几种海洋特征寡糖—胶原蛋白复配物对紫外辐射损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋的世纪,海洋中富含的寡糖及生物活性肽,因其良好的抗氧化、抗紫外、抑癌、促生长等生理活性和药用价值已引起人们的广泛关注。海洋寡糖及活性肽生物活性的研究与开发,将成为海水养殖产业高值化利用的突破口。近年来,随着配伍理论的引入,人们逐渐将目光聚焦于海洋四大特征多糖褐藻胶、卡拉胶、琼胶、壳聚糖与鱼皮胶原蛋白的复配,并已开发出性能良好的改性生物材料,成功地应用于组织工程学领域。但目前,关于低分子量海洋四大特征寡糖与鱼皮胶原蛋白活性肽间的复配却鲜有报道,特别是针对其抗紫外作用的研究。紫外线广泛存在于自然界中,其引起的过量氧自由基会诱导光老化、癌症及神经退行性疾病的发生和发展,在病理学过程中扮演了重要角色。因此,无论从经济角度还是人类健康角度出发,对海洋四大特征寡糖与胶原蛋白活性肽的复配及其改性复配物在抗紫外辐照作用方面的研究,均具有深远的科学意义。本论文旨在将不同电荷性质、不同聚合度的海洋四大特征寡糖与低分子量鱼皮胶原蛋白肽进行复配,结合化学分析,药理研究对二者间的配伍规律、抗紫外作用及机制进行研究。主要研究内容如下:
     1.复配物的制备与鉴定。低聚甘露糖酸、k-卡拉胶、琼脂糖,壳聚糖经降解制得不同聚合度的寡糖片段,与低分子量罗非鱼鱼皮胶原蛋白活性肽复配,通过HPLC和红外光谱分析二者间的相互作用,结果表明非共价键作用是复配物形成的内在驱动力,离子间缔合、分子间氢键以及疏水基间的相互作用均对二者的结合起到促进作用。
     2.复配物抗氧化、抗紫外作用评价。于分子水平和细胞水平分别测定复配物对氧自由基的清除能力、细胞活力以及胞内抗氧化酶活力和脂质过氧化水平的影响.并将复配物与相应单一组分相比较,确定复配对其单一组分活性的提高作用。经筛选含羧酸根、具阴离子电荷性质、分子量1000左右的甘露糖醛酸与胶原蛋白活性肽复配产物的抗氧化、抗紫外作用最强。
     3.复配物抗紫外辐照机理研究。同时建立低剂量和高剂量的紫外辐照细胞损伤模型。通过检测筛选所得复配物对胞内活性氧水平,胶原酶、Ⅰ型胶原蛋白含量,细胞凋亡以及MAPKs信号转导通路的影响,并结合FITC标记复配物的胞内定位,对复配物抗辐射机制进行研究。结果表明复配物能够定位于胞内线粒体,清除胞内氧自由基,提高抗氧化酶活性;通过抑制MAPKs信号转导途径激活,抑制辐照后的胶原降解、线粒体上游凋亡分子JNK,p38以及线粒体下游凋亡酶Caspase-3,9的表达,从而抑制光老化和凋亡的发生,降低光损伤程度,达到对皮肤细胞的保护作用。
     4.复配物间作用方式及其微观结构分析。结合筛选得复配物及相应单一组分的Zeta-电势分析以及AFM对三者微观结构及状态变化的观察,为寡糖与肽间的离子间作用提供有力的数据支持及更为直观的证据。
     以上研究提示,寡糖的电荷性质、聚合度以及连接与其上的极性基团,均会对其与鱼皮胶原蛋白活性肽间的作用方式产生不同程度的影响,引起复配物抗紫外活性的不同,其能够定位于线粒体,抑制皮肤细胞的光老化和凋亡,起到抗紫外辐照作用。本论文首次将不同电荷性质,不同聚合度的寡糖与胶原蛋白活性肽复配后的抗紫外活性进行比较,为海洋四大多糖以及海水养殖产业的高值化利用提供了有力的技术支撑,并为具有类似结构寡糖-肽复配物药物的设计与开发提供了新的线索和科学思路。
The 21st century is the age of ocean. Oceans are important natural resources for several peptides and oligosaccharides with potential antioxidant properties. Recently, there is a growing demand from the food, pharmaceutical and the cosmetics industry for the development of efficient antioxidants, especially from marine active extracts. The specific properties of each collagen peptide and marine oligosaccahride offer possibilities to produce complexes that can confer unique structural properties. The protein-polysaccharide complexes have been extensively studied and applied in tissue engineering. However, only few studies are available that relate to the improvement of protection agasint UV radiation of such complexes, in terms of their ROS scavenging capability. ROS are generated by UV radiation, resulting in photoaging, cancer and neurological degeneration. Thus, to satisfied with the possible economic and the treatment of disease, study on peptide-oligosaccharide complexes has both scientific significance and application values. In this study, we combined the different (isolated and purified) marine oligosaccharides with collagen peptides of the deep-sea fish skin, and evaluated their antioxidant activities and photoprotective effects, with the investigation of their protective mechanisms against UV-irradiated skin damage and the regular pattern of their cross-linking. The main ideas of this paper are listed below:
     1. The peptide-oligosaccharide complexes were prepared by combining the different (isolated and purified) marine oligosaccharides with bioactive tilapia skin collagen peptides. The intermolecular interactions between the peptide and oligosaccharide have been investigated by Fourier transform infrared spectroscopy (FI-IR) and size exclusion chromatography (SE-HPLC). The results demonstrate that the intermolecular chain associations were formed between oligosaccharide chains and peptide molecules driven by the electrostatic, intermolecule hydrogen bond and hydrophobic interactions.
     2. Chemical and cellular level assays were performed to measure the antioxidant activity and protection against UV radiation of some peptide-oligosaccharide complexes vis-a-vis the activity of its original or native molecules. Results indicated that the antioxidant activities and protective effects against UV radiation of all the complexes were stronger than that of their individual native peptides, especially for MA1000+CP and k-ca3000+CP.
     3. Analysis of the protective mechanisms of peptide-oligosaccharide complexes was performed by FCM, ELISA, western blot and confocal. Results indicated that the complex targeted mitochondria after penetration of cell membrane, and suppressed intracellular ROS production as well as increased the antioxidant enzymes activities. The antioxidant properties of the complex can attenuate UV-induced skinphoto-damage by modulating MMP-1 and collagen I expression, as well as suppressing cell apoptosis through the MAPKs signaling pathways.
     4. The surface electrical properties and the microscopic structures of the peptide-oligosaccharide complex and its independent original molecules were performed by using zeta potential analyzer and Atomic force microscopy. Results indicated that the close combinations of oligosaccharide chains and peptide molecules mainly driven by the electrostatic interactions.
     In conclusion, the surface electrical properties and the degree of polymerization (DP) of oligosaccharides have an influence to the different degree on the conformation of peptide-oligosaccharide complexes and protective effects against UV radiation. The present findings open up new avenues into the drug design of highly efficient peptide-oligosaccharide complexes and provide strong technical support for the high added value utilization of marine aquaculture industry.
引文
[1]Lowe J B, Stoolman T L, Nair R P, et al. ELAM-1-dependent Cell Adhesion to Vaseular Endothelium Determined by a Transfeeted Human Fueosyltransferase cDNA. Cell,1990,63: 475-484.
    [2]Perez S, Mouhous—Riou N, Nifant'ev N E, et al. Crystal and Molecular Structure of a Histo— blood Group Antigen Involved in Cell Adhesion:the Lewis, Trisaeeharide. Glycobiology,1996,6: 537-542.
    [3]PhilliPs M L, Nudelman E, Gaeta F C, et al. ELAM-1 Mediates Cell Adhesion by Reeognition of a Carbohydrate Ligand, Sialyl-Lex. Science,1990,250:1130-1132.
    [4]Wang X, Sun P, AI—Qamari A, et al. Carbohydrate—carbohydrate Binding of Ganglioside to Integrin a 5, Modulates a5 β1 Function. J. Biol. Chem.,2001,276:8436-8444.
    [5]狄维,王林,王升启.寡糖及其衍生物的生物活性研究进展.中国药物化学杂志,2002,12(4):243-245.
    [6]张真庆.酶解褐藻胶寡糖的制备、分离及结构鉴定.中国海洋大学硕士论文,2003.
    [7]Atkins E D, Mackie W, Smolko E E. Crystalline structures of alginic acids. Nature,1970,225: 626-628.
    [8]Yu G L, Guan H S, Ioanoviciu A S, et al. Structural studies on K-carrageenan derived oligosaccharides. Carbohydr. Res.,2002,337(5):433-440.
    [9]Shimizu E, Ojima T, Nishita K. cDNA cloning of an alginate lyase from abalone, Haliotis discus hannai. Carbohydr. Res.,2003,338(24):2841-2852.
    [10]Knutsen S H., Grasdalen H. Analysis of carrageenans by enzymic degradation, gel filtration and 1H NMR spectroscopy. Carbohydr. Polym.,1992.19(3):199-210.
    [11]Shimoda K, Nakajima K, Hiratsuka Y, et al. Efficient preparation of β-(1→6)-(GlcNAc)2 by enzymatic conversion of chitin and chito-oligosaccharides. Carbohydr. Polym.,1996.29(2): 149-154.
    [12]Li J B, Han F, Lu X Z, et al. A simple method of preparing diverse neoagaro-oligosaccharides with β-agarase. Carbohydr. Res.,2007,342(8):1030-1033.
    [13]Matsubara Y, Iwasaki K, Muramatsu T. Action of poly (alpha-L-guluronate) lyase from Corynebacterium sp. ALY-1 strain on saturated oligoguluronates. Biosci Biotechnol Biochem, 1998,62(6):1055-1060.
    [14]Zhang Z, Yu G, Guan H, et al. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp.510. Carbohydr. Res.,2004,339(8): 1475-1481.
    [15]Rochas C, Potin P, Kloareg B. NMR spectroscopic investigation of agarose oligomers produced by an α-agarase. Carbohydr. Res.,1994,253:69-77.
    [16]Zhang Z, Yu G, Zhao X, et al. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom,2006,17(4): 621-630.
    [17]Leone S, Molinaro A, Alfieri F, et al. The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydr. Res.,2006,341(14): 2456-2461.
    [18]Akimoto-Tomiyama C, Aoyagi H, Ozawa T, et al. Production of 5'-phosphodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid. J Biosci Bioeng,2002,94(2):154-159.
    [19]Antonopoulos A, Favetta P, Helbert W, Lafosse M. Isolation of κ-carrageenan oligosaccharides using ion-pair liquid chromatography—characterisation by electrospray ionisation mass spectrometry in positive-ion mode. Carbohydr. Res.,2004,339(7):1301-1309.
    [20]Jennifer T. Aguilan, Fabian M. Dayrit, Jinhua Zhang, Milady R. Ninonuevo, Carlito B. Lebrilla. Structural Analysis of κ-Carrageenan Sulfated Oligosaccharides by Positive Mode Nano-ESI-FTICR-MS and MS/MS by SORI-CID. JASMS,2006,17(1):96-103.
    [21]Johnson F A, Duncan Q M, Mercer A D. Characterization of the block structure and molecular weight of sodium alginates. J.Pharm. Pharmacol.,1997,49:639.
    [22]Yuan H, Zhang W W, Li X G, et al. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr. Res.,2005,340(4):685-692.
    [23]Iwamoto M, Kurachi M, Nakashima T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett,2005, 579(20):4423-4429.
    [24]Yamamoto Y, Kurachi M, Yamaguchi K, et al. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydr. Res.,2007, 342(8):1133-1137.
    [25]Yamamoto Y, Kurachi M, Yamaguchi K, et al. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides. Biosci Biotechnol Biochem,2007,71(1):238-241.
    [26]Xu R S, Jiang Z H. Synthesis of β-(1→4)-oligo-d-mannuronic acid neoglycolipids. Carbohydr. Res.,2008,34 (1):7-17.
    [27]Kawada A, Hiura N, Shiraiwa M, et al. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett, 1997,408(1):43-46.
    [28]Kawada A, Hiura N, Shiraiwa M, et al. Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch Dermatol Res,1999,291(10):542-547.
    [29]Tajima S, Inoue H, Kawada A, et al. Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro. Arch Dermatol Res, 1999,291(7-8):432-436.
    [30]Aoyagi H, Sakamoto Y, Asada M, et al. Indole alkaloids production by Catharanthus roseus protoplasts with artificial cell walls containing of guluronic acid rich alginate gel. J Biosci Bioeng, 1998,85(3):306-311.
    [31]Ariyo B, Tamerler C, Bucke C, et al. Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors. FEMS Microbiol Lett, 1998,166(1):165-170.
    [32]Radman R, Bland E J, Sangworachat N, et al. Effects of oligosaccharides and polysaccharides on the generation of reactive oxygen species in different biological systems. Biotechnol Appl Biochem,2006,44(3):129-133.
    [33]王凌云,岑颖洲,李药兰.海藻的特殊功能及其在化妆品中的应用.日用化学工业,2004,34(4):258.
    [34]阐红玲,孙洪涛.董建军.海藻糖在化妆品中的应用.食品与药品,2005,7(9):48.
    [35]王兆梅,李琳,郭祀远,等.生物活性多糖在化妆品中的应用.日用化学工业,2004,34(4):245.
    [36]Lemonnier-Le P C, Chatelet C, Kloareg B, et al. Carrageenan oligosaccharides enhance stress-induced microspore embryogenesis in Brassica oleracea var. italic. Plant Science,2001, 160(6):1211-1220.
    [37]Yuan H M, Song J M, Li X G, et al. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Letters,2006,243 (2):228-234.
    [38]Liang A Y, Zhou X M, Wang Q Y, et al. Structural features in carrageenan that interact with a heparin-binding hematopoietic growth factor and modulate its biological activity. J Chromatogr B, 2006,843(1):114-119.
    [39]薛长湖,徐强,赵雪,等.琼胶低聚糖清除自由基的活性.水产学报,2003,27(3):283-288.
    [40]Hu B, Gong Q H, Wang Y, et al. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe,2006,12 (5-6):260-266.
    [41]夏文水,吴焱楠.甲壳低聚糖功能性质.无锡轻工大学学报,1996,15(4):2911-2916.
    [42]陈虹,候伟革.壳寡糖及其应用.饲料博览,2007,21:23-24.
    [43]Ouchi T, Banba T, Matsumoto T, et al. Synthesis and antitumor activity of conjugates of 5-fluorouracil and chito-oligosaccharides involving a hexamethylene spacer group and carbamoyl bonds. Drug Des Deliv,1990,6(4):281-287.
    [44]杜昱光,白雪芳,金宗濂,等.壳寡糖抑制肿瘤作用的研究.中国海洋药物,2002,21(2):18-21.
    [45]刘冰,刘万顺,韩宝芹,等.壳寡糖促胰岛细胞增殖、胰岛素分泌及调节餐后血糖作用的研究.同济大学学报(医学版),2006,27(6):6-11.
    [46]胡志鹏.壳寡糖的研究进展.中国生化药物杂志,2003,24(4):210-212.
    [47]Katduraya K, Nakashima H, Yamamoto N, et al. Synthesis of sulfated o 1 igosaccharide glycosides having high anti—HIV activity and the relationship between activity and chemical structure.Carbohydr.Res.,1999,315(3-4):234-242.
    [48]叶小燕,曾少葵,余文国,等.罗非鱼皮营养成分分析及鱼皮明胶提取工艺的探讨.南方水产,2008,4(5):55-60.
    [49]郭瑶,曾名勇,崔文萱.水产胶原蛋白及胶原多肽的研究进展.水产科学,2006,25(2):101.
    [50]Ogawa M, Moody M W. Biochemeical properties of black drum and sheep shead seabream skin collagen. J. Agric. Food. Chem.,2003,51:8088.
    [51]傅燕凤.沈月新.浅谈鱼皮胶原蛋白的利用.食品研究与开发,2004,25(2):16-19.
    [52]李彦春,程宝篇,靳立强.胶原蛋白的应用.皮革化工,2002,19(3):10-14.
    [53]Chen S J, Zeng M Y,& Dong S Y. Progress in the Study of Collagen and Active Peptide of Fisheries. Fisheries Sci,2004,23:44-46.
    [54]Kimumura S, Zhu X P, Matsui R, et al. Characterzation of fish muscle type Ⅰ collagen. J Food Sci,1988,53:1315-1318.
    [55]程波,吴洁,张玉蓉,等.酶法提取人工养殖鲟鱼皮中胶原蛋白的工艺研究.食品研究与开发,2009,30(3):1-4.
    [56]Benjakul S, et al. Protein Hydrolysates from Pacific White Solid Wastes. Agric Food Chem, 1997,45:3423-3430.
    [57]朱碧英,等.酶解鳀鱼可溶性肽分子组成结构及营养评价.中国海洋药物,2001,(4):32-36.
    [58]徐新宇.胶原的提取改性交联及其应用.透析与人工官,2004,15(3):38-46.
    [59]Byun H G, Kim S K. Purification and characterization of angiotensin Ⅰ converting enzyme(ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem.,2001,36:1155-1162.
    [60]韩凤杰,赵征.比目鱼皮胶原寡肽功能特性的研究.食品科技,2006,31(5):131-142.
    [61]吴建平.日本生理活性肽的市场动态.食品工业,1998(3):8-9.
    [62]Gao X Y, Michael J G. Fibronectin-binding peptides?.Isolation and characterization of two unique fibronectin-binding peptides from gelatin. Eur J Pharm Biopharm,1998,45:175-284.
    [63]郭恒斌,曾庆祝.鱼皮胶原蛋白及胶原活性多肽的研究进展.食品与药品,2007,9(8):43-46
    [64]Kim S K, Kim Y T, Byun H G, et al. Isolation and Characterization of antioxidative peptides from gelatin hydrolysate of Alask Pollack skin. J. Agric. Food Chem,2001,49:1984-1989.
    [65]Jeonn Y J, Byun H G., Kim S K. Improvement of finctional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem.1999,35:471-478.
    [66]Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austrianicus). Food Res. Int.,2003,36: 949-957.
    [67]许庆陵,曾庆祝,朱莉娜,等.鲢酶解物对羟自由基的清除作用.水产学报,2004,28(1):93-99.
    [68]Jun S Y, Park P J, Jun W K. Purification and characterization of an antioxidantative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol,2004,219:20-26
    [69]王学川,任龙芳,强涛涛,等.胶原蛋白的研究进展及其在化妆品中的应用.日用化学工业,2005,35(6):388.
    [70]贺玉琢.水解胶原在皮肤的应用.国外医学中医中药分册,2005,27(4):246.
    [71]Hou H, Li B F, Zhao X, et al. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chem,2009,115, 945-950.
    [72]赵利,苏伟,胡火根,等.胶原蛋白生物活性肽的研究进展.食品科学,2005,26(9):578-581.
    [73]Koyama Y, Sakashita A, Kuwaba K, et al. Effects of oral ingestion of collagen peptide on the skin. Fragrance J.,2006,34(6):82-85.
    [74]王秀丽,刘安军.胶原蛋白多肽-铬(Ⅲ)螯合物的降血糖机理探讨.食品研究与开发,2006,27(5):125-127.
    [75]Maruyama S, Nonaka 1, Tanaka H. Inhibitory effects of enzymatic hydrolysates of collagen and collagen-related synthetic peptides on fibrinogen/thrombinclotting. Biochim Biophys Acta, 1993,1164(2):215-223.
    [76]陈胜军.罗非鱼鱼皮胶原蛋白降血压酶解液的制备与活性研究.食品科学,2005,26(8):229-233.
    [77]郭瑶.罗非鱼皮胶原肽的制备及其抗氧化活性的研究.中国海洋大学硕士论文,2006.
    [78]金锡鹏,帕它木,吴玉霞.紫外辐射对人体健康的不良影响.环境与职业医学,2002,19(1):44-48.
    [79]郑友飞,钱晶.紫外辐射增加对人类疾病影响的研究.气象科技,1999,2:10-13.
    [80]Jessica H, Rabe M D, Adam J, et al. Photoaging:Mechanisms and repair. J Am Acad Dermatol,2006,7(10):1-19.
    [81]Dider C, Emomet-Piccardi N, Bean J C, et al. L-arginine increases UVA cytotoxicity in irradiated human Keratinocytes cell line:potential role of nitricoxide and calcium. FASEB J., 1999,13(13):1817-1824.
    [82]Rittie, L., Fisher, G.J.,2002. UV-light-induced signal cascades and skin aging. Ageing Res.Rev.,1,705-720.
    [83]Yang, Q.M., Pan, X.H, Kong, W.B., Yang, H., Su,Y.D., Zhang, L., Zhang, Y.N., Yang, Y.I., Ding, L.,& Liu, G. (2009). Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem.,118,84-89.
    [84]Xu, Y.R., Fisher, G.J.,2005. Ultraviolet (UV) light irradiation induced signal transduction in skin photoaging. Journal of Dermatological Science Supplement 1,1-8.
    [85]Henklova P, Vrzal R, Papouskova B, et al. SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes. European J of Pharm.,2008,593:16-23.
    [86]Assefa Z, Laethem A V, Garmyn M, et al. Ultraviolet radiation-induced apoptosis in keratinocytes:On the role of cytosolic factors. Biochimica et Biophysica Acta,2005,1755: 90-106.
    [87]Lamberti M, Perfetto B, Costabile T,et al. In vitro evaluation of matrix metalloproteinases as predictive testing for nickel, a model sensitizing agent. Toxicol. Appl. Pharmacol.,2004,195: 321-330.
    [88]Pietrasik Z, Li-Chan, E C Y. Binding and textural properties of beef gels affected by protein, k-carrageenan and mierobial transglutamirase addition. Food Res. Int.,2002,35:9-17.
    [89]卢凤琦,曹宗顺.壳聚糖-明胶混合膜的制备及其生物降解性研究.生物氏学上程学杂志,1998,15(4):323.
    [90]赵东愕,李若冰,邱立成,等.应用胶原壳聚搪体外构建组织工程心脏瓣膜的初步研究,武警医学,2004,15:414.
    [91]Sionkowska A, Wisniewski M., Skopinska J, et al. Molecular interactions in collagen and chitosan blends. Biomater.,2004,25:795-801.
    [92]房丽华,王海青,刘晓萍.天然生物膜对UVA辐射无毛小鼠皮肤的保护作用.齐鲁医学杂志,2002,17(2):112.
    [1]Li JB. Han F, Lu XZ, et al. A simple method of preparing diverse neoagaro-oligosaccharides with P-agarase. Carbohydr. Res.,2007,342:1030-1033.
    [2]Liu B, Wang C Y, Zhang H R, et al. Preparation and Identification of Series of Oligomannuronates. Chem J Chinese U,2006,27:485-487.
    [3]Heyraud A, Leonard C, Rochas C, et al. NMR spectroscopy analysis of oligoguluronates and oligomannuronates prepared by acid or enzymatic hydrolysis of homopolymeric blocks of alginic acid. Application to the determination of the substrate specificity of Haliotis tuberculata alginate lyase. Carbohydr.Res.,1996,289:11-23.
    [4]张真庆,于广利,赵峡,等。几种糖醛酸及其寡糖的薄层层析分析。分析化学研究简报,2005.33(12):1750-1752.
    [5]Yamamoto Y, Nunome T, Yamauchi R, et al. Structure of an exocellular polysaccharide of Lactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2. Carbohydr.Res.,1995,275:319-332.
    [6]樊李红,杜予民,郑化,等.海藻酸-明胶共混膜结构表征及性能.武汉大学学报(理学版),2001,47(6):712-716.
    [7]余家会,杜予民,郑化.壳聚糖-明胶共混膜.武汉大学学报(自然科学版),1999,45(4):440-444.
    [8]Andrianov AK, Marin A, Roberts BE. Polyphosphazene polyelectrolytes:a link between the formation of noncovalent complexes with antigenic proteins and immunostimulating activity, Biomacromolecules,2005,6:1375-1379.
    [9]Wang YF. Gao JY, Dubin DB. Protein separation via polyelectrolyte coacervation:selectivity and efficiency, Biotechnol. Prog.1996,12:356-362.
    [10]Zhao YY, Li FY, Carvajal MT, et al. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J. Colloid Interface Sci.,2009,332:345-353.
    [1]Hung TM, Na MK, Thuong PT, et al. Antioxidant activity of caffeoyl quinic acid derivatives
    from the roots of Dipsacus asper Wall. J. Exp. Biol.,2006,108:188-192.
    [2]聂少平,谢明勇,罗珍.用清除有机自由基DPPH法评价茶叶多糖的抗氧化活性.食品科学,2006,27(3):34-36.
    [3]李瑜,许时婴.蒜粉体外抗氧化活性研究.食品研究与开发,2006,27(1):25-28.
    [4]萧华山,何文锦,傅文庆,等.一种用分光光度计检测氧自由基的新方法.生物化学与生物物理进展,1999,26(2):180-182.
    [5]王爱国,罗光华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57.
    [6]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基.生物化学与生物物理进展,1996,23(6):553-555.
    [7]许燕,赵庆霞,高国伟,等.胎鼠成纤维细胞组织块体外培养方法的改良.郑州大学学报(医学版),2008,43(3):501-503.
    [8]Liu XJ, Shi ST, Ye JL, et al. Effect of polypeptide from Chlamys farreri on UVB-induced ROS/NF-jB/COX-2 activation and apoptosis in HaCaT cells. J Photoch Photobio B,2009,34: 234-241.
    [9]Li JL, Liu N, Chen XH, et al. Inhibition of UVA-induced apoptotic signaling pathway by polypeptide from Chlamys farreri in human HaCaT keratinocytes. Radiat Environ Biophys.,2007, 46:263-268.
    [10]Alesiani D, Canini A, Abrosca B D, et al. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chemistry,2009,118:199-207.
    [11]Rahman I., Biswas S K. Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur.J.Pharmacol.,2006,533:222-239.
    [12]黄绵庆,阎春玲,窦梅,战松梅,王美芝.王跃军.王春波.扇贝多肽对UVB损伤HaCaT细胞的抗氧化作用.中国海洋药物杂志,2005,24(3):26-28.
    [13]Wang J, Liu L, Zhang QB. et al. Synthesized oversulphated. acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem.,2009,114:1285-1290.
    [14]Courtois J. Oligosaccharides from land plants and algae:production and applications in therapeutics and biotechnology. Curr Opin Microbiol,2009,12:261-273.
    [15]Liang AY, Zhou XM, Wang QY, et al. Structural features in carrageenan that interact with a heparin-binding hematopoietic growth factor and modulate its biological activity. J. Chromatogr. B,2006,843:114-119.
    [16]Zhao YY, Li FY, Carvajal MT, et al. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J. Colloid Interface Sci.,2009,332:345-353.
    [17]Yuan HM, Song JM, Li XG, et al. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Letters,2006,243 (2):228-234.
    [1]Hsiao YP, Huang HL, Lai WW, et al. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). J Dermatol Sci,2009, 54:175-184.
    [2]Mu Y, Lv SW, Ren XJ, et al. UV-B induced keratinocyte apoptosis is blocked by 2-selenium-bridgedβ-cyclodextrin, a GPX mimic. J Photobio B,2003,69:7-12.
    [3]Li JL, Liu N, Chen XH, et al. Inhibition of UVA-induced apoptotic signaling pathway by polypeptide from Chlamys farreri in human HaCaT keratinocytes. Radiat Environ Bioph.,2007, 46:263-268.
    [4]Honda A, Abe R, Makino T, et al. Interleukin-1b and macrophage migration inhibitory factor (MIF) in dermal fibroblasts mediate UVA-induced matrix metalloproteinase-1 expression. J Dermatol Sci,2008,49:63-72.
    [5]Okano Y, Obayashi K, Yahagi S. et al. Improvement of wrinkles by an all-trans-retinoic acid derivative, D-d-tocopheryl retinoate. J Dermatol Sci,2006,2:65-74.
    [6]Vermes 1, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine early apoptotic cells using fluorescein labelled expression on Annexin V. J Immunol Methods,1995,184:39-51.
    [7]Huang JH, Huang CC, Fang JY, et al. Protective effects of myricetin against ultraviolet-B-induced damage in human keratinocytes. Toxicology in Vitro,2010,24:21-28.
    [8]Itoh T, Hprio T. DNA-dependent protein kinase catalytic subunit is cleaved during UV-induced apoptosis. J Dermatol Sci,2001,6:72-77.
    [9]Daniel B, DeCoster MA. Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining. Brain Res Protoc.,2004,13: 144-150.
    [10]Shimizu H, Banno Y, Sumi N, et al. Activation of p38 mitogen-activated protein kinase and caspases in UVB-induced apoptosis of human keratinocyte HaCaT cells. J invest Dermatol.,1999. 112:769-774.
    [11]Calandria C, Irurzun A, Barco A, et al. Individual expression of poliovirus 2APro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res.,2004,104:39-49. [12] Zhang LX, Pelech S, Uitto VJ. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3. Exp Cell Res..2004,292:231-240.
    [13]Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev.,2002, 1:705-720.
    [14]Bhutia SK, Mallick SK, Maiti S, et al. Abrus abrin derived peptides induce apoptosis by targeting mitochondria in HeLa cells. Cell Biol Int.,2009,33:720-727
    [15]Nagase M, Shiota T, Tsushima A, et al. Molecular mechanism of satratoxin-induced apoptosis in HL-60 cells:activation of caspase-8 and caspase-9 is involved in activation of caspase-3. Immuno Lett.,2002,84:23-27
    [1]Zhao YY, Li FY, Carvajal MT, et al. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J. Colloid Interface Sci.,2009,332:345-353.
    [2]Cooper CL, Dubin PL, Kayitmazer AB, et al. Polyelectrolyte-protein complexes. Curr Opin in Colloid In.,2005,10:52-78.
    [3]Bowen WR, Hall NJ, Pan LC. The relevantof particle and zeta-potential in protein proccsing. Nat Biotechnol.,1998,16:785-787.
    [4]McClellan SJ, Franses El, Controlling Nonspecific Protein Adsorption in a Plug-Based Microfluidic System by Controlling Interfacial Chemistry Using Fluorous-Phase Surfactants. Colloids Surf. B,2003,28:63-75.
    [5]Matsudo T, Ogawa K, Kokufuta E, Complex formation of protein with different water-soluble synthetic polymers, Biomacromolecules,2003,4:1794-1799.
    [6]Gergely C, Bahi S, Szalontai B, et al. Human serum albumin self-assembly on weak polyelectrolyte multilayer films structurally modified by pH changes, Langmuir,2004,20: 5575-5582.
    [7]Czeslik C, Jansen R, Ballauff M. Mechanism of protein binding to spherical polyelectrolyte brushes studied in situ using two-photon excitation fluorescence fluctuation spectroscopy. Phys. Rev. E,2004,69:345-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700