBH significantly improved the content of crude protein and crude lipid, but significantly decreased moisture and ash of Japanese seabass (P<0.05). With increasing dietary CBH, liver glycogen and serum glucose concentration significantly increased (P<0.05), and then leveled off. However, no significant differences were observed in muscle glycogen concentration among dietary treatments. Amylase and protease activities in livers significantly increased with increasing dietary CBH levels (P<0.05), while hexokinase activity was not influenced with dietary CBH levels. Digestibility coefficients (ADCs) of dietary nutrients significantly decreased with increasing dietary CBH levels (P<0.05). However, there was no significant effect on the apparent ADCs of nutrients when dietary CBH level was no more than 19.40%. On the basis of SGR, the optimum dietary carbohydrate level for the growth of Japanese seabass was estimated using second-order polynomial regression analysis to be 19.8%.
引文
艾庆辉,谢小军.2002a.南方鲇的营养学研究:饲料中大豆蛋白水平对摄食和消化率的影响.水生生物学报,26(3),215-220.
    艾庆辉,谢小军.2002b.南方鲇的营养学研究:饲料中大豆蛋白水平对生长影响.水生生物学报,26(1),57-65.
    蔡春芳,陈立侨,吴萍,丁磊,宋学宏,2003.饲料糖种类和水平对异育银鲫肝糖原代谢的影响.中国水产科学,10(1),55-59.
    蔡春芳,宋学宏,王永玲,1999.不同糖源及铬对异育银鲫生长和糖耐量的影响.水产学报,23(4),432-434.
    曹俊明,林鼎,薛华,等.1999.四种抗脂肪肝物质降低草鱼肝胰脏脂质积累的替代关系.水生生物学报,23(2),102-111.
    陈四清,季文娟,吕用琦,常青,潘生弟,1999.肌醇对黑鲷幼鱼营养作用的研究.海洋科学,5,13-15.
    高梅,罗毅平,曹振东,2006.饲料碳水化合物水平对南方鲇幼鱼消化酶活性的影响.西南师范大学学报,31(2),119-123.
    李爱杰,张道波,魏万权,张显娟,2001.牙鲆幼鱼营养需要的研究.浙江海洋学院学报,20,6-10.
    刘凯,2008.军曹鱼吡哆醇、肌醇和泛酸营养生理研究.中国海洋大学研究生学位论文.
    万军利,2005.鲈鱼和大黄鱼必需氨基酸营养生理研究.中国海洋大学研究生学位论文.
    王遵尊,等.异育银鲫对胆碱需求量的研究.1998.鱼虾类营养研究进展(第二集).青岛海洋大学出版社,47-55.
    王道尊,赵亮,谭玉钧,1995.草鱼鱼种对胆碱需要量的研究.水产学报,19(2),133-139.
    文华,赵智勇,蒋明,刘安龙,吴凡,刘伟,2007.草鱼幼鱼肌醇营养需要量的研究.中国水产科学,14(5),794-800.
    肖林栋,2009.军曹鱼主要水溶性维生素及不同水平的蛋白质、脂肪和碳水化合物的营养生理研究.中国海洋大学研究生学位论文.
    张春晓,2006.大黄鱼、鲈鱼主要B族维生素和矿物质-磷的营养生理研究.中国海洋大学研究生学位论文.
    张佳明,2007.鲈鱼和大黄鱼微量元素-锌、铁的营养生理研究.中国海洋大学研究生学位论文.
    张璐,2006.鲈鱼和大黄鱼几种维生素的营养生理研究和蛋白源开发.中国海洋大学研究生学位论文.
    Ai, Q.H., Mai, K.S., Li, H.T., Zhang, C.X., Zhang, L., Duan, Q.Y., Tan, B.T., Xu, W., Ma, H.M., Zhang, W.B., Liufu, Z.G.,2004a. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 230,507-516.
    Ai, Q.H., Mai, K.S., Zhang, C.X., Xu, W., Duan, Q.Y., Tan, B.P., Liufu, Z.G.,2004b. Effect of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture 242,489-500.
    Ai, Q.H., Mai, K.S., Tan, B.P., Xu, W., Zhang, W.B., Ma, H.M., Liufu, Z.G.,2006. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261,327-336.
    Ai, Q.H., Mai, K.S., Zhang, W.B., Xu, W., Tan, B.P., Zhang, C.X., Li, H.T.,2007. Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Com. Biochem. Physiol.147A,502-508.
    Akiyama, T., Murai, T., Nose, T.,1982. Effects of various dietary carbohydrates on growth, feed efficiency, and body composition of chum salmon fry. Bull.Jpn.Soc.Sci.Fish.33,112-116.
    Al-Asgah, N.A., Ali, A.,1993. Feeding of various carbohydrate sources on the growth performance and nutrient utilization in Oreochromis niloticus. In:International Symposium on Aquaculture Technology and Investment Opportunities. Riyadh (Saudi Arabia), pp11-14.
    Anderson, J., Jackson A.J., Matty A.J., Cappar B.S.,1984. Effects of dietary carbohydrate and fiber on the tilapia Orechromis niloticus (Linn.). Aquaculture 37,303-314.
    Andrews, J.W., Murai, T.,1978. Dietary niacin requirements for channel catfish. J. Nutr.108, 1508-1511.
    Aoe, H., Masuda, I.,1967a. Water-soluble vitamin requirements of carp. Ⅱ. Requirements for p-aminobenzoie acid and inositol. J. Bull. Jpn. Soc. Sci. Fish.33,674-680.
    Aoe, H., Masuda, I., Takada, T.,1967b. Water-soluble vitamin requirements of carp.Ⅲ. Requirement for niacin. Bull. Jpn. Soc. Sci. Fish.33,681-685.
    Arai, S.,1991. Eel, Anguilla spp. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P.Ed.).CRC Press, Boca Raton, FL, pp 69-75.
    Arai, S., Nose, T., Hashimoto, Y.,1972. Qualitative requirements for of young eels, Anguilla japonica, for water-soluble vitamins and their symptoms. Bull. Freshwater Res. Lab. Tokyo 22,69-83.
    Arnesen, P., Krogdahl, A.A.,1993. Crude and pre-extruded products of water as nutrient sources in extruded diets for Atlantic salmon (Salmo salar, L.) grown in sea water. Aquaculture 118, 105-117.
    Association of Official Analytical Chemists (AOAC),1995. Official Methods of Analysis of Official Analytical Chemists International, 16th Edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Atkinson, J. L., Hilton, J.W.,1981. Response of rainbow trout to increased dietary carbohydrate. FASEB 40,3486.
    Barham, D., Trinder, P.,1972. An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97,142-145.
    Berger, A., Halver, J.E.,1987. Effect of dietary protein, lipid and carbohydrate content on the growth, feed efficiency and carcass composition of striped bass, Morone saxatilis Walbaum, fingerlings. Aquacult.Fish.Manage.18,345-356.
    Bergot, F.,1979. Carbohydrate in rainbow trout diets:Effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture 18, 157-167.
    Bergot, F.,1991. Digestibility of native starches of various botanical origins by rainbow trout (Oncorhynchus mykiss). In:Fish Nutrition in Practice. IV International Symposium on Fish Nutrition and Feeding, INRA, Paris,857-865.
    Berridge, Irvine,1984. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312,315-321.
    Blin, C., Panserat, S., Medale, F., Gomes, E., Breque, J., Kaushik, S., Krishnamoorthy, R.,1999. Teleost liver hexokinase-and glucokinase-like enzymes:partial cDNA cloning and phylogenetic studies in rainbow trout(Oncorhynchus mykiss), common carp(Cyprinus carpio) and gilthead seabream (Sparus aurata).Fish Physiolo.Biochem.21,93-102.
    Boonyaratpalin, M.,1991. Asian seabass, Lates calcarifer. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.).CRC Press, Boca Raton, FL, pp 5-11.
    Boonyaratpalin, M., Wanakowat, J.,1993. Effects of thiamin, riboflavin, pantothenic acid and inositol on growth, feed efficiency and mortality of juvenile sea bass. In:Kaushik, S.J., Luguet, P. (Eds.), Fish Nutrition in Practice, vol.61. Les Collogues, Paris, pp.819-828
    Borrebeak, B., Christophersen, B.,2003. Metabolic function of hepatic hexokinase in perch (Perca fluviatilis). Aquaculture 34,235-239.
    Buhler, D.R., Halver, J.E.,1961. Nutrition of salmonid fishes IX. Carbohydrate requirements of chinook salmon. J. Nutr.74,307-318.
    Burtle, G.J., Lovell, R.T.,1989. Lack of response of channel catfish (Ictalurus punctatus) to dietary myo-inositol.Can. J.Aquat. Sci.46,218-222.
    Cahu, C.L., Zambonino Infante J.L.,1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet:Effect on digestive enzymes. Comp. Biochem. Physiol.109A, 213-222.
    Capilla, E., Medale, F., Navarro, I., Panserat, S., Vachot, C., Kaushik, S., Gutierrez, J.,2003. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout.Regul.Pept.110, 123-132.
    Chan, M. M. (1991) Choline. In:Handbook of Vitamins (Machlin, L. J., ed.),2nd ed., pp.537-556. Marcel Dekker, New York, NY.
    Chiou, J.Y., Ogino, C.,1975. Digestibility of starch in carp. Bull.Jpn.Soc.Sci.Fish.41,465-466.
    Cho, C.Y., Kaushik, S.J.,1985. Effects of protein intake on metabolizable and net energy values of fish diets. In:Nutrition and Feeding of Fish (ed. By C.B. Cowey, A.M. Mackle & J.G.Bell). pp 95-117. Academic Press, London.
    Cho, C.Y., Kaushik, S.J.,1990. Nutritional energetics in fish:energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Diet 61,132-172.
    Chu, S.H.W., Geyer, R.P.,1983. Tissue content and metabolism of myo-inositol in normal and lipodystrophic gerbils. J. Nutr.113,293-303.
    Chu, Hegsted,1980. Myo-inositol deficiency in gerbils:comparative study of the intestinal lipodystrophy in meriones unguiculatus and meriones libycus. J. Nutr.110,1209-1216.
    Chong, A.S.C., Hashim, R., Lee, C.Y., Ali, A.B.,2002. Partial characterization and activities of proteases from digestive tract of discus fish(Symphysodon aequifasciata). Aquaculture 203, 321-333.
    Chuang, J.L.,1991. Fish and Shrimp. In:Niacin in Animal Nutrition (eds R., Fenster & RA Blum), pp.34-37.
    Cowey, C.B., Adron, J.W., Brown, D.A.,1975. Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice. Br.J.Nutr.33,219-231.
    Cowey, C.B., Knox, D., Walton, M.J., et al.,1977. The regulation of gluconeogenesis by diet and insulin in rainbow trout. Br. J. Nutr.,38,463-470.
    Craig, S.R., Gatlin, D.M.,1996. Dietary choline requirement of juvenile red drum Sciaenops ocellatus. J.Nutr.126,1696-1700.
    Davis, D.A., Amold, C.R.,1993. Evaluation of five carbohydrate sources for Penaeus vannamei. Aquaculture 114,285-292.
    Degani, G., Viola, S.,1987. The protein sparing effect of carbohydrates in the diet of eels (Anguilla anguilla). Aquaculture 64,283-291.
    Degani, G., Viola, S., Levnon, D.,1986. Effects of dietary carbohydrate source on growth and body composition of the European eel (Anguilla anguilla). Aquaculture 52,97-104.
    Deng, D.F., Hemre, G.I., Wilson, R.P.,2002. Juvenile sunshine bass(Morone chrysops×Morone saxatilish) do not require dietary myo-inositol. Aquaculture 213,387-393.
    Dixon, D.G., and Hilton, J.W.,1981. Influence of available dietary carbohydrate content on tolerance of waterbone copper by rainbow trout Salmo gairdneri Richardson. J. Fish. Biol., 19:509-517.
    Duan, Q., Mai, K., Zhong, H., Si, L., Wang, X.,2001. Studies on the nutrition of the large yellow croaker, Pseudosciaena crocea R. I:growth response to graded levels of dietary protein and lipid. Aquacult.Res.32,46-52.
    Edwards, D. J., Austreng, E., Risa, S., Gjedrem, T.,1977. Carbohydrate in rainbow trout diets.1. Growth of fish of different families fed diets containing different proportions of carbohydrate. Aquaculture 11,31-38.
    Ellis, S.C., Reigh, R.C.,1991. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Sciaenops ocellatus. Aquaculture 97,383-394.
    E1-Sayed, A. M., and D. L. Garling, Jr.1988. Carbohydrate-to-lipid ratios in diets for Tilapia zillii fingerlings. Aquaculture73,157-163.
    Enes, P., Panserat, S., Kaushik, S., Oliva-Teles, A.,2006. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp. Biochem. physiol.143 A,89-96.
    Enes, P., Panserat, S., Kaushik, S., Oliva-teles, A.,2008. Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream [Sparus aurata) juveniles. Aquaculture 274,101-108.
    Erfanullah, Jafri, A.K.,1998. Growth rate, feed conversion, and body composition of Catla catla, Labeo rohita, and Cirrhinus mrigala fry fed diets of various carbohydrate-to-lipid ratios. J. World Aquacult. Soc.29,84-91.
    Erfanullah, Jafri, A.K.,1999. Growth, feed conversion, body composition and nutrient retention efficiencies in fingerling catfish, Heteropneustes fossilis (Bloch), fed different sources of dietary carbohydrate. Aquacult. Res.30,43-49.
    Food and Agricultural Organization of the United Nations. FAO,2002. FAO Fisheries Department, Fisheries Information, Data and Statistics Unit. Fishstat Plus:Universal software for fishery statistical time series,1970-2000. Version 2.30 (www.fao.org).
    Ferraris, R.P., Ahearn, G.A.,1984. Review:Sugar and amino acid transport in fish intestine. Comp. Biochem. Physiol.77A, No.3,397-413.
    Folch, J., Lees, M., Sloane-Stanley, G.H.,1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem.226,497-509.
    Fountoulaki, E., Alexis, M.N., Nengas, I., Venou, B.,2005. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult. Res.36,1243-1251.
    French, D.,1973. Chemical and physical properties of starch. Anim. Sci.37,1048-1061.
    Furuichi, M., Yone, Y.,1971a. Studies on nutrition of red sea bream.4. Nutritive value of dietary carbohydrate. Rep. Fish. Res. Lab. Kyushu Univ.l:75-81.
    Furuichi, M., Yone, Y.,1980. Effect of dietary dextrin levels on the growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bull. Jpn. Soc. Sci. Fish.46,225-229.
    Furuichi, M., Yone, Y.,1981. Changes of blood sugar and plasma insulin levels of fishes in glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish.47,761-764.
    Furuichi, M., and Yone, Y.,1982a. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish.48,945-948.
    Furuichi, M., and Yone, Y.,1982b. Effect of insulin on blood sugar levels of fishes. Bull. Jpn. Soc. Sci. Fish.48,1289-1291.
    Furuichi, M., and Yone, Y.,1982c. Changes of activities of hepatic-enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance test. Bull. Jpn. Soc. Sci. Fish.49,463-466.
    Garling, D. L. Jr., Wilson, R.P.,1976. The optimum dietary protein to energy ratio for channel catfish fingerlings, Ictaluruspunctatus. J. Nutr.106,1368-1375.
    Garling, D. L. Jr., Wilson, R.P.,1977. Effects of dietary carbohydrate-to-lipid ratios on growth and body composition of fingerling channel catfish. Prog. Fish-Cult.39,43-47.
    Guo, R., Liu, Y.J., Tian, L.X., Huang, J.W.,2006. Effect of dietary corn starch levels on growth performance, digestibility and microscope structure in the white shrimp, Litopenaeus vannamei reared in brackish water. Aquac. Nutr.12,83-88.
    Griffin, M.E., Wilson, K.A., White, M.R., Brown, P.B.,1994. Dietary choline requirement of juvenile hybrid striped bass. J. Nutr.124,1685-1689.
    Halver, J.E.,1957. Nutrition of salmonoid fishes. Ⅲ. Water-soluble vitamin requirements of chinook salmon. J. Nutr.62,225-243.
    Halver, J.E.,1972. The vitamins. In, Halver, J.E. (Ed.), Fish Nutrition, Academic press, New Yorkand London, pp.29-103.
    Halver, J.E.,2002. The vitamins. In, Halver J.E. (Eds), Fish Nutrition,3nd edition. Academic Press, New York, pp.61-141.
    Hardy, R.W., Fairgrieve, W.T., Scott, T.M.,1991. Periodic feeding of low-phosphorus diet and phosphorus retention in rainbow trout Oncorhynchus mykiss. In:Kaushik, S.J., Luquet, P (Eds.), Fish Nutrition Practice. INRA, Paris,1993 (Les Colloques,No.61),403-412.
    Hayashi, E., Maeda, T. and Tomita, T.,1974. The effect of myo-inositol deficiency on lipid metabolism in rats:Ⅰ. The alterations of lipid metabolism in myo-inositol deficient rats. Biochim. Biophys. Acta 360,134-145.
    Helland, S., Storebakken, T., Grisdale-Helland, B.,1991. Atlantic salmon, Salmo salar. In: Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL,pp 13-22.
    Hemre, G.I., Hansen, T.,1998. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon during parr-smolt transformation. Aquaculture 161, 145-157.
    Hemre, G.I.,1992. Studies on Carbohydrate Nutrition in Cod (Gadus morhua). Dr. Scientiarum Thesis. Institute of Nutrition, University of Bergen, Norway.
    Hemre, G.I., Karlsen,0., Lehmann, G, Holm, J.C., Lie,0.,1993. The utilization of protein, fat and glycogen in cod (Gadus morhua). Fisk.Dir. Skr. Ser. Ern.6,1-9.
    Hemre, G.I., Mommsen, T.P., and Kroogdahl, A.,2002. Carbohydrates in fish nutrition:effects on growth, glucose metabolism and hepatic enzymes. Aqua. Nutr.8,175-194.
    Hemre, G.I., Sandnes, K., Lie,0., Torrissen, O., Waagb(?), R.,1995a. Carbohydrate nutrition in Atlantic salmon, Salmo salar L., growth and feed utilisation. Aquacult.Res.26,149-154.
    Hemre, G.I., Shiau, S.Y., Deng, D.F., Storebakken, T., Hung, S.S.O.,2000. Utilization of hydrolysed potato starch by juvenile Atlantic salmon Salmo salar L., when using a restricted feeding regime. Aquac. Res.31,207-212.
    Hemre, G.I., Torrissen, O., Krogdahl, A., Lie,(?).,1995b. Glucose tolerance in Atlantic salmon (Salmo salar), dependance on preadaptation to dietary starch and water temperature.Aquacult. Nutr.2,69-75.
    Hofer, R., Sturmbauer, C.,1985. Inhibition of trout and carp a-amylase by wheat. Aquaculture 48, 277-283.
    Holub, B.J.,1982. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. Adv. Nutr. Res.4,107-141.
    Hung, S.S.O.,1989. Choline requirement of hatchery-produced juvenile white sturgeon (Acipenser transmontanus). Aquaculture 78,183-194.
    Hung, S.S.O., Fynn-Aikins, K.F.,1993. Carbohydrate utilization and its impact on some metabolic and histological parameters in white sturgeon. Fish nutrition in practice, IV international symposium on fish nutrition and feeding. Paris:INRA 61,127-136.
    Hung, S.S.O., Fynn-Aikins, K.F., Lutes, P.B., Xu, R.P.,1989. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. J. Nutr.119,727-733.
    Hung, L.T., Lazard, J., Mariojouls, C., Moreau, Y.,2003. Comparison of starch utilization in fingerlings of two Asian catfishes from the Mekong River (Pangasius bocourti Sauvage,1880, Pangasius hypophthalmus Sauvage,1878. Aquac. Nutr.9,215-222.
    Hung, S.S.O., Storebakken, T.,1994. Carbohydrate utilization by rainbow trout is affected by feeding strategy. J.Nutr.123,223-230.
    Hutchins, C.G., Rawles, S.D., Gatlin Ⅲ, D.M.,1998. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (M. chrysops ♀×M. saxatilis ♂). Aquaculture 161,187-199.
    Ikeda, S., Ishibash, Y., Murata, O., Nasu, T., Harada, T.,1988. Qualitative requirements of the Japanese parrot fish for water-soluble vitamins. Bull. Jpn. Soc. Sci. Fish.54,2029-2035.
    Jackson, T.M., Rawling, J.M., Roebuck, B.D., Kirkland, J.B.,1995. Large supplements of nicotinic acid and nicotinamide increase tissue NAD+and poly (ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J.Nutr.125, 1455-1461.
    Kasper, C.S., White, M.R., Brown, P.B.,2000. Choline is required by Tilapia when methionine is not in excess. J. Nutr.130,238-242.
    Kasper, C.S., White, M.R., Brown, P.B.,2002. Betaine can replace choline in diets for juvenile Nile Tilapia, Oreochromis niloticus. Aquaculture 205,119-126.
    Kaushik, S.J., Medale, F., Fauconneau, B., Blanc, D.,1989. Effect of digestible carbohydrates on protein/energy utilization and on glucose metabolism in rainbow trout (Salmo gairdneri R.). Aquaculture 79,63-74.
    Ketola, H.G.,1976. Choline metabolism and nutritional requirement of lake trout Salelinus namaycush. J. Anim. Sci.43,475-477.
    Kim, J.D., Kaushik, S.J.,1992. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 106,161-169.
    Kitamura, S., Suwa, T., Ohara, S., Nakagawa, K.,1967. Studies on vitamin requirements of rainbow trout II. The deficiency symptoms fourteen kinds of vitamin. Bull. Jpn. Soc. Sci. Fish.33,1120-1125.
    Koops, H., Tiews, K., Tiews, J., Gropp, J.,1974. Starke und fettverwertung netzkafiggehaltener regenbogenforellen (Salmo gairdneri). Aquaculture 4,277-286.
    Kumar, S., Sahu, N. P., Pal, A. K., Choudhury, D., Mukherjee, S. C.,2006. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles:effect of microbial a-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. Fish Physiol. Biochem.32,209-220.
    Lee, D.J., Putnam, G.B.,1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J. Nutr.103,916-922.
    Lim, C.,1991. Milkfish, Chanos chanos. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.).CRC Press, Boca Raton, FL, pp 97-104.
    Lin, D.,1991. Grass carp, Ctenopharyngodon idella. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.). CRC Press, Boca Raton, FL, pp.89-96.
    Lovell, T.,1989. Reevaluation of carbohydrates in fish feeds. Aquaculture 15 (3),62-64.
    Luquet, P.,1991. Tilapia, Oreochromis spp. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.).CRC Press, Boca Raton, FL, pp 169-179.
    Mai, K.S., Xiao, L.D., Ai, Q.H., Wang, X.J., Xu, W., Zhang, W.B., Liufu, Z.G., Ren, M.C.,2009. Dietary choline requirement for juvenile cobia, Rachycentron canadum. Aquaculture 289, 124-128.
    Mai, K.S., Wan, J.L., Ai, Q.H., Xu, W., Liufu, Z.G., Zhang, L., Zhang, C.X., Li, H.T.,2006a. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 253,564-572.
    Mai, K., Wu, G., Zhu, W.,2001. Abalone, Haliotis discus hannai Ino, can synthesize myo-inositol de novo to meet physiological needs. J. Nutr.131,2898-2903.
    Mai, K., Zhang, C., Ai, Q., Duan, Q., Xu, W., Zhang, L., Liufu, Z., Tan, B.,2006b. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 251, 346-353.
    Mai, K.S., Zhang, L., Ai, Q.H., Duan, Q.Y., Zhang, C.X., Li, H.T., Wan, J.L., Liufu, Z.G.,2006c. Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 258,535-542.
    Mazur, C.N., Higgs, D.A., Plisetskaya, E., March, B.E.,1992. Utilization of dietary starch and glucose tolerance in juvenile Chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater. Fish Physiol. Biochem.10,303-313.
    McLaren, B.A., Keller, E., O'Donnell, D.J., Elvehjem, C.A.,1947. The nutrition of rainbow trout. I. Studies of vitamin requirements. Arch.Biochem.Biophys.15,169-178.
    McMeniman, N.P.,2003. Digestibility and utilization of starch by Asian sea bass. In:Aquaculture Diet Development Subprogram:Ingredient Evaluation, pp.142-148 (Allan, G.L., M.A.Booth, D.A.J. Stone, A.J.Anderson, Eds.).
    Mohamed, J.S., Ibrahim, A.,2001. Quantifying the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings. Aquac.Res.,32,157-162.
    Mohapatra, M., Sahu, N.P., Chaudhari, A.,2003. Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aqua.Nutr.9,189-196.
    Moon, T.W., Foster, G.D.,1995. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. Biochemistry and Molecular Biology of Fishes. Elsevier Amsterdam 10,65-100.
    Morris, P.C., Baker, R.T.M., Davis, S.J.,1998. Nicotinic acid supplementation of diets for the African catfish, Clarias gariepinus (Burchell). Aquac. Res.29,791-799.
    Morris, P.C., Davies, S.J.,1995. The requiretient of the gilthead seabream (Sparus aurata L) for nicotinic acid. Animal Science 61,437-443.
    Morita, K., Furuichi, M., Yone, Y.,1982. Effect of carboxymethylcellulose supplemented to dextrin containing diets on the growth and feed efficiency of red sea bream. Bil.Jpn. Soc. Sci. Fish 48,1617-1620.
    Murai, T., Akiyama, T., Nose, T.,1983. Effects of glucose chain length of various carbohydrates and frequency of feeding on their utilization by fingerling carp. Bull. Jpn. Soc. Sci. Fish.49, 1607-1611.
    Nagayama, F., Ohshima, H.,1974. Study on the enzyme system of carbohydrate metabolism in fish properties of liver hexokinase. J. Bull.Jap.Soc.Sci.Fish 40,885-290.
    Natalia, Y., Hashim, R., Ali, A., Chong, A.,2004. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233,305-320.
    Nematipour, G.R., Brown, M.L., Gatlin Ⅲ, D.M.,1992. Effect of dietary carbohydrate:lipid ratio on growth and body composition of hybrid striped bass.J. World Aquacult.Soc.23,128-132.
    NRC (National Research Council),1993. Nutrient requirements of fish. National Academy Press, Washington, DC.
    NRC (National Research Council),1981. Nutrition requirements of coldwater fishes. National Academy Press, Washington, USA, pp.14-17.
    Ng, W.K., Serrini, G., Zhang, Z., Wilson, R.P.,1997. Niacin requirement and inability of tryptophan to act as a precursor of NAD+in channel catfish, Ictalurus punctatus. Aquaculture 152,273-285.
    Ogino, C., Uki, N., Watanabe, T., Iida, Z., Ando, K.,1970. B-Vitamin requirements of carp:IV. Requirement for choline. Bull. Jpn. Soc. Sci. Fish.36,1140-1146.
    Page, J. W., Andrews, J.W.,1973. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J.Nutr.103,1339-1346.
    Panserat, S., Medale, F., Breque, J., et al.,2000a. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J. Nutr. Biochem.11,22-29.
    Panserat, S., Medale, F., Blin, C., Breque, J., Vachot, C., Plagnes-Juan, E., Gomes, E., Krishnamoorthy, R., Kaushik, S.,2000b. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss), gilthead seabream (Sparus aurata), and common carp (Cyprinus carpio). Am. J. Physiol.278, R1164-R1170.
    Peres, H., Lim, C., Klesius, PH.,2004. Growth, chemical composition and resistance to Streptococcus iniae challenge of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of dietary inositol. Aquaculture 235,423-432.
    Peres, H., Oliva-Teles, A.,2002. Utilization of raw and gelatinized starch by European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 205,287-299.
    Phillips, A. M., Brockway, D.R.,1947. The niacin and biotin requirement of trout. Trans. Am. Fish. Soc.76,152-159.
    Poston, H.A.1969. The effect of excess levels of niacin on the lipid metabolism of fingerling brook trout. pp.9-12 in Fisheries Research Bulletin No.32. Albany, N.Y., State of New York Conservation Department.
    Poston, H.A.,1991a. Choline requirement of swim-up rainbow trout fry. Prog. Fish Cult.53, 220-223.
    Poston, H.A.,1991b. Response of Atlantic salmon fry to feed-grade lecithin and choline. Prog. Fish Cult.,53,224-228.
    Poston, H.A., Combs, G.F.,1980. Nutritional implications of tryptophan catabolizing enzymes in several species of trout and salmon. Proc. Soc. Exp. Biol. Med.163,452-454.
    Poston, H. A., DiLorenzo, R.N.,1973. Tryptophan conversion to niacin in the brook trout (Salvelinus fontinalis). Proc.Soc.Exp.Biol.Med.144,110-112.
    Poston, H.A., Wolfe, M.J.,1985. Niacin requirement for optimum growth, feed conversion and protection of rainbow trout, Salmo gairdneri Richardson, from ultraviolet-B-irraduaiton. J. Fish Dis.8,451-460.
    Rawles, S.D., Gatlin Ⅲ, D.M.,1998. Carbohydrate utilization in striped bass(Morone saxatilis) and sunshine bass (M. chrysops(♀x M. saxatilis♂). Aquaculture 161,201-212.
    Refstie, T., Austreng, E.,1981. Carbohydrate in rainbow trout diets.Ⅲ.Growth and chemical composition of fish from different families fed four levels of carbohydrate in the diet. Aquaculture 25,35-49.
    Ribeiro, L., Zambonini-Infante J.L., Cahu, C., et al.,2002. Digestive enzymes profile of solea senegalensis post larvae fed artemia and a compound diet. Fish Physiol. Biochem.27,61-69.
    Robbins, K.R., Norton, H.W., Baker, D.H.,1979. Estimation of nutrient requirements from growth data. J. Nutr.109,1710-1714.
    Robinson, E.H., Li, H.M.,1995. Catfish nutrition. Part I. Nutrients and feeds. Aquacult. Mag. May/June,44-53.
    Roem, A.J., Sticjney, R.P., Kohler, C.C.,1990. Vitamin requirements of blue tilapias in a recirculating water system.Prog.Fish-Cult.52,15-18.
    Rooney, L.W., Pflugfelder, R.L.,1986. Factors effecting starch digestibility with special emphasis on sorghum and corn. Animal Sci.63,1607-1623.
    Rosas, C., Cuzon, G., Gaxiola, G., Arena, L., Lemaire, P., Soyez, C., Van Wormhoudt, A.,2000. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. Experimental Marine Biology and Ecology 249,181-198.
    Rumsey, G.L.,1991. Choline-betaine requirements of rainbow trout (Oncorhynchus mykiss). Aquaculture 95,107-116.
    Santiago, C.B., Reyes, O.S.,1991. Optimum dietary protein level for growth of bighead carp (Aristichthys nobilis) fry in a static water system. Aquaculture 93,155-165.
    Satoh, S.,1991. Common carp, Cyprinus carpio. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P. Ed.).CRC Press, Raton, FL, pp 55-67.
    Satoh, S., Hernandez, A., Tokoro, T., Morishita, Y, Kiron, V., Watanabe, T.,2003. Comparison of phosphorus retention efficiency between rainbow trout(Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224,271-282.
    Schwertner, M.A., Liu, K.K., Barrows, F.T., Hardy, R.W., Dong, F.M.,2003. Performance of posr-juvenile rainbow trout Oncorhynchus mykiss fed diets manufactured by different processing methods. J. World Aquacult. Soc.34,162-174.
    Shearer K.D.,1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119,63-88.
    Shiau, S.Y.,1997. Utilization of carbohydrates in warmwater fish—with particular reference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture 151,79-96.
    Shiau, S.Y., Chen, S.Y.,1993. Carbohydrate utilization by tilapia(Oreochromis niloticus xO.aureus) as influenced by different chromium sources.J. Nutr.123,1747-1753.
    Shiau, S.Y., Liang, H.S.,1995. Carbohydrate utilization and digestibility by tilapia,Oreochromis niloticus xO.aureus, are affected by chromic oxide inclusion in the diet. J.Nutr.125, 976-982.
    Shiau, S.Y., Lin, S.F.,1993. Effect of supplemental dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, Oreochromis niloticus xO.aureus. Aquaculture 110,321-330.
    Shiau, S.Y., Peng, C.Y.,1993. Protein sparing effect of carbohydrates in diets for tilapia, Oreochromis niloticus xO.aureus. Aquaculture 117,327-334.
    Shiau, S.Y., Lo, P.S.,2000. Dietary choline requirements of juvenile hybrid tilapia, Oreochromis niloticus x O.aureus. J. Nutr.130,100-103.
    Shiau, S.Y., Su, S.L.,2005. Juvenile tilapia (Oreochromis niloticusxOreochromis aureus) requires dietary myo-inositol for maximal growth. Aquaculture 243,273-277.
    Shiau, S.Y., Suen, G.S.,1992. Estimation of the niacin requirements for tilapia fed diets containing glucose or dextrin. J. Nutr.122,2030-2036.
    Shiau, S.Y., Yu, H.L., Hwa, S., Chen, S.Y., Hsu, S.I.,1988. The influence of carboxymethylcellulose on growth, digestion, gastric emptying time and body composition of tilapia. Aquaculture 70,345-354.
    Shimeno, S.,1991. Yellowtail, Seriola quinqueradiata. In, Handbook of Nutrition Requirement of Finfish, Wilson, R.P. (Ed.), Boca Raton, pp.181-191.
    Shimeno, S., Hosakawa, H., Hirata, H., Takeda, M.,1977. Comparative studies on carbohydrate metabolism of yellowtail and carp. Bull. Jpn. Soc. Sci. Fish.43,213-217.
    Shimeno, D., Takeda, M., Takayama, S., Fukui, A., Sasaki, H., Kajiyama, H.,1981. Adaptation of hepatopancreatic enzymes to dietary carbohydrates in carp. Bull. Jpn. Soc. Sci. Fish.47, 71-77.
    Silano, V., Furiaa, M., Gianfreda, L., Macri, A., Paleseandolo, R., Rab, A., Scardi, V., Stella, E., Valfre, F.,1975. Inhibition of amylases from different origins by albumins from the wheat kernel. Biochem.BioPhys.Aeta.391,170-178.
    Singh, R.P., Nose, T.,1967. Digestibility of carbohydrates in young rainbow trout. Bulletin of Freshwater Fisheries Research Laboratory 17(1),21-25.
    Stone, D.A.J., Allan, G.L., Anderson, A.J.,2003a. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell):II. Digestibility and utilization of starch and its breakdown products. Aquacult. Res.34,109-122.
    Stone, D.A.J., Allan, G.L., Anderson, A.J.,2003b. Carbohydrate utilization by juvenile silver perch, Bidyanus-bidyanus (Mitchell):IV. Gan dietary enzymes increase digestible-energy from wheat starch, wheat and de-hulled lupin? Aquacult. Res.34,135-148.
    Storebakken, T., Shearer, K.D., Refstie, S., Lagocki, S., McCool, J.,1998. Interactions between salinity, dietary carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynhusmykiss). Aquaculture 163,347-359.
    Tacon, A.G.J.,1999. Overview of world aquaculture and aquafeed production. Data presented at World Aquaculture 99, Sydney, April 27-May 2,1999.
    Tacon, A.G.J.,2003. Global trends in aquaculture and compound aquafeed production-a review. International Aquafeed Directory and Buyers's Guide,8-23.
    Takeda, M., S. Shimeno, H. Hosokawa, H. Kajiyama, and T. Kaisyo.1975. The effect of dietary calorie to protein ratio on the growth, feed conversion, and body composition of young yellowtail. Bull. Jpn. Soc. Sci. Fish.41,443-447.
    Takeuchi, T., Jeong, K.S., Watanabe, T.,1990. Availability of extruded carbohydrate ingredients to rainbow trout Oncorhynhusmykiss and carp Cyprinus carpio. Nippon Suisan Gakkaisbi 56, 1839-1845.
    Takeuchi, T., Watanabe, T., Ogino, C.,1979. Availability of carbohydrate and lipid as dietary energy sources for carp.Bull.Jpn.Soc.Sci.Fish.45,977-982.
    Tranulis, M.A., Christophersen, B., et al.,1991. Glucose dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase in liver of rainbow trout (Salmo gairdneri). Effects of starvation and temperature variations. J. Comp.Biochem Physiol.99B,687-691.
    Tranulis, M.A., Dregni, O., Christophersen, B., et al.,1996. A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). J. Comp.Biochem Physiol.114B,35-39.
    Tung, P.H., Shiau, S.Y.,1991. Effects of meal frequency on growth performance of hybrid tilapia fed different carbohydrate diets. Aquaculture 92,343-350.
    Twibell, R.G., Brown, P.B.,2000. Dietary choline requirement of juvenile yellow perch (Perca flavescens). J. Nutr.130,95-99.
    Venou, B., Alexis, M.N., Fountoulaki, E., Nengas, I., Apostolopoulou, M., Castritsi-Cathariou, I., 2003. Effect of extrusion of wheat and corn on gilthead sea bream (Sparus aurata) growth, nutrient utilization efficiency, rates of gastric evacuation and digestive enzyme activities. Aquaculture 225,207-223.
    Venugopal, P.B.,1985. Choline. In:Methods of Vitamin Assay (Augustin, J., Klein, B.P., Becker, D., Venugopal, P., eds.), pp.555-573. John Wiley and Sons, New York, NY.
    Vinardell, M.P.,1990. Matul inhibition of sugars and amino acid intestinal absorption. Comp. Biochem. Physiol.95A. No.Ⅰ,17-21.
    Waagb(?), R., Sandnes, K., Lie, a.,1998. Effects of inositol supplementation on growth, chemical composition and blood chemistry in Atlantic salmon, Salmo salar L., fry. Aquac. Nutr.4, 53-59.
    Walton, M.J., Cowey, C.B.,1982. Aspects of intermediary metabolism in fish. Comp. Biochem. Physiol.73B,59-79.
    West, E.S., Todd, W.R., Mason, H.S., Van Bruggen, J.T.,1966. Testbook of Biochemistry, Macmillan, New York. pp734-1252.
    Wilson, R.P.,1991. Channel catfish, Ictalurus punctatus. In:Handbook of Nutrient Requirements of Finfish (Wilson R.P.Ed.). CRC Press, Boca Raton, FL, pp35-53.
    Wilson, R.P.,1994. Utilization of dietary carbohydrate by fish. Aquaculture 124 (1-4),67-80.
    Wilson, R.P., Poe, W.E.,1987. Apparent inability of channel catfish to utilize dietary mono-and disaccarides as energy sources. Journal of Nutrition 117,280-285.
    Wilson, R.P., Poe, W.E.,1988. Choline nutrition of fingerling channel catfish. Aquaculture 68, 65-71.
    Wolf, L.E.,1951. Diet experiments with trout.1.A synthetic formula for dietary studies.Prog. Fish-Cult.13,17-24.
    Woodward, B.,1994. Dietary vitamin requirements of cultured young fish, with emphasis on quantitative estimates for salmonids. Aquaculture 124,133-168.
    Yone, Y., Fujii, M.,1974. Studies on nutrition of red sea bream.10. Qualitative requirements for water-soluble vitamins. Rep. Fish. Res. Lab. Kyushu Univ. (Jpn) 2,25-32.
    Yone, Y., Furuichi, M., Shitanda, K.,1971. Vitamin requirements of red sea bream:Ⅰ.Relationship between inositol requirements and glucose levels in the diet. Bull.Jpn. Soc. Sci. Fish.37, 149-155.
    Zeitoun, I.H., Ullrey, D.E., Magee, W.T., et al.,1976. Quantifying nutrient requirement of fish. J. Fish. Res. Board Can.33:167-172.
    Zhang, C.X., Mai, K.S., Ai, Q.H., Zhang, W.B., Duan, Q.Y., Tan, B.P., Ma, H.M., Xu, W., Liufu, Z.G., Wang, X.J.,2006. Dietary phosphorus requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 255,201-209.
    Zhang, Z., Wilson, R.P,1999. Reevaluation of the choline requirement of fingerling channel catfish(Ictalurus punctatus) and determination of the availability of choline in common feed ingredients. Aquaculture 180,89-98.
    Zhang, L.L., Zhou, Q.C., Chen, Y.Q.,2009. Effect of dietary carbohydrate level on growth performance of juvenile spotted Babylon (Babylonia areolata Link 1807). Aquaculture 295, 238-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700