醋酸乙烯酯可逆加成断裂链转移自由基聚合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醋酸乙烯酯(Vinyl acetate,VAc)是一种工业上广泛应用的非共轭乙烯基单体,可以采用黄原酸酯为RAFT试剂、利用可逆加成断裂链转移(RAFT)机理进行该单体的“活性”/可控自由基聚合,从而可以通过进料控制策略实现聚合物链组成与序列结构的控制,制备具有特定链结构的聚醋酸乙烯酯均聚物和共聚物。VAc的自由基异常活泼,在聚合中容易发生向聚合物的链转移反应,实现VAc的“活性”/可控自由基聚合是一个挑战。
     研究与开发VAc RAFT聚合过程要解决两个核心问题:一是聚合的动力学特征,即聚合的快慢(过程)与多少(平衡);二是聚合物的分子特征,即数均分子量的大小、分子量分布以及聚合过程中数均分子量随转化率是否具有线性增长关系的“活性”特征。
     针对聚合的动力学特征和聚合物的分子特征,本文就黄原酸酯RAFT试剂结构、RAFT试剂与引发剂的比例[RAFT]/[I]、引发剂的类型与浓度、溶液及细乳液的聚合实施方法,以及反应型助稳定剂对VAc RAFT聚合的影响与作用展开研究,得到了如下结论.
     在乙酸乙酯溶剂体系中考察了RAFT试剂结构、[RAFT]/[I]、单体浓度对VAcRAFT溶液聚合规律的影响。发现RAFT试剂Z基团的吸电子能力对聚合动力学和链可控性有显著影响,Z基团具有较强吸电子能力的MPhSA和CPDB在溶液、本体和细乳液体系中的聚合均导致缓聚和阻聚,而Z基团具有一定推电子能力的MMSA、MESA、MiPSA均可以有效的调控VAc进行RAFT聚合。聚合物的数均分子量随转化率线性增加,分子量分布指数在1.2~1.6之间,具有良好的链可控性。
     考察并比较了MMSA为RAFT试剂的VAc RAFT溶液聚合和细乳液聚合的聚合动力学特征与聚合物分子特征,研究表明两者均有较好的“活性”/可控聚合特征。与溶液聚合相比,细乳液聚合具有诱导期短、增长速率快、最终聚合转化率高、聚合物数均分子量高,同时聚合在水介质中进行,环境友好、能耗低,是VAc RAFT聚合工业实施的理想体系,但分子量分布较溶液聚合产物略宽。不同聚合体系中虽然程度不同,但是链自由基的终止和链自由基向聚合物链转移是造成可控性下降的主要原因。
     系统研究了RAFT试剂结构、引发剂类型、[RAFT]/[I]、乳化剂类型对VAcRAFT细乳液聚合规律的影响。发现在细乳液体系中MMSA、MESA、MiPSA同样可以较好的调控VAc RAFT聚合;水溶性引发剂引发的聚合诱导期短、聚合速率快、最终转化率高。随着[RAFT]/[I]的增加,聚合阻聚和缓聚程度增加。以V44为引发剂的聚合体系诱导期最短、聚合速率最快、最终转化率最高,这与水溶性引发剂的引发效率高、阴离子型乳化剂SDS稳定的单体液滴有利于捕获V44自由基有关。
     研究并制备了窄分子量分布的α-乙烯基聚有机氟硅氧烷(分子量分布指数小于1.1),并以其替代十六烷作为细乳液聚合的助稳定剂,考察了此类反应型助稳定剂对VAc RAFT细乳液聚合规律的影响。发现采用SDS/OP10的复合乳化剂体系时,VAc的RAFT聚合可控性较好,但是乳胶粒径呈多峰分布;由于α-乙烯基聚有机氟硅氧烷与VAc共聚活性低,造成了采用α-乙烯基聚有机氟硅氧烷为助稳定剂的细乳液聚合中长期存在一些没有成核的单体液滴,在聚合温度下这些单体液滴容易聚并,造成了细乳液乳胶粒径呈多峰分布。
     本文初步研究了VAc RAFT聚合中聚合动力学特征和聚合物链结构特征,所得结论为VAc RAFT聚合的实际应用提供了依据。
As a kind of non-conjugated monomer with wide industrial applications,the RAFT polymerization of vinyl acetate mediated by xanthate proceeds in controlled way.Through feeding strategy,the composite and sequence structure of polymer can be controlled and PVAc homopolymer and copolymer with special structure can be prepared.Because of very high reactivity of the vinyl acetate propagating radical, chain transfer and termination often take place in polymerization of VAc.So,it is a big challenge to realize "living"/controlled free radical polymerization of VAc.
     During RAFT polymerization of vinyl acetate,tow problems should be solved: dynamic characterizations,i.e.polymerization rate and final conversion of VAc,the other one is chain structure characterizations,i.e.average molecular weight, molecular weight distribution and "living" nature:if Mn of polymer increases linearly with conversion.
     This paper focuses on the tow problems during RAFT polymerization of VAc. The effects of RAFT agents,ratio of RAFT to initiator,type of initiator, polymerization systems and reactive costabilizer on RAFT polymerization of VAc were carried out.
     The reversible addition fragmentation chain transfer radical polymerization of vinyl acetate(VAc) was carried out in ethyl acetate.The effects of RAFT agents,ratio of RAFT to initiator and monomer concentration were studied.The draw electricity ability of Z group in RAFT agent has prominent effect on dynamics and controlling characterization of chain.In the presence of MPhSA and CPDB with strong drawing electricity ability of Z groups,RAFT polymerization of VAc showed inhibition and retardation.In the presence of MMSA,MESA and MiPSA with repelling electricity ability of Z groups,the RAFT radical polymerization of VAc could proceed in a "living"/controlled way,the number-average molecular weight of PVAc increased linearly with the conversion,the PDI is 1.2~1.6.
     The RAFT polymerizations of VAc mediated by MMSA in solution and miniemulsion were carried out.All polymerizations of VAc preceeded in controlled way.Compared with solution polymerizations,the induction period in RAFT miniemulsion polymerization initiated by KPS was the shortest,propagation coefficient was the highest and molecular weight was the highest.At the same time, miniemulsion is an environmentally friendly system to carry out RAFT polymerization of VAc.The PDI of polymer obtained from miniemulsion was higher than that in solution polymerization.Losing activity of RAFT agent and chain transfer to polymer were responsible for losing control of polymerization.
     The effects of xanthate,the type of initiator,the ratio of xanthate to initiator and the type of emulsifier on RAFT miniemulsion polymerization of VAc were investigated.The polymerization of VAc mediated by MMSA,MESA,MiPSA could proceed in controlled way.The polymerization initiated by water-soluble initiator showed shortest inhibition period,fastest rate and highest conversion than other initiators.With increasing of RAFT agent,inhibition and retardation of polymerization are increasing.Initialed by V44,the polymerizations showed shortest inhibition period,fastest rate and highest conversion.
     Instead of HD withα-vinyl organosiloxane polymer as costabilizer,the RAFT miniemulsion of VAc was carried out.Multiple peaks were observed in the latex particle size distribution stabilized by SDS/OP10 emulsifier system,the polymerization of VAc preceded in controlled way.Through qualitative analysis by ~1H-NMR,the reason of multiple peaks in latex particle size distribution was coalescent of droplet under polymerization temperature.
     Dynamic and chain structure characterizations in RAFT polymerization of VAc was studied and conclusions were in favor of realizing application of VAc RAFT polymerization.
引文
[1]Erbil,Y.H.Vinyl acetate emulsion polymerization and copolymerization with acrylic monomers.Florida:CRC publisher,2000.
    [2]Martina,S.H.;Cummins,L.;Roberts,G.E.;et al.Xanthate mediated living polymerization of vinyl acetate:a systematic variation in MADIX-RAFT agent structure.Macromolecular Chemistry and Physics,2003,204(9):1160-1168.
    [3]Grimaldi,S.;Finer,J.P.;Zeghdaoui,A.;et al.Synthesis and applications to "living" free radical polymerization of a new class of nitroxyl radicals.Polymer Preprint,1997,38(213):651-654.
    [4]Wang,J.S.;Matyjaszwski.K.Controlled/"living" radical polymerization,halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Cu(Ⅱ) redox process.Macromolecules,1995,28(23):7901-7910.
    [5]Kato,M.;Kamigaito,M.;Sawamoto,M.;et al.Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995,28(5): 1721-1723.
    
    [6] Chiefari, J.; Chong, Y.K.; Ercole, F.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT Process. Macromolecules, 1998, 31(16): 5559-5562.
    
    [7] Chong, Y.K.; Le T.P.T.; Moad, G.; et al. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules, 1999,32(6): 2071-2074.
    
    [8] Arnaud, F.; Christopher, B.K.; Thomas, P.D. A detailed on-line FT/NIR and ~1H NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization. Macromolecular Chemistry and Physics, 2004, 205(7): 925-936.
    
    [9] Ryan, W.S.; Thomas, P.D.; Michael, F.C. Xanthate-mediated living radical polymerization of vinyl acetate in miniemulsion. Macromolecular Rapid Communications, 2005,26(8): 592-596.
    
    
    [10]Russum, J.P.; Barbre, N.D.; Jones, CW. Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43(10): 2188-2193.
    [1]周其凤,胡汉杰.高分子化学.北京:化学工业出版社,2004:105-130.
    [2] Chiefari, J.; Chong, Y.K.; Ercole, F.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31(16): 5559-5562.
    
    [3] Le, T.P.M.G.; Rizzardo, E.; Thang, S.H. Polymerization with Living Characteristics, WO9801478, 1998.
    
    [4] Drache, M.; Schmidt-Naake, G.; Buback, M.; et al. Modeling RAFT polymerization kinetics via Monte Carlo methods: cumyl dithiobenzoate mediated methyl acrylate polymerization. Polymer, 2005,46(19): 8483-8493.
    
    [5] Perrier, S.; Barner-Kowollik, C.; Quinn, J.F.; et al. Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules, 2002, 35(22): 8300-8306.
    
    [6] Arita, T.; Beuermann, S.; Buback, M.; et al. RAFT polymerization of methyl acrylate in carbon dioxide. Macromolecular Materials and Engineering, 2005, 290(4): 283-293.
    
    [7] Moad, G.; Cheifari, J.; Mayadunne, R.T.A.; et al. Initiating free radical polymerization. Macromolecular Symposia, 2002, 182: 65-80.
    
    [8] McLeary, J.B.; McKenzie, J.M.; Tonge, M.P.; et al. Initialisation in RAFT-mediated polymerisation of methy acrylate. Chemical Communications, 2004, 17: 1950-1951.
    
    [9] Chernikova, E.; Morozov, A.; Leonova, E.; et al. Controlled free-radical polymerization of n-butyl acrylate by reversible addition-fragmentation chain transfer in the presence of tert-butyl dithiobenzoate. a kinetic study. Macromolecules, 2004, 37(17): 6329-6339
    
    [10]Moad, G.; Mayadunne, R.T.A.; Rizzardo, E.; et al. Kinetics and mechanism of RAFT polymerization. ACS Symposium Series, 2003, 854: 520-535.
    
    [11]Vana, P.; Davis, T.P.; Barner-Kawollik, C. Kinetic analysis of reversible addition fragmentation chain transfer (RAFT) polymerizations: conditions for inhibition, retardation, and optimum living polymerization. Macromolecular Theory and Simulations, 2002, 11(8): 823-835.
    
    [12]Kwak,Y.; Goto, A.; Tsujii. Y.; et al. A kinetic study on the rate retardation in radical polymerization of styrene with addition-fragmentation chain transfer. Macromolecules, 2002, 35(8): 3026-3029.
    
    [13]Kwak, Y.; Goto, A.; Komatsu, K.; et al. Characterization of low-mass model 3-arm stars produced in reversible addition-fragmentation chain transfer (RAFT) process. Macromolecules, 2004, 37(12): 4434-4440.
    
    [14]Barner-Kowollik, C.; Quinn, J. F.; Morsley, D.R.; et al. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: assessing rate coefficients for the addition-fragmentation equilibrium. Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39(9): 1353-1365.
    [15]Goto, A.; Sato, K.; Tsujii, Y.; et ai. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules, 2001, 34(3): 402-408.
    
    [16]Barner-Kowollik, C.; Quinn, J. F.; Nguyen, T.L.U.; et al. Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate. Macromolecules, 2001, 34(22): 7849-7857.
    
    [17]Monteiro, M. J.; de Brouwer, H. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2001, 34(3): 349-352.
    
    [18]Moad, G.; Chiefari, J.; Chong, Y.K.; et al. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polymer International, 2000, 49(9): 993-1001.
    
    [19]Vana, P.; Davis, T.R.; Barner-Kowollik, C. Easy access to chain-length-dependent termination rate coefficients using raft polymerization. Macromolecular Rapid Communications, 2002, 23(16): 952-956.
    
    [20]Plummer, R.; Goh, Y.K.; Whittaker, A.K.; et al. Effect of impurities in cumyl dithiobenzoate on RAFT-mediated polymerizations. Macromolecules, 2005, 38(12): 5352-5355.
    
    [21]Wang, A.R.; Zhu, S.P.; Kwak, Y.; et al. A difference of six orders of magnitude: a reply to "The magnitude of the fragmentation rate coefficient". Journal of Polymer Science: Part A: Polymer Chemistry, 2003,41(18): 2833-2839.
    
    [22]Barner-Kowollik, C.; Buback, M.; Charleux, B.; et al. Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44(20): 5809-5831.
    
    [23]Coote, M.L.; Krenske, E.H.; Izgorodina, E.I. Computational studies of RAFT polymerization-mechanistic insights and practical applications. Macromolecular Rapid Communications, 2006,27(7): 473-497.
    
    [24]Feldermann, A.; Coote, M.L.; Stenzel, M.H.; et al. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization. Journal of American Chemical Society, 2004, 126(48): 15915-15923.
    
    [25]Ah Toy, A.; Vana, P.; Dais, T. P.; Barner-Kowollik, C. Reversible addition fragmentation chain transfer (raft) polymerization of methyl acrylate: detailed structural investigation via coupled size exclusion chromatography-electrospray ionization mass spectrometry (SEC-ES1-MS). Macromolecules, 2004, 37(3): 744-751.
    
    [26]Barner-Kowollik, C.; Coote, M.L.; Davis, T.P.; et al. The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: comment on the magnitude of the fragmentation rate coefficient. Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41(18): 2828-2832.
    
    [27]Barner-Kowollik, C.; Vana, P.; Quinn, J.F.; et al. Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by radiation. Journal of Polymer Science: Part A: Polymer Chemistry, 2002, 40(8): 1058-1063. Vana, P.; Quinn, J.F.; Davis, T.P.; et al. Recent advance in the kinetic of reversible addition fragmentation chain-transfer polymerization. Australian Journal of Chemistry, 2002, 55(6-7): 425-431.
    
    [28]Barner-Kowollik, C.; Daivs, T.P.; Heuts, J.P. A.; et al. RAFTing down under: tales of missing radicals, fancy architectures, and mysterious holes. Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41(3): 365-375.
    
    [29]Davis, T.P.; Barner-Kowollik, C.; Nguyen, T.LU.; et al. ACS Symposium Series, 2003, 854: 551-569.
    
    [30]Calitz, F.M.; Tonge, M.P.; Sanderson, R.D. Kinetic and electron spin resonance analysis of raft polymerization of styrene. Macromolecules, 2003,36(1): 5-8.
    
    [31]Monteiro. M. Design strategies for controlling the molecular weight and rate using reversible addition-fragmentation chain transfer mediated living radical polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 2005,43(15): 3189-3204.
    
    [32]Arita, T.; Buback, M.; Janssen, O.; et al. RAFT-polymerization of styrene up to high pressure: rate enhancement and improved control. Macromolecular Rapid Communications, 2004, 25(15): 1376-1381.
    
    [33]Arita, T.; Buback, M.; Janssen, O.; et al. RAFT polymerization of methyl acrylate in carbon dioxide. Macromolecular Materials and Engineering, 2005, 290(4): 283-293.
    
    [34]Arita, T.; Buback, M.; Vana, P. Cumyl dithiobenzoate mediated raft polymerization of styrene at high temperatures. Macromolecules, 2005,38(19): 7935-7943.
    
    [35]Calitz, F. M.; McLeary, J.B.; McKenzie, J.M.; et al. Evidence for termination of intermediate radical species in raft-mediated polymerization. Macromolecules, 2003, 36(26): 9687-9690.
    
    [36]De Brouwer, H.; Schellekens, M.A.J.; Klumperman, B.; et al. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization Journal of Polymer Science: Part A: Polymer Chemistry, 2000, 38(19): 3596-3603.
    
    [37]Venkatesh, R.; Staal, B.B.P.; Klumperman, B.; et al. Characterization of 3- and 4-arm stars from reactions of poly(butyl acrylate) RAFT and ATRP precursors. Macromolecules, 2004, 37(21): 7906-7917.
    
    [38] Wang, A.R.; Zhu, S.P. Modeling the reversible addition-fragmentation transfer polymerization process. Journal of Polymer Science: Part A: Polymer Chemistry, 2003,41 (11): 1553-1566.
    [39]Wang, A.R.; Zhu, S.P. Calculations of monomer conversion and radical concentration in reversible addition-fragmentation chain transfer radical polymerization. Macromolecular Theory and Simulations, 2003, 12(9): 663-668.
    
    [40]Kwak, Y.; Goto, A.; Fukuda, T. Rate retardation in reversible addition-fragmentation chain transfer (RAFT) polymerization: further evidence for cross-termination producing 3-arm star chain. Macromolecules, 2004, 37(4): 1219-1225.
    
    [41]Hawthorne, D.G.; Moad, G.; Rizzardo, E.; et al. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT): direct ESR observation of intermediate radicals. Macromolecules, 1999, 32(16): 5457-5459.
    
    [42]Du, F.S.; Zhu, M.Q.; Guo, H.Q.; et al. An ESR study of reversible addition-fragmentation chain transfer copolymerization of styrene and maleic anhydride. Macromolecules, 2002, 35(17): 6739-6741.
    
    [43]Alberti, A.; Benaglia, M.; Laus, M.; et al. Direct ESR detection of free radicals in the RAFT polymerization of styrene. Macromolecules, 2003,36(3): 736-740.
    
    [44]Shen, J.; Tian, Y.; Wang, G. Modeling and kinetics study on radical polymerization of MMA in bulk. 1 propagation and termination rate coefficient and initiation efficiency. Macromolecular Chemistry, 1991, 192(36): 2669-2685.
    
    [45]Tonge, M.P.; Kajiwara, A.; Kamachi, M.; et al. ESR measurements of the propagation rate coefficient for styrene free radical polymerization. Polymer, 1998, 39(11): 2305-2313.
    
    [46]Yamada, B.; Westmoreland, D.G.; Kobatake, S.; et al. ESR spectroscopic studies of radical polymerization. Progress in Polymer Science, 1999, 24(4): 565-630.
    
    [47]Carswell, T.G.; Hill, D.J.T.; Londero, D.L.; et al. Kinetic parameters for polymerization of methyl methacrylate at 60 °C. Polymer, 1992, 33(4): 137-140.
    
    [48]Feldermann, A.; Toy, A.A.; Davis, T.P.; et al. An in-depth analytical approach to the mechanism of the RAFT process in acrylate free radical polymerizations via coupled size exclusion chromatography-electrospray ionization mass spectrometry (SEC-ES1-MS). Polymer, 2005, 46(19): 8448-8457.
    
    [49]Matyjaszewski, K.; Thomas, P.D. Handbook of radical polymerization. Wiley, New York, 2004.
    
    [50]Gold, L. Statistics of polymer molecular size distribution for an invariant number of propagating chains. Journal of Chemical Physics, 1958, 28(4): 91-99.
    
    [51]Coleman, B.D.; Fox, T.G. A multistate mechanism for homogeneous ionic polymerization. II. the molecular weight distribution. Journal of American Chemistry Society, 1963, 85(9): 1241-1244.
    
    [52]Martina, S.H.; Cummins, L.; Roberts, GE.; et al. Xanthate mediated living polymerization of vinyl acetate a systematic variation in MADIX-RAFT agent structure.Macromolecular Chemistry and Physics,2003,204(9):1160-1168.
    [53]Moad,G.;Rizzardo,E.;Thang,S.H.Living radical polymerization by the RAFT process.Australian Journal of Chemistry,2005,58(6):379-410.
    [54]Lebreton,P.;Ameduri,B.;Boutevin,B.;et al.Use of original-perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT).Macromolecular Chemistry and Physics,2002,203(3):522-537.
    [55]Mayadunne,R.T.A.;Rizzardo,E.;Chiefari,J.;et al.Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer(RAFT) agents:ABA triblock copolymers by radical polymerization in two steps.Macromolecules,2000,33(2):243-245.
    [56]Mayadunne,R.T.A.;Rizzardo,E.;Chiefari,J.;et al.Living radical polymerization with reversible addition-fragmentation chain transfer(RAFT polymerization) using dithiocarbamates as chain transfer agents.Macromolecules,1999,32(21):6977-6980.
    [57]Laus,M.;Papa,R.;Sparnacci,K.;et al.Controlled radical polymerization of styrene with phosphoryl-and(thiophosphoryl) dithioformates as RAFT agents.Macromolecules,2001,34(21):7269-7275.
    [58]Charmot,D.;Chang,H.T.;Huefner,P.Control agents for living-type free radical polymerization,methods of polymerizing and polymers with same.US 6380335,2002.
    [59]Kanagasabapathy S.;Sudalai A.;Benicawicz B.C.Reversible addition-fragmentation chain-transfer polymerization for the synthesis of poly(4-acetoxystyrene) and poly (4-acetoxystyrene)-block-polystyrene by bulk,solution and emulsion techniques.Macromolecular Rapid Communications,2001,22(13):1076-1080.
    [60]Zhu J.;Zhou D.;Zhu X.;et al.Reversible addition fragmentation chain transfer polymerization of isobutyl methacrylate.Journal of Macromolecular Science:Pure and Applied Chemistry,2004,41(9):1059-1070.
    [61]Severac R.,Lacroix-Desmazes P.,Boutevin B.Reversible addition-fragmentation chain-transfer(RAFT) copolymerization of vinylidene chloride and methyl acrylate.Polymer International,2002,51(10):1117-1122.
    [62]Butte,A.;Storti,G.;Morbidelli,M.Miniemuision living free radical polymerization by RAFT.Macromolecules,2001,34(17):5885-5896.
    [63]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社1997.
    [64]Coote,M.L.A quantum-chemical approach to understanding reversible addition fragmentation chain-transfer polymerization.Australian Journal of Chemistry,2004,57(17):1125-1132.
    [65]Huang,X.Y.Controlled miniemulsion polymerization via the RAFT process.Ph.D Dissertation,Lehigh University,2003.
    [66]Tsavalas,J.G.;Schork,F.J.;De Brouwer,H.;et al.Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions.Macromolecules,2001,34:3983-3946
    [67]Luo,Y.W.;Liu,B.;Wang,Z.H.;et al.Butyl acrylate RAFT polymerization in miniemulsion.Journal of Polymer Science:Part A:Polymer Chemistry,2007,45(11):2304-2315.
    [68]Vosloo,J.J.;De Wet-Roos,D.;Tonge,M.P.;et al.Controlled free radical polymerization in water-brone dispersion using reversible addition-fragmentation chain transfer.Macromolecules,2002,35(13):4894-4902.
    [69]McLeary,J.B.;Tonge,M.P.;De Wet Roos,D.;et al.Controlled,radical reversible addition-fragmentation chain-transfer polymerization in high-surfactant-concentration ionic miniemulsions.Journal of Polymer Science:Part A:Polymer Chemistry,2004,42(4):960-974.
    [70]De Brouwer H."Living" Radical Polymerization in homogeneous and heterogeneous media PhD Thesis,Georgia Institute of Technology,2005.
    [71]Arnaud,F.;Christopher,B.K.;Thomas,P.D.A detailed on-Line FT/N1R and ~1H NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization.Macromolecular Chemistry and Physics,2004,205(7):925-936.
    [72]张颖,徐冬梅,张可达.醋酸乙烯酯的可控/活性自由基聚合.功能高分子学报,2005,18(3):526-533.
    [73]Taton,D.;Wilczewska,A.Z.;Destarac,M.Xanthates as chain-transfer agents in controlled radical polymerization(MADIX):structural effect of the o-alkyl group.Macromolecular Rapid Communications,2001,22(17):1497-1503.
    [74]Destarac,M.;Charmot,D.;Franck,X.;et al.Dithiocarbamates as universal reversible additionfragmentation chain transfer agents.Macromolecular Rapid Communications,2000,21(15),1035-1039.
    [75]Charmot,D.;Corpart,P.;Adam,H.;et al.Controlled radical polymerization in dispersed media.Macromolecular Symposia,2000,150:23-32.
    [76]Almar,P.;Thomas,P.D.;Li,G.;et al.RAFT polymerization with phthalimidomethyl trithiocarbonates or xanthates,on the origin of bimodal molecular weight distributions in living radical polymerization.Macromolecules,2006,39(16):5307-5318.
    [77]Alexander,T.;Thomas,P.D.;Martina,H.S.;et al.Probing the reaction kinetics of vinyl acetate free radical polymerization via living free radical polymerization(MADIX).Polymer,2006,47(4):999-1010.
    [78]Ryan,W.S.;Thomas,P.D.;Michael,F.C.Xanthate-mediated living radical polymerization of vinyl acetate in miniemulsion. Macromolecular Rapid Communications, 2005,26(8): 592-596.
    
    [79]Russum, J.P.; Barbre, N.D.; Jones, C.W. Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43(10): 2188-2193.
    
    [80]Fukuda, T.; Terauchi, T.; Goto, A.; et al. Mechanisms and kinetics of nitroxide-controlled free radical polymerization. Macromolecules, 1996, 29(20): 6393-6398.
    
    [81]Baethge, H.; Butz, S.; Han, H.C.; et al. Rate enhancement of the N-oxyl-controlled free radical copolymerization of styrene with N-vinylcarbazole. Angewandte Makromolekulare Chemie, 1999,267:52-56.
    
    [82]Baethge, H.; Butz, S.; Naake, G.S. Living free radical copolymerization of styrene and N-vinylcarbazole. Macromolecular Rapid Communications, 1997, 18(10): 911-916.
    
    [83]Hua, J.; Chen, D.; Jing, X.; et al. Preparation and photoconducting property of C60Cln-m-bonded poly (N-vinylcarbazole) with C(60)Cln/CuCl/Bpy catalyst system. Journal of Applied Polymer Science, 2003, 87(4): 606-609.
    
    [84]Hideharu, M.; Hiroshi, O.; Shuji, N. Xanthate-mediated controlled radical polymerization of N-vinylcarbazolea. Chem. Phys. 2006,207(12): 1005-1017.
    
    [85]Yamago, S.; Iida, K.; Yoshida, J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations, synthesis of functionalized polystyrenes and end-group modifications. Journal of American Chemistry Society, 2002, 124(12): 2874-2875.
    
    [86]Yamago, S.; Iida, K.; Yoshida, J. Tailored synthesis of structurally defined polymers by organotellurium-mediated living radical polymerization (TERP): synthesis of poly (meth) acrylate derivatives and their di- and triblock copolymers. Journal of American Chemistry Society, 2002, 124(46): 13666-13667.
    
    [87]Yamago, S.; Ray, B.; Iida, K.; et al. Highly versatile organostibine mediators for living radical polymerization. Journal of American Chemistry Society, 2004, 126(43): 13908-13909.
    
    [88]Wan, D.; Satoh, K.; Kamigaito, M.; et al. Xanthate-mediated radical polymerization of N-vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight and tacticity. Macromolecules, 2005, 38(25): 10397-10405.
    
    [89]Maki, Y.; Mori, H.; Endo, T. Xanthate-mediated controlled radical polymerization of N-vinylindole derivatives. Macromolecules, 2007,40(17): 6119-6130.
    
    [90]Monique, A.; Alex, M.H.; Mathias, D. Influence of the chemical structure of MADIX agents on the RAFT polymerization of styrene. Macromolecules, 2003, 36(7): 2293-2301.
    
    [91]Destarac, M.; Brochon, C.; Catala, J.M.; et al. Macromolecular design via the interchange of xanthates (MADIX): polymerization of styrene with o-ethyl xanthates as controlling agents. Macromolecular Chemistry and Physics, 2002, 203(16): 2281-2289.
    [92]Destarac, M.; Bzducha, W.; Taton, D.; et al. Xanthates as chain-transfer agents in controlled radical polymerization (MADIX): structural effect of the o-alkyl group. Macromolecular Rapid Communications, 2002,23(17), 1049-1054.
    
    [93]Monteiro, M.J.; Barbeyrac, J. Free-radical polymerization of styrene in emulsion using a reversible addition-fragmentation chain transfer agent with a low transfer constant: effect on rate, particle size, and molecular weight Macromolecules, 2001, 34(13): 4416-4423.
    
    [94]Monteiro, M.J.; Sjoberg, M.; Gottgens, C.M.; et al. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: Effect of surfactant migration upon film formation. Journal of Polymer Science: Part A: Polymer Chemistry, 2000, 38(23): 4206-4217.
    
    [95]Monteiro, M.J.; Barbeyrac, J.M. 3-Benzyl-nickel-diimine complex: synthesis and catalytic properties in ethylene polymerization. Macromolecule Rapid Communications, 2002, 24(11): 667-670.
    
    [96]Gaillard, N.; Guyot, A.; Claverie, J. Block copolymers of acrylic acid and butyl acrylate prepared by reversible addition-fragmentation chain transfer polymerization: Synthesis, characterization, and use in emulsion polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 2003,41(5): 684-698.
    
    [97]Agosto, D.F.; Charreyre, M.T.; Pichot, C.; et al. Latex particles bearing hydrophilic grafted hairs with controlled chain length and functionality synthesized by reversible addition-fragmentation chain transfer. Journal of Polymer Science: Part A: Polymer Chemistry, 2003,41(9): 1188-1195.
    
    [98]Gilbert, R.G. Emulsion Polymerization: A Mechanistic Approach, London: Academic Press, 1995:274-289.
    
    [99]Muller, A.H.E.; Zhuang, R.; Yan, D.; et al. Kinetic analysis of "living" polymerization processes exhibiting slow equilibria. 1. degenerative transfer (direct activity exchange between active and "dormant" species), application to group transfer polymerization. Macromolecules, 1995, 28(12): 4326-4333.
    
    [100] Monteiro, M.J.; Hodgson, M.; Brouwer, H. The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerizations. Journal of Polymer Science: Part A: Polymer Chemistry, 2000, 38(21): 3864-3874.
    
    [101] Prescott, W.W.; Ballard, M.J.; Rizzardo, E.; et al. Successful use of RAFT techniques in seeded emulsion polymerization of styrene: living character, RAFT agent transport, and rate of polymerization. Macromolecules, 2002,35(14): 5417-5425.
    
    [102] Tsavalas, J.G; Schork, F.J.; Brouwer, H.; et al. Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules,2001,34(12):3938-3946.
    [103]Brouwer,H.;Monteiro,M.J.;Tsavalas,J.G.;et al.Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer.Macromolecules,2000,33(2):9239-9246.
    [104]Smulders,W.;Monteiro,M.J.Seeded emulsion polymerization of block copolymer core-shell nanoparticles with controlled particle size and molecular weight distribution using xanthate-based RAFT polymerization.Macromolecules,2004,37(12):4474-4483.
    [105]Michael,J.M.;Monique,M.A.;Bastiaan,J.L.;et al.A "living" radical ab initio emulsion polymerization of styrene using a fluorinated xanthate agent.Macromolecules,2005,38(5):1538-1541.
    [106]Ajayaghosh,A.;Francis,R.A xanthate-derived photoinitiator that recognizes and controls the free radical polymerization pathways of methyl methacrylate and styrene.Journal of American Chemistry Society,1999,121(28):6599-6606.
    [107]Bai,R.K.;You,Y.Z.;Pan,C.Y.~(60)Co-irradiation-initiated living free-radical polymerization in the presence of dibenzyl trithiocarbonate.Macromolecular Rapid Communications,2001,22(5):315-319.
    [108]Hua,D.;Xiao,J.;Bai,R.;et al.Xanthate-mediated controlled/living free-radical polymerization under ~(60)Co-ray irradiation:structure effect of o-group.Macromolecular Chemistry and Physics,2004,205(13):1793-1799.
    [109]Ajayaghosh,A.;Francis,R.Narrow polydispersed reactive polymers by a photoinitiated free radical polymerization approach,controlled polymerization of methyl methacrylate.Macromolecules,1998,31(4):1436-1438.
    [110]Michelle,L.C.;David,J.H.Computer-aided design of a destabilized RAFT adduct radical:toward improved RAFT agents for styrene-block-vinyl acetate copolymers.Macromolecules,2005,38(13):5774-5779.
    [111]Jacquin,M.;Muller,P.;Lizarraga,G.;et al.Characterization of amphiphilic diblock copolymers synthesized by MADIX polymerization process.Macromolecules,2007,400:2672-2682.
    [112]Ge,Z.S.;Xie,D.;Chen,D.Y.;etc.Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity.Macromolecules,2007,40(10):3538-3546.
    [113]Smulders,W.;Monteiro,M.J.Seeded emulsion polymerization of block copolymer core-shell nanoparticles with controlled particle size and molecular weight distribution using xanthate-based RAFT polymerization.Macromolecules,37(12):4474-4483.
    [1]Rizzardo,E.;Chiefari,J.;Mayadunne,R.T.A.;et al.Controlled radical polymerization.ACS Symposium Series,2000,786:278-295.
    [2]Taton,D.;Wilczewska,A.Z.;Destarac,M.Direct synthesis of double hydrophilic statistical di-and triblock copolymers comprised of acrylamide and acrylic acid units via the MADIX process.Macromolecular Rapid Communications,2001,22(17):1497-1503.
    [3]Destarac,M.;Bzducha,W.;Taton,D.;et al.Xanthates as chain-transfer agents in controlled radical polymerization(MADIX):structural effect of the o-Alkyl rroup.Macromolecular Rapid Communications,2002,23(17):1049-1054.
    [4]Martina,H.;Stenzel,L.C.;Roberts,G.E.Xanthate mediated living polymerization of vinyl acetate:a systematic variation in MADIX/RAFT agent structure.Macromolecular Chemistry and Physics,2003,204(9):1160-1168.
    [5]Arnaud,F.;Christopher,B.K.;Thomas,P.D.A detailed on-Line FT-NIR and ~1H-NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization.Macromolecular Chemistry and Physics,2004,205(7):925-936.
    [6]Alexander,T.;Thomas,P.D.;Martina,H.S.;et al.Probing the reaction kinetics of vinyl acetate free radical polymerization via living free radical polymerization(MADIX).Polymer,2006,47(4):999-1010.
    [7]Timothy,F.M.;Villaenueva,A.Effect of solvent on the rate constants in solution polymerization,part Ⅱ.vinyl acetate.Journal of Polymer Science:Part A:Polymer Chemistry,1999,37(5):589-601.
    [8]Jovanovic,R.;Dube,M.A.Solvent effects in butyl acrylate and vinyl acetate homopolymerizations in toluene.Journal of Applied Polymer Science,2004,94(3):871-876.
    [9]Chong,Y.K.;Krstina,J.;Le,T.P.T.;et al.Thiocarbonylthio compounds[S=C(Ph)S-R]in free radical polymerization with reversible addition-fragmentation chain transfer(RAFT Polymerization).role of the free-radical leaving group(R).Macromolecules,2003,36(7):2256-2272.
    [10]Chiefari,J.;Mayadunne,R.T.A.;Moad,C.L.;et al.Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization).effect of the activating group Z.Macromolecules,2003,36(7):2273-2283.
    [11]Britton,D.;Heatley,F.;Lovell,P.A.Chain transfer to polymer in free-radical bulk and emulsion polymerization of vinyl acetate studied by NMR spectroscopy.Macromolecules,1998,31(9):2828-2837.
    [12]潘祖仁.高分子化学(第二版).北京:化学工业出版社,2002:47-52.
    [13]Moad,G.;Chiefari,J.;Chong,Y.K.;et al.Living free radical polymerization with reversible addition-fragmentation chain transfer(the life of RAFT).Polymer International,2000,49(9):993-1001.
    [1]Goto,A.;Sato,K.;Tsujii,Y.,et al.Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate.Macromolecules,2001,34(3):402-408.
    [2]Sumerlin,B.S.;Lowe,A.B.;Thomas,D.B.;et al.Aqueous solution properties of pH-responsive AB diblock acrylamido copolymers synthesized via aqueous RAFT.Macromolecules,2003,36(16):5982-5987.
    [3]Ferguson,C.J.;Hughes,R.J.;Pham,B.T.T.;et al.Effective ab initio emulsion polymerization under RAFT control.Macromolecules,2002,35(25):9243-9245.
    [4]Nguyen,T.L.U.;Eagles,K.;Davis,T.P.;et al.Investigation of the influence of the architectures of poly(vinyl pyrrolidone) polymers made via the reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates mechanism on the stabilization of suspension polymerizations.Journal of Polymer Science:Part A:Polymer Chemistry,2006,44(15):4372-4383.
    [5]Bamer-Kowollik,C.;Quinn.J.F.;Nguyen,T.L.U.;et al.Kinetic investigations of reversible addition fragmentation chain transfer polymerizations:cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate.Macromolecules,2001,34(22):7849-7857.
    [6]De Brouwer H."Living" Radical Polymerization in homogeneous and heterogeneous media PhD Thesis,Georgia institute of Technology,2005.
    [7]高静.可逆加成断裂链转移自由基均聚及共聚机理研究.博士论文,浙江大学,2007.
    [8]Martina,H.;Stenzel,L.C.;Roberts,G.E.Xanthate mediated living polymerization of vinyl acetate:a systematic variation in MADIX/RAFT agent structure.Macromolecular Chemistry and Physics,2003,204(9):1160-1168.
    [9]Arnaud,F.;Christopher,B.K.;Thomas,P.D.A detailed on-Line FT/NIR and ~1H-NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization.Macromolecular Chemistry and Physics,2004,205(7):925-936.
    [10]Ryan,W.S.;Thomas,P.D.;Michael,F.C.Xanthate-mediated living radical polymerization of vinyl acetate in miniemulsion.Macromolecular Rapid Communications,2005,26(8):592-596.
    [11]Russum,J.P.;Barber,N.D.;Jones,C.W.Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate.Journal of Polymer Science:Part A:Polymer Chemistry,2005,43(10):2188-2193.
    [12]Britton,D.;Heatley,F.;Lovell,P.A.Chain transfer to polymer in free-radical bulk and emulsion polymerization of vinyl acetate studied by NMR spectroscopy.Macromolecules,1998,31(9):2828-2837.
    [1]Schork,F.J.;Luo,Y.;Smulders,W.;et al.Miniemulsion polymerization.Advances in Polymer Science,2005,175:129-255.
    [2]Antonietti,M.;Landfester,K.Polyreactions in miniemuision.Progress in Polymer Science,2002,27(4):689-757.
    [3]Landfester,K.Polyreactions in miniemulsion.Macromolecular Rapid Communications,2001,22(12):896-936.
    [4]Cunningham,M.F.Living/controlled radical polymerizations in dispersed phase systems.Progress in Polymer Science,2002,27(6):1039-1067.
    [5]Mcleary,J.B.;Tonge,M.P.;Roos,D.D.W.;et al.Controlled,radical reversible addition-fragmentation chain-transfer polymerization in high-surfactant concentration ionic miniemulsions.Journal of Polymer Science:Part A:Polymer Chemistry,2004,42(4):960-974.
    [6]Farcet,C.;Charleux,B.;Pirri,R.Poly(n-butyl acrylate) homopolymer and poly[n-butyl acrylate-b-(n-butyl acrylate-coostyrene)]block copolymer prepared via nitroxide-mediated living/controlled radical polymerization in miniemulsion.Macromolecules,2001,34(12):3823-3826.
    [7]Ryan,W.S.;Thomas,P.D.;Michael,F.C.Xanthate-mediated living radical polymerization of vinyl acetate in miniemulsion.Macromolecular Rapid Communications,2005,26(8):592-596.
    [8]Russum,J.P.;Barber,N.D.;Jones,C.W.Miniemulsion reversible addition fragmentation chain transfer polymerization of vinyl acetate.Journal of Polymer Science:Part A:Polymer Chemistry,2005,43(10):2188-2193.
    [9]Martina,H.;Stenzel,L.C.;Roberts,G.E.Xanthate mediated living polymerization of vinyl acetate:a systematic variation in MADIX/RAFT agent structure.Macromolecular Chemistry and Physics,2003,204(9):1160-1168.
    [10]Arnaud,F.;Christopher,B.K.;Thomas,P.D.A detailed on-Line FT/NIR and ~1H-NMR spectroscopic investigation into factors causing inhibition in xanthate-mediated vinyl acetate polymerization.Macromolecular Chemistry and Physics,2004,205(7):925-936.
    [11]Britton,D.;Heatley,F.;Lovell,P.A.Chain transfer to polymer in free-radical bulk and emulsion polymerization of vinyl acetate studied by NMR spectroscopy.Macromolecules,1998,31(9):2828-2837.
    [12]Odian,G.Principles of polymerization.New Jersey:John Wiley & Sons.2004:212.
    [13]Wu,X.Q.;Schork,F.J.Kinetics of miniemulsion polymerization of vinyl acetate with nonionic and anionic surfactants.Journal of Applied Polymer Science,2001,81(7):1691-1699.
    [1]Schork,F.J.;Luo,Y.;Smulders,W.;et al.Miniemulsion polymerization.Advances in Polymer Science,2005,175:129-255.
    [2] Antonietti, M.; Landfester. K. Polyreactions in miniemulsion. Progress in Polymer Science, 2002, 27(4): 689-757.
    
    [3] Nomura, M.; Tobita, H.; Suzuki, K. Emulsion polymerization: kinetic and mechanistic aspects. Advances in Polymer Science, 2005, 175: 1-128.
    
    [4] Chern, C.S.; Chen, T.J. Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138(1): 65-74.
    
    [5] Chern, C.S.; Liou, Y.C.; Chen, T.J. Particle nucleation loci in styrene miniemulsion polymerization using alkyl methacrylates as the reactive cosurfactant. Macromolecular Chemistry and Physics, 1998, 199(7): 1315-1322.
    
    [6] Chem, C.S.; Liou, Y.C. Effects of mixed surfactants on the styrene miniemulsion polymerization in the presence of an alkyl methacrylate. Macromolecular Chemistry and Physics, 1998, 199(9): 2051-2061.
    
    [7] Chem, C.S.; Liou, Y.C. Kinetics of styrene miniemulsion polymerization stabilized by nonionic surfactant alkyl methacrylate. Polymer, 1999,40(13): 3763-3772.
    
    [8] Rajot, I.; Bone, S.; Graillat, C.; et al. Nonionic nanoparticles by miniemulsion polymerization of vinyl acetate with oligocaprolactone macromonomer or miglyol as hydrophobe, application to the encapsulation of indomethacin. Macromolecules, 2003, 36(20): 7484-7490.
    
    [9] Lin, Y., Alexandridis, P. Self-Assembly of an Amphiphilic Siloxane Graft Copolymer in Water. The Journal of Physical Chemistry B, 2002,106: 10845-10853.
    
    [10]Bathfield, M.; Graillat, C.; Hamaide, T. Encapsulation of high biocompatible hydrophobe contents in nonionic nanoparticles by miniemulsion polymerization of vinyl acetate or styrene: influence of the hydrophobe component on the polymerization. Macromolecular Chemistry and Physics, 2005, 206(22): 2284-2291.
    
    [11]Szwarc, M. Carbanions, Living Polymers and Electron Transfer Process. Wiley, New York, 1968:224-228.
    
    [12]Ivin, K.J.; Saegusa, T. Ring-opening polymerization. London: Elsevier Applied Science Publishers, 1984: 1055-1133.
    
    [13]Lee, C.L.; Frye, C.L.; Johannson, O.K. Calorimetric studies on the phase transitions of crystalline polysiloxanes. Polymer Preprints, 1969, 10(2): 1316-1318.
    [14]Yi, L.M.; Zhan, X.L.; Chen, F.Q.; et al. Synthesis and characterization of poly [styrene-b-methyl(3,3,3-trifluoropropyl)siloxane] diblock copolymers via anionic polymerization. Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43 (19): 4431-4438.
    
    [15]Veith, C.A.; Cohen, R.E. Kinetic modeling and optimization of the trifluoropropylmethylsiloxane polymerization. Journal of Polymer Science, PART A: Polymer Chemistry, 1989,27(12): 1241-1258.
    
    [16]Kuo, C.M.; Saam, J.C.; Taylor, R.B. Stereoregularity in poly [methyl(3,3,3-trifluoropropyl)siloxane]. Polymer International, 1994, 33(2): 187-195.
    
    [17]Peng, W.; Xie, Z. Preparation of poly(methylfluorosiloxanes) by living anionic polymerization initiated with dilithium salt of N,N-bis(diphenylhydroxysilyl)tetramethylcyclo-disilazane. Macromolecular Chemistry and Physics, 2000, 201 (12): 1292-1294.
    
    [18]Barrere, M.; Maitre, C.; Dourges, M.A. Anionic polymerization of 1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane (F_3) in miniemulsion. Macromolecules, 2001, 34(21): 7276-7280.
    
    [19]Bellas, V.; Iatrou, H.; Hadjichristidis, N. Controlled anionic polymerization of hexamethylcyclotrisiloxane. model linear and miktoarm star co- and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules, 2000,33(19): 6993-6997.
    
    [20]Maschke, U; Wagne, T.; Coqueret, X. Synthesis of high-molecular-weight poly(dimethylsiloxane) of uniform size by anionic polymerization. Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1992, 193(9): 2453-2466.
    
    [21]Sebastian G.R.; Axel, H.E.M.; Krzysztof, M. Copolymerization of n-butyl acrylate with methyl methacrylate and PMMA macromonomers: comparison of reactivity ratios in conventional and atom transfer radical copolymerization. Macromolecules, 1999, 32(25): 8331-8335.
    
    [22]Hosel, S.; Peter, J.M.; Krzysztof, M. Improving the structural control of graft copolymers by combining ATRP with the macromonomer method. Macromolecules, 2001, 34(10): 3186-3194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700