汞与溴苯腈复合污染对赤子爱胜蚓及球肾白线蚓的生态毒理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多种化合物的复合污染在土壤中十分常见。汞是环境中广泛存在的重金属之一,溴苯腈是最常使用的除草剂之一,因此在污灌区及矿区周围土壤中常同时检测到汞与溴苯腈。目前,二者的复合污染效应研究相对较少。
     本研究从生物学四个层次探讨了汞与溴苯腈暴露对赤子爱胜蚓的毒性效应,筛选出不同暴露剂量的生物标志物,初步探讨了汞与溴苯腈暴露对蚯蚓生态毒性的效应机制。以我国本土化物种球肾白线蚓作为试验生物,研究了汞与溴苯腈暴露对球肾白线蚓的急性毒性效应,并进行了三种场地土壤的毒性评估.探讨了球肾白线蚓为土壤污染试验生物的可行性,并初步建立了球肾白线蚓为试验生物的毒性评估方法。
     主要研究结果如下:
     1.个体水平上,研究了汞与溴苯腈暴露对赤子爱胜蚓和球肾白线蚓的急性毒性。
     (1)汞与溴苯腈对受试生物有急性毒性;污染物与致死率之间存在着剂量-效应关系和时间-效应关系;汞与溴苯腈复合污染的毒性效应关系既有协同作用又有拮抗作用;死亡率可以作为生物标志物来评估致死剂量范围的土壤生态风险;汞与溴苯腈暴露对赤子爱胜蚓的14天LC50分别为143.67mg/kg和41.75mg/kg,对球肾白线蚓的LC50分别为3.87mg/kg和2.41mg/kg;球肾白线蚓比赤子爱胜蚓敏感,在较低低剂量暴露的环境中,球肾白线蚓适合作为监测环境的受试生物。(2)比较了OECD推荐的参比物氯乙酰胺对两种受试生物的毒性效应,球肾
     白线蚓对氯乙酰胺急性毒性反应更灵敏。2.组织水平上,研究了汞与溴苯腈暴露对赤子爱胜蚓体内抗氧化物酶系的毒
     性效应。汞与溴苯腈暴露均能诱导SOD、CAT和GST的活力。汞与溴苯腈暴露对酶活力影响随时间变化的规律不同,CAT酶活力随暴露时间的变化规律相似,CAT可作为汞与溴苯腈毒性评估的生物标记物。3.细胞水平上,优化了体腔细胞提取方法,研究了汞与溴苯腈暴露对赤子爱胜蚓体腔细胞溶酶体膜稳定性以及体腔细胞凋亡率的影响。
     (1)中性红停留时间(NRRT)随着汞与溴苯腈暴露时间的延长、暴露浓度的增加而下降。汞与溴苯腈复合暴露的交互作用体现为协同作用,溴苯腈是复合污染的主效应因子。NRRT作为生物标志物的检测方法重现性好、准确,能够对汞与溴苯腈引起的环境进行早期监测。
     (2)体腔细胞的早期凋亡率与体腔细胞质膜损伤密切相关。随着汞与溴苯腈暴露浓度的增加,体腔细胞凋亡率上升。溴苯腈是复合污染的主效应因子。蚯蚓体腔细胞早期凋亡率可作为污染早期预警的生物标志物。
     (3)溶酶体膜稳定性的降低对应着细胞凋亡率的升高,表明溶酶体-线粒体途径是汞与溴苯腈暴露引起蚯蚓体腔细胞凋亡的机制之一。
     4.分子水平上,运用单细胞凝胶电泳技术(SCGE)研究了汞与溴苯腈暴露对赤子爱胜蚓体腔细胞DNA损伤的遗传毒性。随着汞与溴苯腈暴露浓度的增加,DNA损伤加剧。溴苯腈是复合污染的主效应因子;OTM比TL更适合作为DNA损伤的生物标志物标志。
     5.以球肾白线蚓作为受试生物,评估了三个场地土壤的生态毒性效应。结果显示,球肾白线蚓的死亡率随暴露时间的延长而增加,随土壤污染物浓度的增加,死亡率上升。球肾白线蚓的死亡率能作为污染场地的评价指标。试验建立了球肾白线蚓作为受试生物的场地毒性评价方法,为场地土壤的毒性评估和生态修复提供了参考。
Co-exposures to complex mixtures are common in soil. Mercury (Hg) is widely distributed and bromoxynil (BX) is one of the most common used herbicide, which detected in the soil irrigated by waste water. The combined pollution of mercury and bromoxynil are less explored.
     The ecotoxicological effects of Eisenia fetida (E. fetida) co-exposure to mercury and bromoxynil were studied. Some appropriate biomarkers were selected and the mechanism of the toxic effects were investigated. Meanwhile, Fridericia bulbosa(F. bulbosa) as a local organism was chosen to compare with E.fetida by an acute toxicity test and to assess the toxicity of the pollutants in three site soil. The possibility of the F. bulbosa as a tested organism for soil ecotoxicity assessment was evaluated and the assessment method for eco-toxicological risk was provided in soil.
     The results were as follows:
     1. The acute toxic effect of Hg and BX on F. fetida and F. Bulbosa were tested individual.
     (1) The toxic effect of the tested pollutant were detected on the E. fetida and F. bulbosa exposure to Hg and BX. A dose-response relationship and a time-response relationship between the pollutant and the mortality were observed. Not only synergism but also antagonism were induced by the co-exposure course to the mixture. The morality is a suitable biomarker to assesses the risk of pollutant in soil at a range of lethal doses. The14d LC50of E. fetida exposure to Hg and BX were 143.67mg/kg and41.74mg/kg, respectively. The14d LC50of F. bulbosa exposure to Hg or BX were3.87mg/kg and2.41mg/kg. The response of F. bulbosa was more sensitive, which means F. bulbosa is available to monitor the risk of pollutant in the soil environment, especially in the soil contaminated with low dose.
     (2) F. bulbosa was more sensitive than F. fetida exposure to the chloroacetamide (the reference chemical recommended by OECD) by a competitive trials by two organism.
     2. The toxicity of Hg and BX on the enzymatic activities of F. fetida was investigated in tissue. The activity of Superoxide Dismutase (SOD) Catalase (CAT) and Glutathione-S-Transferase (GST) of E.fetida were not only induced by Hg but also by BX. The changes of the enzyme activity on earthworms during the exposure course were different with each other. The changes of the CAT activity influenced by Hg and BX were similar and therefore CAT was proposed as a biomarker.
     3. The extracted method of the coelomocyte of earthworms was optimized. The changes of the neutral red retention time (NRRT) and the apoptotic rate of the coelomcytes on E. fetida exposure to Hg and BX were investigated.
     (1)An opposite relationship was observed not only betweenthe NRRT and the time of exposure,but also between the NRRT and the concentration of pollutants. Synergism were observed on earthworms exposure to the mixtures with BX as the main factor. Due to the accuracy and repeatability of the detected method, NRRT could be used as a biomarker to detect the early pollution.
     (2) The apoptotic rate was relatively higher to the damage of the cytoplasmic membrane. It was raised with the Hg and BX exposure dose increased. BX was the main factor in combined pollution. The ratio of the apoptotic could be considered as a biomarker to early detection of contamination.
     (3) The decrease of lysosome stability corresponds with the increase of apoptotic rate, which revealed that the lysosome-mitochondria pathway may be involved in the mechanism of the apoptosis.
     4. The genotoxicity of Hg and BX on E. fetida were investigated by means of the single cell microgel electrophoresis (SCGE). The DNA damage had been raised by Hg and BX along with the pollutants exposure dose increased. BX was the main factor of contribution on DNA damage. OTM was a comprehensive biomarker and more suitable to estimate the DNA damage.
     5. Using F. Bulbosa as the test organism, acute toxic experiment had been performed to assess the toxicity in three soil samples from contaminated site. The mortality had been raised during the exposure time, which shows again that the mortality of F. bulbosa was a sensitive index to assess on the risk in contaminated site. The assessed method of F. bulbosa in soil was established.
引文
[1]黄昌勇.土壤学[M].北京:中国农业出版社2000:1-16. ISBN7-109-06257-0.
    [2]赵丽,邱江平,李凤.铜在蚯蚓体内富集及对蚯蚓急性毒性的研究[J].中国农学通报,2009,25(24):399-402.
    [3]Wang, M.E., Zhou, Q.X., Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels. Environ. Pollut,2006,(144),572-580.
    [4]Barata C. et al, Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multisubstance risks assessment. Aquat. Toxicol.,2006,(78),1-14.
    [5]Zhou, Q.X. et al., Ecological detoxification of methamidophos by earthworms in phaeozem co-contaminated with acetochlor and copper. Appl. Soil Ecol.,2008,(40),138-145.
    [6]宋玉芳,周启星,许华夏.土壤重金属污染对蚯蚓的急性毒性效应研究[J].应用生态学报,2002,13(2):187-190.
    [7]Duffus, J. H.,&Goyer, R. A., Toxicology of metals-science confused by poor use of terminology. Archives of Environmental Health,2003,58(5),263-266.
    [8]何强,井文涌,王翊亭.环境学导论[M].北京:清华大学出版社.2004:161[2010-06-24]. ISBN9787302089643.
    [9]郑国璋.关中灌区农业土壤重金属污染调查与评价[J].土壤通报,2010,02:473-478.
    [10]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,03:366-370.
    [11]李培军,刘宛,孙铁珩等.我国污染土壤修复研究现状与展望[J].生态学杂志,2006,25(12):1544-1548.
    [12]Liao, M.,&Xie, X. M., Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety,2007,66(2),217-223.
    [13]Li, Y., Dankher, O.P., Carreira, L., Smith, A.P., Meagher, R.B. The shoot-specific expression of y-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic.Plant Physiology,2006,141(1),288-298
    [14]Huang, S.S., Liao, Q.L., Hua, M., Wu, X.M., Bi, K.S., Yan, C.Y., Zhang, X.Y. Survey of heavy metal pollution and assessment of agricultural soil in yangzhong district, jiangsu province, china. Chemosphere,2007,67(11),2148-2155.
    [15]张峦,沈国清,陆贻通,曹林奎.镉和菲复合污染对土壤微生物DNA序列多样性的影响[J].科技通报,2005,06:129-135.
    [16]常忠连,谭振军,范俊岗等.环境重金属污染监测研究的指示物:小型哺乳动物和土壤动物[J].辽宁林业科技,2004,(5):24-27.
    [17]Kuperman, R.G. et al., Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoint for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus. Environ. Toxicol. Chem.,2006,(25),754-762.
    [18]Marigomez, J.A., Angulo, E., Saez, V., Feeding and growth responses to copper, zinc, mercury and lead in the terrestrial gastropod Arion ater. J.Molluscan Stud.,1986,52,68-78.
    [19]Ji X.L., Hu W.X., Wang W.H et al. Oxidative stress on domestic ducks (Shaoxing duck) chronically exposed in a Mercury-Selenium coexisting mining area in China[J]. Ecotoxicology and Environmental Safety,2006,64:171-177.
    [20]Gomes, S.I.L., et al., Effect of soil properties and time of exposure on gene expression of Enchytraeus albidus (Oligochaeta). Soil Boil. Biochem.,2011,(43),2078-2084.
    [21]崔力拓,耿世刚,李志伟.我国农田土壤污染现状及防治对策[J].现代农业科技,2006,21:184-188
    [22]Duke, S.O.,&Powles, S.B. Glyphosate:A once-in-a-century herbicide. Pest Management Science,2008,64(4),319-325.
    [23]林玉锁.土壤中农药生物修复技术研究[J].农业环境科学学报,2007,26(2):533-537.
    [24]Pesticides:topical&chemical fact sheets [EB/OL].[201003-02]. http:/www.epa.gov/pesticides/factsheets/index.htm.
    [25]强胜,曹学章.生物除草剂现状及其面临的机遇和挑战[J].杂草科学,262011,29(1):1-6
    [26]Gaines, T.A., Zhang, W., Wang, D., Bukun, B., Chisholm, S.T., Shaner, D. L. Westra, P., Gene amplification confers glyphosate resistance in amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America,2010,107(3),1029-1034.
    [27]王振中,张友梅,李忠武等.有机磷农药对土壤动物毒性的影响研究[J].应用生态学报,2002,13(12):1663-1666.14
    [28]赵兰,黎华寿.四种除草剂对稻田土壤微生物类群的影响[J].农业环境科学学报,2008,27(2):508-514.
    [29]吕镇梅,闵航,叶央芳等.除草剂二氯喹啉酸对水稻田土壤中微生物种群的 影响[J].应用生态学报,2004,15(4):605-609.
    [30]李淑梅.化学除草剂对土壤动物影响的研究进展[J].农业与技术,2007,27(5):95-96.
    [31]Bliss C.I., The toxicity of poisons applied jointly. Ann. Appl. Biol.1939,26(3,)585-615
    [32]周启星,复合污染生态学[M],北京,中国环境科学出版社,1995
    [33]何勇田,熊先哲.复合污染研究进展,环境科学,1994,15(6),79-83
    [34]Lange JH, Thomullea KW, Use of the vibrion harvegi toxicity test for evaluating mixture interactions of Nitrobenzene and Dintriobenzene, Ecotoxicol. Environ. Saf.1997,38,2-12
    [35]沈国清,陆贻通,周培,重金属-多环芳烃复合研究进展,上海交通大学学报(农业科学版),2005,23(1),102-106
    [36]王开勇,赵天一,黎成厚等.铁铝盐基离子对土壤中水溶性氟环境效应的影响[J].环境污染与防治,2007,29(12):885-888,892
    [37]崔玉侠.草甘膦与Cu的复合污染及其对土壤酶与微生物碳/氮的影响[D].西南大学,2009.
    [38]王米道,程凤侠,司友斌等.铜与草甘膦复合污染对小麦种子发芽与根伸长的抑制作用[J].生态毒理学报,2009,4(4):591-596.
    [39]刘廷凤,刘振宇,孙成等.Cu2+与草甘膦单一及复合污染对蚯蚓的急性毒性研究[J].环境污染与防治,2009,31(6):3-6.
    [40]张铭杰,张璇,秦佩恒等.深圳市土壤表层汞污染等级结构与空间特征分析[J].中国环境科学,2010,30(12),1645-1649.
    [41]陈圆圆,孙小静,王军等.上海宝山区农业用地土壤重金属空间分异规律及分布特征研究[J].环境化学,2010,29(2):215-219
    [42]刘俊华,王文华.降水中Hg赋存形态的研究[J].环境科学,2000,21(4):42-46.
    [43]Boening, D. W. Ecological effects, transport, and fate of mercury:A general review. Chemosphere,2000,40(12),1335-1351.
    [44]Klaassen, C.D., Amdur, M.O., Doull, I,(1986). Toxicology, Ⅲed [M]. The Basic Science of Poisons, Macmillan, New York,NY.
    [45]Lindqvist, L., Block, M., Tjalve, H.,. Distribution and excretion of Cd, mercury, methyl-mercury and Zn in the predatory beetle Pterostichus Niger. Environ. Toxicol. Chem.1995,14,1195-1201.
    [46]Abassi, S.A., Soni, R., Stress-induced enhancement of reproduction in earthworms exposed to chromium (Ⅵ) and mercury (Ⅱ)-implications in environmental management. Int. J. Environ. Stud.1983,22,43-47.
    [47]Beyer, W.N., Cromartie, E., Moment, G.B.,1985. Accumula-tion of methylmercury in the earthworm, and its effects on regeneration. Bull. Environ. Contam. Toxicol.35,157-162.
    [48]Gill, T. S., Tewari, H.,&Pande, J. Use of the fish enzyme system in monitoring water quality:Effects of mercury on tissue enzymes. Comparative Biochemistry and Physiology-C Pharmacology Toxicology and Endocrinology,1990,97(2),287-292.
    [49]Mahboob, M., Shireen, K. F., Atkinson, A.,&Khan, A. T. Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. Journal of Environmental Science and Health-Part B Pesticides, Food Contaminants, and Agricultural Wastes,2001,36(5),687-697.
    [50]黄宝圣.汞的生物毒性及其防治策略[J].生物学通报,2005,40(11):26-28
    [51]卢中秋,梁欢,胡国新等.溴苯腈毒理学研究进展[J].中国公共卫生,2008,24(8):1014-1015.
    [52]徐瑶,钱声乐,陈帆等.辛酰溴苯腈合成工艺的改进[J].温州大学学报(自然科学版,2008,29(6):17-20.
    [53]韩萍,郑舟,王兆雄等.溴苯腈高效液相色谱分析方法的研究[J].浙江化工,2002,33(3):55-56.
    [54]卢中秋,刘晓,梁欢等.溴苯腈急性中毒小鼠毒性及兔生化指标变化的实验研究[C].//第一届亚太急危重症学术大会论文集.2005:93-96.
    [55]邹静,侯志广,王思威等.气相色谱法同时测定玉米中辛酰溴苯腈和2,4-滴丁酯的残留[J].农药,2009,48(11):831-832.
    [56]Greig-Smith P.W., Recommendation of an International Workeshop on Ecotoxicology of Earthworms. Ecotoxicology of Earthworms,1992,247-261.
    [57]宋雪英,宋玉芳,孙铁珩等.土壤原生动物对环境污染的生物指示作用[J].应用生态学报,2004,15(10):1979-1982
    [58]向昌国,杨世俊,聂琴等.土壤动物对土壤环境的生物指示作用[J].中国农学通报,2007,23(4):364-367.柯欣,骆永明.
    [59]Santorufo, L., Van Gestel, C. A. M., Rocco, A.,&Maisto, G.(2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution,161,57-63.
    [60]Organization for Economic Co-operation and Development (OECD),1984. Guideline for Testing of Chemicals No207, Earthworm Acute Toxicity Test, Paris..
    [61]ISO17512-1.2008. International Standard, Soil quality-Avoidance test for deteminded the quality of soils and effects of chemicals on behavior—Part1:Test with earthworms (Eisenia fetida and Eisenia andre). Published in Switzerland.
    [62]ISO,2004. ISO16387:Soil quality—effects of pollutants on Enchytraeidae (Enchytraeus sp.)-determination of effects on reproduction and survival. ISO (International Organization for Standardization), Geneva, Switzerland.
    [63]OECD,2004. OECD220:Guidelines for testing of chemicals-Enchytraeid reproduction test. OECD (Organization for Economic Cooperation and Development), Paris, France.
    [65]Gestel, C.A.M., Dis, W.A.,1988. The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia fetida andrei (Oligochaeta). Biology and Fertility of Soils6,262-265.
    [65]Gestel, C.A.M., Ma, W.,1990. An approach to quantitative structure activity relationships (QSAR) in earthworm toxicity studies. Chemosphere.21,1023-1033.
    [66]Amorim, M.J., Sousa, IP., Nogueira, A.J.A., Soares, A.,1999. Comparison of chronic toxicity of lindane (gamma-HCH) to Enchytraeus albidus in two soil types: the influence of soil pH. Pedobiologia43,635-640.
    [67]Amorim, M.J.B., Sousa, IP., Nogueira, A.J.A., Soares, A,2002b. Bioaccumulation and elimination of C-14-lindane by Enchytraeus albidus in artificial (OECD) and a natural soil. Chemosphere.49,323-329.
    [68]Lock, K., De Schamphelaere, K.A.C., Janssen, C.R.,2002. The effect of lindane on terrestrial invertebrates. Archives of Environmental Contamination and Toxicology.42,217-221.
    [69]Spurgeon, D.J., Hopkin, S.P., Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia,1996,40,80-96.
    [70]Amorim, M.J.B., Rombke, J., Schallnass, H.J., Mortagua, A., Soares, A., Effect of soil properties and aging on the toxicity of copper for Enchytraeus albidus, Enchytraeus luxuriosus, and Folsomia candida. Environmental Toxicology and Chemistry,2005a,24,1875-1885.
    [71]Martikainen, E., Toxicity of dimethoate to some soil animal species in different soil types. Ecotoxicology and Environmental Safety,1996,33,128-136.
    [72]Amorim, M.J.B., Rombke, J., Scheffczyk, A., Soares, A., Effect of different soil types on the enchytraeids Enchytraeus albidus and Enchytraeus luxuriosus using the herbicide phenmedipham. Chemosphere,2005b.61,1102-1114.
    [73]Edwards C.A. Report of the second stage in development of a standardized laboratory method for assessing the toxicity of chemical substances to earthworms [J]. Report of Commission of the European Communities, EUR9360EN,1984,99.
    [74]An Y.J., Yang C.Y., Fridericia peregrinabunda (Enchytraeidae) as a new test species for soil toxicity assessment. Chemosphere,2009,77,325-329.
    [75]Xie Z.C., Liang Y.L., Wang H.Z. Taxonomical Studies on Fridericia (Enchytraeidae, Oligochaeta) Along the Changjiang (Yangtze) Basin-Acta Hydrobiologica Sinica,1999,12(23),158-163
    [76]Menezes-Oliveira, V.B., Scott-Fordsmand, J.J., Rocco, A., Soares, A.M.V.M., Amorim, M.J.B., Interaction between density and Cu toxicity for Enchytraeus crypticus and Eisenia fetida reflecting field scenarios. Sci. Total Environ.,2011,409,3370-3374.
    [77]Bindesbol, A.M., Mark, B.,2009. Impacts of heavy metals, polyaromatic hydrocarbons, and pesticides on freeze tolerance of the earthworm Dendrobaena octaedra. Environ. Toxicol. Chem.28,2341-2347.
    [78]Castro-Ferreira, M. P., Roelofs, D., van Gestel, C. A. M., Verweij, R. A., Soares, A. M. V. M.,&Amorim, M. J. B.(2012). Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere,87(11),1222-1227.
    [79]Gestel, C.A.M., Borgman, E., Verweij, R.A., Diez Ortiz, M., The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicol. Environ. Saf,2011,74,1-9.
    [80]Zhu, J., Lu, Y.T., Single and joint toxic effects of cadmium and phenanthrene on Enchytraediae Fridericia bulbosa. Eur. J. Soil Biol.,2008,44,260-265.
    [81]梅承芳,梁燕珍,陈进林,曾国驱,许玫英,孙国萍.浅析化学品毒性安全评价技术标准体系的构建和完善[A].中国毒理学会管理毒理学专业委员会.中国毒理学会管理毒理学专业委员会学术研讨会暨换届大会会议论文集[C].中国毒理学会管理毒理学专业委员会,2009:5.
    [82]Schmelz, R.M., Taxonomy of Fridericia (Oligochaeta, Enchytraeidae). Revision of species with morphological and biochemical methods [M]. ISBN3-931374-40-8.2003. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF)38
    [83]Fowle, J.R.,&Sexton, K., EPA Priorities for Biologic Markers Research in Environmental Health. Env Health Perspect,1992,98,235-241.
    [84]Depledge, M.H.&Fossi, M.C. The role of biomarkers in environmental assessment. Invertebrates. Ecotoxicology1994,3,161-172.
    [85]Walker, C.H. Biochemical biomarkers in ecotoxicology-some recent developments. Sci. Total Environ.1995,171,189-195
    [86]Walker, C.H., Hopkin, S.P., Sibly, R.M.; Peakall, D.B., Principles of Ecotoxicology[M],Taylor&Francis:London,1996.
    [87]Hans, R.K., Khan, M.A., Farooq, M., Beg, M.U., Glutathione S transferase activity in an earthworm (Pheretima posthuma) exposed to3insecticides. Soil Bi-ology and Biochemistry,1993,25,509-511.
    [88]Booth, L.H., O'Halloran, K. A comparison of bio-marker responses in the earthworm Aporrectodea caligi nosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environmental Toxicology and Chemistry,2001,20,2494-2502.
    [89]SaintDenis, M., Labrot, F., Narbonne, J. F., Ribera, D.(1998) Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Archives of Environmental Contamination and Toxicol-ogy35,602-614.
    [90]孔繁翔等.环境生物学[M].北京:高等教育出版社.2000,70-72
    [91]Sturzenbaum, S.R., Winters, C., Galay, M., Morgan, A.J., Kille, P., Metal ion trafficking in earthworms-Identification of a cadmium-specific metallothionein. Journal of Biological Chemistry,2001b,276,34013-34018.
    [92]Sturzenbaum, S.R., Cater, S., Morgan, A.J., Kille, P., Earthworm pre-procarboxypeptidase:a copper responsive enzyme. Biometals,2001a,14,85-94.
    [93]Scott-Fordsmand, J.J., Weeks, J.M., Biomarkers in earthworms:A review. Review of Environmental Conta-mination and Toxicology,2000,165,117-159.
    [94]Svendsen, C., Spurgeon, D.J., Weeks, J.M., Hankard, P.K., A review:Lysosomal membrane stability mea-sured by neutral red retention-is it a workable earthworm biomarker?[M],2004, Ecotoxicology and Environmental Safety IWEE III special issue.
    [95]Sorour, J., Larink, O. Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety,2001,50,180-188.
    [96]SaintDenis, M., Narbonne, J.F., Arnaud, C., Thybaud, E., Ribera, D., Biochemical responses of the earth-worm Eisenia fetida andrei exposed to contaminated artificial soil:effects of benzo(a)pyrene. Soil Biology and Biochemistry,1999,31,1837-1846.
    [97]Lock K., Janssen C.R., Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia Candida, J. Biol. Fert. Soils.2001,34(2)19-221.
    [98]Cobbett, C.,&Goldsbrough, P.. Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis,2002,53,159-182
    [99]杨晓霞,张薇,曹秀凤,刘杨,吉普辉,宋玉芳.亚致死剂量铜对蚯蚓P450酶和抗氧化酶活性的长期影响环境科学学报.2012,32(3),745-750.
    [100]Giller K.E., Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review,Soil boil. Biochem.,1998,30,1389-1414.
    [101]朱江.镉-菲复合污染对安德爱胜蚓(Eisenia andrei)和白线蚓(Fridericia bulbosa)的生态毒理效应研究[D].上海交通大学,2008.
    [102]蔡道基.农药环境毒理学研究[M],北京:中国环境科学出版,1999,213-227
    [103]Organization for Economic Co-operation and Development (OECD),2006. Current approaches in the statistical analysis of ecotoxicity data:guidance to application. Technical report.
    [104]Yang C.L., Sun T.H., Single and joint effects of pesticides and mercury on soil urease, J. J. Environ. Sci.,2007,19,210-216.
    [105]Gomez-Eyles, J.L., Svendsen, C., Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida, J. Ecotox. Environ. Safe.2009,72,71-79.
    [106]Zhou, Q.X., Wang, M.E., Liang, J.D. Ecological detoxification of methamidophos by earthworms in phaeozem co-contaminated with acetochlor and copper, J. Appl. Soil Ecol.2008,40(1),138-145.
    [107]Baratac, J. Bardd, Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multisubstance riskes assessment, J. Aquat. Toxicol.,2006,78(1),1-14.
    [108]Lecoeur, S., Videmann, B.,&Berny, P., Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in dreissena polymorpha. Environmental Research,2004,94(2),184-191.
    [109]Xiao, N.W., Jing B B, Ge F., et al, The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere,2006,62,1366-1373
    [110]徐冬梅,刘文丽,刘维屏.外源污染物对蚯蚓毒理作用研究进展[J].生态毒理学报,2009,4(1),21-27
    [111]中华人民共和国《土壤质量标准》(GB15618-1995)
    [112]Venugopal, N.B.R.K., Ramesh, T.V.D.D., Reddy, D.S.,&Reddy, S.L.N., Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab, barytelphusa guerini. Bulletin of Environmental Contamination and Toxicology,1997,59(1),132-138.
    [113]Julka, D.,&Gill, K.D., Effect of aluminum on regional brain antioxidant defense status in wistar rats. Research in Experimental Medicine,1996,196(3),187-194.
    [114]陈建明,俞晓平,吕忡贤等,除草剂和杀虫剂对褐飞虱及其天敌的影响[J],植物保护学报,1999,26(2),162-166
    [115]Honczarenko, J., Karczewska, G.,Wolender, M., Attempt to assess effects of herbicides used in lupine and field pea cultures on occurrence of soil insects, Zeszyty Naukowe Akademii Rolniczejw Szczecinie. Zootechnika[J],1982,96(18),85-96
    [116]Yamano, T.,Morito, S., Hepatotoxicity of trichlorofon and dichlorovos in isolated rat hepatocytes. Toxicology,1992,76(1),69-11.
    [117]Junqueira, V.B.C., Kosh, O.R., Arisi, A.C., Fusaro, A.P., Azzalis, L.A., Barros,S.B., Cravero, A., Farre, S., Videla, L.A., Regression of morphological alterations and oxidative stress-related parameters after acute lindane-induced hepatotoxicity in rats. Toxicology,1997,117(2,3),199-205.
    [11]Descampiaux, B.; Leroux, J.R.; Peucelle, C.; Erb, F. Assay of free-radical toxicity and antioxidant effect on the hep3B cell line:a test survey using lindane. Cell Biol. Toxicol,1996,12(1),19-28.
    [119]Slaughter, M.R.; Thakker, H.; O'Brian, P.J. Effect of diquat on the antioxidant system and cell growth in human neuroblastoma cells. Toxicol. Appl. Pharmacol.2002,178(2),63-70.
    [120]Rohrdanz, E.; Kahl, R., Alterations in antioxidant enzyme expression in response to hydrogen peroxide. Free Radic. Biol. Med.,1998,24(1),27-38.
    [121]Culotta, V.C. Superoxide dismutase, oxidative stress, and cell metabolism. In Current Topics in Cellular Regulation; Stadtman, E.R., Chock, P.B., Eds.; Academic Press:San Diego,2000,36,117-132.
    [122]Diplock, A. Antioxidants and free radical scavengers. In Free Radical Damage and its Control; Rice-Evans, C.A., Burton, R.H., Eds.; Elsevier Science:Amsterdam,1994;113-130.
    [123]Lijun, L., Xuemei, L., Yaping, G.,&Enbo, M.(2005). Activity of the enzymes of the antioxidative system in cadmium-treated oxya chinensis (orthoptera acridoidae). Environmental Toxicology and Pharmacology,20(3),412-416.
    [124]Azzalis, L.A.; Junquiera, V.B.C.; Simon, K.; Giavarotti, L.; Silva, M.A.; Simizu, K.; Barros, S.B.M.; Farga, C.; Porta, E.A. Prooxidant and antioxidant hepatic factors in rats chronically fed an ethanol regimen and treated with an acute dose of lindane. Free Radic. Biol. Med.1995,19(2),147-159.
    [125]Descampiaux, B.; Leroux, J.R.; Peucelle, C.; Erb, F. Assay of free-radical toxicity and antioxidant effect on the hep3B cell line:a test survey using lindane. Cell Biol. Toxicol.1996,12(1),19-28.
    [126]Panemangalore, M.; Bebe, F.N., Dermal exposure to pesticides modifies antioxidant enzymes in tissues of rats. Environ. Sci. Health,2000,35(4),399-416.
    [127]Rohrdanz, E., Kahl, R., Alterations in antioxidant enzyme expression hydrogen peroxide. Free Radic. Biol. Med.1998,24(1),27-38.
    [128]Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine,3rd Ed.;Oxford Univ. Press:Oxford, UK,2000;105pp.
    [129]Calabrese,E.J., Baldwin, L.A., Hormesis as a biological hypothesis. Environ.
    [130]Saint-Denis, M., Labrot, F., Narbonne, J.F.,&Ribera, D., Glutathione, glutathione-related enzymes, and catalase activities in the earthworm eisenia fetida andrei. Archives of Environmental Contamination and Toxicology,1998,35(4),602-614.
    [131]Farombi, E.O., Adelowo, O.A.,&Ajimoko, Y.R., Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in african cat fish (clarias gariepinus) from nigeria ogun river. International Journal of Environmental Research and Public Health,2007,4(2),158-165.
    [132]卜元卿,骆永明,滕应,李振高.铜暴露对赤子爱胜蚓(Eisenia fetida)抗氧化酶活力的影响[J].环境化学,2007,05:593-597.
    [133]Gutteridge, J.M.C.,&Halliwell, B., The measurement and mechanism of lipid peroxidation in biological systems. Trends in Biochemical Sciences,1990,15(4),129-135.
    [134]Olsson, P., Kling, P., Erkell, L.J.,&Kille, P. Structural and functional analysis of the rainbow trout (oncorhyncus mykiss) metallothionein-A gene. European Journal of Biochemistry,1999,230(1),344-349.
    [135]Beliaeff, B.,&Burgeot, T.(2002). Integrated biomarker response:A useful tool for ecological risk assessment. Environmental Toxicology and Chemistry,21(6),1316-1322.
    [136]Kyle, M.E., Miccadei,S. D.Nakae, Farber, J.L., Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen, Biochem. Biophys. Res. Commun,1987,149,889-896.
    [137]Goel, A., Dani, V.,&Dhawan, D. K.(2005). Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chemico-Biological Interactions,156(2-3),131-140.
    [138]李帅章,孙振钧,王冲.铜砷单一污染对蚯蚓体腔细胞的影响[J].农业环境科学学报,2008,7(6),2382-2386.
    [139]朱江,杨道丽,李志刚,王振旗,毛俊亚.作为土壤污染生物标志物的蚯蚓体腔细胞提取方法比较[J].上海交通大学学报(农业科学版),2011,03:1-5.
    [140]Scott-Fordsmand, J. J., Weeks, J. M.,&Hopkin, S. P., Importance of contamination history for understanding toxicity of copper to earthworm eisenia fetica (oligochaeta:Annelida), using neutral-red retention assay. Environmental Toxicology and Chemistry,2000,19(7),1774-1780.
    [141]Harreus, D., K"ohler, H.R., Weeks, J.M., Combined noninvasive cell isolation and neutral-red retention assay for measuring the effect of copper on the lumbricid Aporrectodea rosea (Savigny). Bull. Environ. Contam. Toxicol.,1997,59,44-49.
    [142]Svendsen, C., Spurgeon, D.J., Hankard, P.K.,&Weeks, J.M., A review of lysosomal membrane stability measured by neutral red retention:is it a workable earthworm biomarker. Ecotoxicology and Environmental Safety,2004,57,20-29.
    [143]Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G., Biomonitoring:an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta., 2008,606,135-150.
    [144]Peter, M.E., Heufelder, A.E., Hengartner, M.O., Advances inapoptosis research. Proc Natl Acad Sci USA,1997,94(24),12736-127373
    [145]Pennell, R.I., Lamb, C., Programmed cell death in plants. Plant Cell,1997,9(7),1157-11685
    [146]Pena, F.J., Johannisson, A., Wallgren, M.&Rodriguez-Martinez, H., Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay:a new method of evaluating sperm membrane integrity, Theriogenology,2003,60(4),677-689
    [147]Valembois, P., Roch, P.h., Du. Pasquier L., Degradation in vitro de proteine etrangere par les macrophages du lombricien Eisenia fetida Sav [C]. CR Acad Sci
    Paris,1973,277,57-60.
    [148]Ville, P., Roch, P., Cooper, E.L. et al., PCBs increase molecular-related activities (lysozyme, antibacterial, hemolysis, proteases) but inhibit macrophage-related functions (phagocytosis, wound healing) in the earthworms [J]. J. Invert Pathol,1997,65,217-224.
    [149]Hendawi, M., Sauve, S., Ashour, M. et al., A new ultrasound protocol for extrusion of coelomocyte cells from the earthworm Eisenia fetida [J]. Ecotoxicol Environ Saf,2004,59(1),17-22.
    [150]Kurek, A.&Plytycz, B., Annual changes in coelomocytes of four earthworm species [J]. Pedobiologia,2003,47,689-701.
    [151]Weeks, J.M., Svendsen, C., Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes:A simple biomarker of exposure to soil. Environ Toxicol Chem,1996,15(10),801-1805.
    [152]Maboeta, M.S., Reinecke, S.A.&Reinecke, A.J., The relation between lysosomal biomarker and population responses in a field population of Microchaetus sp.(Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol. Environ. Saf.2002,52,280-287.
    [153]Pena, F.J., Johannisson, A., Wallgren, M.&Rodriguez-Martinez, H., Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay:a new method of evaluating sperm membrane integrity, Theriogenology,2003,60(4),677-689
    [154]Brousseau, P., Fugere, N., Bernier, J. et al., Evaluation of earthworm exposure to contaminated soil by cytometric assay of coelomocytes phagocytosis in Lumbricus terrestris (Oligochaeta)[J]. Soil Biol. Biochem,1997,29,681-684.
    [155]Jensen, J., Diao, X., Scott-Fordsmand, J.J., Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker. Chemosphere,2007,68,744-750.
    [156]Gestel, C.A.M., Koolhaas, J.E., Hamers, T., van Hoppe, M., van Roovert, M.,Korsman, C., Reinecke, S.A., Effects of metal pollution on earthworm communities in a contaminated floodplain area:linking biomarker. Community and functional responses. Environ. Pollut.,2009,157,895-903.
    [157]Regoli, F., Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Mar. Ecol. Prog. Ser.,1992,84,63-69
    [158]Reinecke, S.A.,&Reinecke, A.J., Lysosomal response of earthworm coelomocytes induced by long-term experimental exposure to heavy metals. Pedobiologia,1999,43,585-593.
    [159]Scott-Fordsmand, J.J., Weeks, J.M., Hopkin, S.P., Toxicity of nickel to the earthworm Eisenia veneta (Oligochaeta:annelida) and the applicability of the neutral-red retention assay to indicate nickel toxicity. Ecotoxicology.1998,7,291-295.
    [160]Reinecke, S.A., Helling, B., Reinecke, A.J., Lysosomal response of earthworm (Eisenia fetida) coelomocytes to the fungicide copper oxychloride and relation to life-cycle parameters. Environ. Toxicol. Chem.2002,21,1026-1031.
    [161]Gupta, S.K., Neutral red retention by earthworm coelomocytes:A biomarker of cadmium contamination in soil.Biomed Environ Sci,2000,13(2),117-121
    [162]Sikkema, J., De Bont, J.A.M., Poolman, B., Interactions of cyclic hydrocarbons with biological membrane, J. Biol. Chem.,1994,269,8022-8028.
    [163]夏嫱.重金属Ni2+、Zn2+胁迫对斜纹夜蛾及其寄生蜂的影响研究[D].中山大学,2005.
    [164]翟琦巍,季红斌,郑仲承等.镉离子诱导BA/F3β细胞发生奇特的细胞凋亡.生物化学与生物物理学报,2000,32(1),77-80
    [165]Sokolova, I.M., Evans, S.,&Hughes, F.M., Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. Journal of Experimental Biology,2004,207(19),3369-3380.
    [166]于佳明,徐兆发,徐斌等.汞致肾细胞凋亡的量效关系研究[J].毒理学杂志,2005,19(4),287-289.
    [167]王晓齐.茚虫威诱导斜纹夜蛾细胞凋亡的研究[D].华南农业大学,2007.
    [168]胡雄飞.氟虫腈对PC12细胞毒作用及其机制的初步探讨[D].华中科技大学,2009.
    [169]李涛,钟玉芳,石年等.溴氰菊酯诱导H4神经胶质瘤细胞凋亡机制研究[J].环境与健康杂志,2007,24(10),759-761.
    [170]赵凯.胰凝乳蛋白酶参与细胞凋亡与溶酶体膜通透[D].中国科学院研究生 院,2011.
    [171]Guicciardi, M.E., Leist, M., Gores, G.J., Lysosomes in cell death. Oncogene,2004,23(16),2881-90
    [172]Leist, M., Jaattela, M., Triggering of apoptosis by cathepsins. Cell Death Differ,2001,8(4),324-6
    [173]Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Rep,2001,6(2),91-7
    [174]Bursch, W., The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ,2001,8(6),569-81
    [175]Terman, A., Kurz, T., Gustafsson, B. etal., Lysosomal labilization. IUBMB Life,2006,58(9),531-9
    [176]Maliszewska-Kordybach, B.,&Smreczak, B., Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International,2003,28(8),719-728.
    [177]Cevik, N.,&Karaca, A., Effect of cadmium, zinc, copper and fluoranthene on soil bacteria. Fresenius Environmental Bulletin,2006,15(7),619-625.
    [178]Jaattela, M., Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene,2004,23(16),2746-56
    [179]Mohamed, M.M., Sloane, B.F., Cysteine cathepsins:multifunctional enzymes in cancer. Nat Rev Cancer,2006,6(10),764-75
    [180]朱江,镉-菲复合污染对安德爱胜蚓(Eisenia andrei)和白线蚓(Fridericia bulbosa)的生态毒理效应研究,《上海交通大学博士论文》,2008-05-01,111-112.
    [181]Citterio, S., Aina, R., Labra, M., Ghiani, A., Fumagalli, P., Sgorbati, S.&Santagostino, A., Soil genotoxicity assessment:a new strategy based on biomolecular tools and plant bioindicators. Environmental science&technology2002,36,2748-2753.
    [182]Spurgeon, D. J., Weeks, J. M.,&Van Gestel, C. A. M. A., summary of eleven years progress in earthworm ecotoxicology. Pedobiologia,2003,47(5-6),588-606.
    [183]Zhu, J., Zhao, Z.Y.,&Lu, Y.T. Evaluation of genotoxicity of combined soil pollution by cadmium and phenanthrene on earthworm. Journal of Environmental Sciences (China),2006,18(6),1210-1215.
    [184]Singh, N.P., Mecoy, M.T., Tice, B.R. et al., A simple technique for quantitation of low levels of DNA damage in individual cells [J]. Experimental Cell Research,1988,175,184-191.
    [185]Rajaguru, P., Suba, S., Palanivel, M.&Kalaiselvi, K., Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environmental and Molecular Mutagenesis,2003,41,85-91.
    [186]Bigorgne, E., Cossu-Leguille, C., Bonnard, M.&Nahmani, J. Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm. Chemosphere,(2010),80,1109-1112.
    [187]Fourie, F., Reinecke, S. A.&Reinecke, A. J., The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicology and Environmental Safety,2007,67,361-368.
    [188]王志翊,卢中秋,邱俏檬,洪广亮,梁欢,吴斌.巯基化合物对溴苯腈中毒小鼠脑能量代谢影响[J].中国公共卫生,2010,02:239-240.
    [189]Savage, D.F.&Stroud, R.M., Structural basis of aquaporin inhibition by mercury. Journal of molecular biology,2007,368,607-617.
    [190]Izumi, Y., Sonoda, S., Yoshida, H., Danks, H. V.,&Tsumuki, H., Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, chilo suppressalis walker (lepidoptera:Pyralidae). Journal of Insect Physiology,2006,52(2),215-220.
    [191]高怀友,赵玉杰,师荣光等.区域土壤环境质量评价基准研究[J].农业环境科学学报,2005,24(1):342-345.
    [192]陈梦舫,骆永明,宋静,李春平,吴春发,罗飞,韦婧,污染场地土壤通用评估基准建立的理论和常用模型.环境监测管理与技术,2011,23(3),19-25.
    [193]CHEN M. Analytical integration procedures for the derivation of risk based or generic assessment criteria for soil. Human and Ecological Risk Assessment,2010b,16,1259-1317.
    [194]Chang, L.W., Meier, J.R, Smith, M.K., Application of plant and earthworm bioassays to evaluate remediation of a lead contaminated soil. A. rch. Environ. Toxicol.,1997,32,166-171.
    [195]郑丽萍,林玉锁,冯艳红,赵欣,徐建,氯丹和灭蚁灵污染场地土壤对陆生生物的毒性效应.应用与环境生物学报,2012,18(1),093-099.
    [196]宋玉芳,许华夏,任丽萍,龚平,周启星.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001,20(3),4-8.
    [197]ISO, International Standard Organizition, Soil Quality-Determination of the Effects of Pollutants on Soil. In Draft International Standard),1992, DIS11269-1.
    [198]OECD, Organization for Economic Cooperation and Development. Terrestrial Plants:Growth Test,OECD Guideline for Testing of Chemicals,1984,207
    [199]宋玉芳,周启星,许华夏,任丽萍,孙铁珩,龚平.土壤重金属污染对蚯蚓的急性毒性效应研究[J].应用生态学报,2002,02:187-190.
    [200]Wang,W.C., Literature Review on Higher Plants for Toxicity Testing. Water, Air, and Soil Pollution.1991,59,381-400.
    [201]冯嫣,吕永龙,焦文涛,王铁宇,汪光,史雅娟,罗维.北京市某废弃焦化厂不同车间土壤中多环芳烃(PAHs)的分布特征及风险评价[J].生态毒理学报,2009,03,399-407.
    [202]CCME, Canadian Council of Ministers of the Environment,1996a. CCME-EPC-101E A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines [S].Ottawa, Canada:CCME
    [203]CCME, Canadian Council of Ministers of the Environment).1996b.En-108-4/91996E Guidance Manual for Developing Site-Specific Soil Quality Remediation Objectives for Contaminated Sites in Canada [S].Ottawa, Canada:CCME
    [204]Maliszewska-Kordybach B., Poly cyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination [J].Applied Geochemistry,1996,11(1-2),121-127.
    [205]Tsai, P.J., Shih, T.S., Chen, H.L., Lee, W.J., Lai, C.H.,&Liu, S.H. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to high-way toll station workers. Atmospheric Environment,2004,38,333-343.
    [206]Crnkovic, D., Ristic, M., Jovanovic, A.,&Antonovic, D., Levels of PAHs in the soils of belgrade and its environs. Environmental Monitoring and Assessment,2007,125(1-3),75-83.
    [207]VROM, Environmental quality objectives in the Nederlands. Ministry of Housing, Spatial Planning and Environment,1994.
    [208]Alva A.K, Huang B., Paramasivam S. Soil pH affects copper fractionation and phytotoxicity [J]. Soil Science Society of America Journal,2000.64:955-962
    [209]Lukkari, T., Taavitsainen, M., Visnen, A., Haimi, J., Effects of heavy metals on earthworms along contamination gradients inorganic rich soils [J]. Ecotoxicoloty and Environmental Safety,2004,59,340-348.
    [210]Chang, L.W., Meier, J.R., Smith M.K., Application of plant andearthworm bioassays to evaluate remediation of a lead2contaminatedsoil. A. rch. Environ. Toxicol.,1997,32,166-71
    [211]宋玉芳,周启星,许华夏,任丽萍,宋雪英,龚平.菲、芘、1,2,4-三氯苯对蚯蚓的急性毒性效应[J].农村生态环境,2003,01:36-39.
    [212]金鑫,林玉锁,徐建,张胜田,田猛,张孝飞,俞飞,徐亦钢,刘鹏.某有机废弃场地土壤化学分析与生态毒性诊断研究[J].农业环境科学学报,2008,06:2216-2221.
    [213]White, H. K., Xu, L., Lima, A. L. C., Eglinton, T. I.,&Reddy, C. M. Abundance, composition, and vertical transport of PAHs in marsh sediments. Environmental Science and Technology,2005,39(21),8273-8280.
    [214]郭观林,周启星.土壤-植物系统复合污染研究进展[J].应用生态学报,2003,05:823-828.
    [215]Alva, A.K., Graham, J.H.,&Anderson, C.A. Soil pH and copper effects on young hamlin' orange trees. Soil Science Society of America Journal,1995,59(2),481-487.
    [216]Lukkari, T.,&Haimi, J. Avoidance of cu-and zn-contaminated soil by three ecologically different earthworm species. Ecotoxicology and Environmental Safety,2005,62(1),35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700