脊髓小脑性共济失调系统评价和三峡库区脊髓小脑性共济失调临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓小脑性共济失调(spinocerebellar ataxias, SCAs)是一种常染色体显性遗传性疾病,累及人类神经系统的主要遗传疾病之一,也是遗传性共济失调的主要类型。1992年第一个亚型SCA1被基因定位以来,随着研究的深入,越来越多的基因亚型被发现,已经发现28个基因位点和9个致病基因[1-28]。由于脊髓小脑性共济失调具有极强的遗传异质性和基因多效性,因此该疾病的基因诊断日益引起人们的重视。
     本课题开展了脊髓小脑性共济失调三个部分的研究:(1)对脊髓小脑性共济失调流行病学研究的系统评价;(2)研究三峡库区范围脊髓小脑性共济失调患者的临床表现和影像学特点;(3)研究三峡库区脊髓小脑性共济失调患者的基因诊断、症状前患者的基因诊断和产前诊断。
     第一部分:脊髓小脑性共济失调的系统评价
     目的:
     从系统评价角度主要采取定性分析方法详细了解脊髓小脑性共济失调在世界和中国的流行、分布、临床表现特点和治疗研究进展。
     对象和方法:
     1.中文文献取自“中国期刊全文数据库”、“中国维普数据库”,手工检索未被上述数据库收录的临床医学文献。检索策略为在“题目”中检索:脊髓小脑性共济失调OR脊髓小脑性共济失调OR MJD OR马查多-约瑟夫病。
     2.外文文献取自“PUBMED”数据库,手工检索未被上述数据库收录的临床医学文献。检索检索策略为在“内容”中检索:spinocerebellar ataxia OR MJD OR Machado-Jespho disease OR Joseph disease OR Machado disease.
     3.根据纳入标准和排除标准筛查后,采集研究文献报道各个国家地区的名称、研究机构名称、发表文献年限、是否开展基因诊断、家系数及基因型、家系患者病例数、性别及基因型、散发患者病例数、性别及基因型、症状前患者例数、发病年龄、性别及基因型及患者的临床表现(主要分析共济失调、构音障碍、震颤、认知功能及其他临床表现)等。
     结果:
     一、脊髓小脑性共济失调的研究历史
     1.全世界总共有39个国家地区203家单位报道过脊髓小脑性共济失调,其中已开始开展SCA基因诊断研究的科研医疗机构有21个国家地区的100家单位。目前全世界已报道的类型有SCA1- SCA30共28个亚型(无SCA9和SCA24)。
     2.中国20个省市(包括香港特别行政区和台湾地区)40家单位报道过脊髓小脑性共济失调,其中已开始开展SCA基因诊断研究的科研医疗机构25家单位。中国内地目前已报道的类型有SCA1、SCA2、MJD/SCA3、SCA6、SCA7和SCA12共6种亚型,香港特别行政区报道SCA1、SCA3和SCA6共3个亚型。台湾地区目前报道的类型有SCA1、SCA2、SCA3、SCA6、SCA7、SCA8、SCA17和SCA22共8个亚型。澳门特别行政区无SCAs相关文献。
     二、脊髓小脑性共济失调的分布概况
     1.世界首次报道是1861年高加索地区,而后在全世界6大洲(北美洲、南美洲、欧洲、亚洲、非洲和大洋洲)39个国家和地区人员居住地均发现了脊髓小脑性共济失调的患者。
     2.中国20个省市地区报道了脊髓小脑性共济失调,主要集中在东部和南部地区。
     3.世界各大洲、国家和地区脊髓小脑性共济失调亚型分布有所区别。
     三、脊髓小脑性共济失调的临床特征
     1.脊髓小脑性共济失调患者的性别男女比差异不明显,符合常染色体显性遗传规律。
     2.脊髓小脑性共济失调大多数亚型30岁以后发病,但SCA6亚型发病年龄较晚,一般在50岁后发病。
     3.脊髓小脑性共济失调患者病程比较:SCA2患者病程较长,病情进展较慢;SCA1和SCA7患者的病程较短,病情进展要快于其他3个亚型。
     4.脊髓小脑性共济失调临床表现具有高度的异质性,但每个亚型具有一些自身特点引导临床医师对基因亚型的初步判定。
     四、脊髓小脑性共济失调的诊断
     1.中国内地总共发现482个SCAs家系,中国台湾共发现251个SCAs家系,中国香港共发现13个SCAs家系。
     2.中国内地总共发现1133个SCAs患者,台湾地区总共发现601个SCAs患者,香港地区总共发现16个SCAs患者。
     3.中国内地总共发现288个SCAs散发患者,台湾地区发现68名散发患者。
     4.中国内地总共发现45个SCAs症状前患者,台湾地区共发现41名SCAs症状前患者患者。中国至今还未发现SCA6亚型的症状前患者。
     五、脊髓小脑性共济失调的治疗
     目前对遗传性脊髓小脑型共济失调治疗无显著进展,新的药物如Gabapentin、Tandospirone、Lamotrigine、Tetrahydrobiopterin、Varenicline和A型肉毒毒素主要用以改善脊髓小脑性共济失调患者的部分症状。
     结论:
     1.脊髓小脑性共济失调是一个世界范围的神经系统遗传疾病,遍布全球6大洲39个国家地区。SCA3是世界上发生率最高的脊髓小脑性共济失调亚型。
     2.中国内地发现SCA1-3、SCA6-7、SCA12共6个亚型;中国香港发现SCA1、SCA3和SCA6共3个亚型;中国台湾发现SCA1-3、SCA6-8、SCA17、SCA22共8个亚型
     3.中国内地目前报道脊髓小脑性共济失调的家系482个、家系患者1133例、散发患者288例、症状前患者45例。
     4.中国台湾报道脊髓小脑性共济失调家系251个、家系患者601例、散发患者68例、症状前患者患者41例。
     第二部分:三峡库区脊髓小脑性共济失调的临床特点和影像学分析
     目的:
     观察中国三峡库区范围内脊髓小脑性共济失调患者的临床表现特征和进行影像学分析。
     对象和方法:
     所有来自三峡库区范围患者就诊于第三军医大学第三附属医院神经内科。33名来自6个脊髓小脑性共济失调家系的家系患者和9名散发患者。对患者进行一般资料、临床表现、头颅MRI检查、ICARS评分分析。10名行头颅MRI检查的正常人作为MRI分析的对照。
     结果:
     一、三峡库区脊髓小脑性共济失调的临床表现
     1.三峡库区脊髓小脑性共济失调家系患者与散发患者的发病年龄、病程无显著性区别。
     2.言语不清和视力减退是部分散发脊髓小脑性共济失调患者的首发症状。
     3.不区分亚型的脊髓小脑性共济失调家系患者的遗传早现不显著,但SCA3家系患
     者遗传早现明显。
     4.脊髓小脑性共济失调家系患者眼球震颤和肌张力异常显著高于散发患者。
     二、三峡库区脊髓小脑性共济失调影像学分析
     1.无论是脊髓小脑性共济失调家系患者或散发患者,小脑均出现不同程度的异常改变。散发患者桥脑、延髓异常改变比较明显。
     2.家系患者第四脑室扩大较明显,家系患者和散发患者小脑都出现萎缩,尤其以散发患者更为严重。散发患者除小脑萎缩外,桥脑萎缩也比较明显,而家系患者桥脑的萎缩程度不及散发患者。
     三、三峡库区脊髓小脑性共济失调危险因素分析
     1.生活环境对三峡库区脊髓小脑性共济失调患病有一定影响,以农村人口居多。
     2.三峡库区脊髓小脑性共济失调患者普遍受教育程度不高,以小学及以下为主。
     3.三峡库区脊髓小脑性共济失调患者以汉族人口为主。
     4.三峡库区范围内脊髓小脑性共济失调家系患者交通不便、婚恋范围狭窄可能是第一代患者发病的原因之一,而随着交通状况的改善、婚恋范围的扩大,脊髓小脑性共济失调家系内发病率逐代降低。
     5.脊髓小脑性共济失调家系患者ICARS评分与病程呈正相关关系,而散发患者病程、所有患者的发病年龄与ICARS评分相关性不明显。
     结论:
     1.三峡库区脊髓小脑性共济失调患者的首发症状以行走不稳为主,部分散发患者表现言语不清和视力减退。
     2.三峡库区脊髓小脑性共济失调患者均出现共济失调表现,家系患者的眼球震颤、肌张力异常发生率明显高于散发患者。
     3.三峡库区脊髓小脑性共济失调患者均出现不同程度的小脑萎缩,散发患者桥脑萎缩比较明显。
     4.三峡库区脊髓小脑性共济失调家系可能由于婚恋范围扩大、交通情况改善,脊髓小脑性共济失调发病率逐代降低。
     5.三峡库区脊髓小脑性共济失调家系患者的病程与ICARS总评分呈正相关关系。
     第三部分三峡库区脊髓小脑性共济失调的基因诊断及产前诊断
     目的:
     在以重庆为中心的三峡库区范围内开展脊髓小脑性共济失调的基因诊断及产前诊断,建立三峡库区脊髓小脑性共济失调患者数据库、基因库,为进一步研究三峡库区脊髓小脑性共济失调提供平台。
     对象和方法:
     收集13名脊髓小脑性共济失调家系患者、9名散发患者和30名家系内成员的全血基因组DNA,收集20名孕妇的羊水脱落细胞基因组DNA,采用PCR扩增的方法,建立SCA1-3,SCA6-7和SCA12的基因诊断和产前诊断的方法。
     结果:
     1.所采用的PCR扩增方法能够进行脊髓小脑性共济失调1-3,6-7和12的基因诊断。3%琼脂糖凝胶电泳可用于初步判定患者的基因亚型。
     2.三峡库区脊髓小脑性共济失调仅发现SCA3一个亚型,包括2个家系、20名家系患者和1名散发患者。
     3.三峡库区发现5名脊髓小脑性共济失调3型症状前患者。
     4.孕龄16-22周,B超定位下进行羊水穿刺术提取羊水脱落细胞的基因组DNA,采用与全血基因组DNA相同的PCR扩增方法可以用于脊髓小脑性共济失调患者或症状前患者的产前诊断。
     结论:
     1.脊髓小脑性共济失调的基因诊断可以采用3%琼脂糖凝胶电泳初步判断。
     2.三峡库区首次确诊2个脊髓小脑性共济失调3型家系,其中有20名家系患者。
     3.三峡库区首次确诊1名脊髓小脑性共济失调3型散发患者。
     4.三峡库区首次确诊5名脊髓小脑性共济失调3型症状前患者。
     5.建立羊水脱落细胞基因组DNA用于脊髓小脑性共济失调的产前诊断方法。
     全文结论:
     一、脊髓小脑性共济失调发病遍布全球6大洲39个国家地区。SCA3是世界上最高发生率的脊髓小脑性共济失调亚型。中国内地发现6个亚型;中国香港3个亚型;中国台湾8个亚型。中国共报道脊髓小脑性共济失调的家系746个、家系患者1210例、散发患者356例、症状前患者86例。
     二、三峡库区脊髓小脑性共济失调患者的首发症状以行走不稳为主,部分散发患者表现言语不清和视力减退。三峡库区脊髓小脑性共济失调患者头颅MRI均出现不同程度的小脑萎缩,散发患者桥脑萎缩明显。三峡库区脊髓小脑性共济失调家系患者的病程与ICARS总评分呈正相关关系。
     三、脊髓小脑性共济失调的基因诊断可采用3%琼脂糖凝胶电泳进行初步判断。羊水脱落细胞基因组DNA可以用于脊髓小脑性共济失调的产前诊断。三峡库区范围内首次确诊2个脊髓小脑性共济失调3型家系、20名家系患者、1名散发患者和5名症状前患者。
Spinocerebellar ataxias (SCAs) are rare (incidence between 8 and 10 per 100,000) autosomal dominant hereditary neurological disorders with unified characteristic of progressive ataxia due to the cerebellar degeneration and its connections. Since the first identification of the gene, spinocerebellar ataxia type 1 (SCA 1), involved in dominant ataxia in 1992, twenty-eight genetically distinct subtypes (designated from SCA2 to SCA30,without SCA9 and SCA24) have been described. Because of the clinical overlap among various SCAs and the phenotypic variability of single subtypes, it is difficult to predict the SCA genotype in individual patients.
     To clarify the clinical characteristics of the Three Gorge Reservoir Area, the following three parts of work were performed: (1) Systemic review about spinocerebellar ataxias, especially in China; (2)Study on clinical features and image characteristics of spinocerebellar ataxias in Three Gorge Reservoir Area; (3) Study on gene diagnosis and antenatal diagnosis of spinocerebellar ataxia patients and presymptomatic patients in Three Gorge Reservoir Area.
     Part I: Systematic review about spinocerebellar ataxias
     Objectives: The aim of this study was to clearify the prevalence, distribution, clinical features and therapy progress of spinocerebellar ataxias in China and other countries.
     Methods:
     Chinese articles: Chinese articles were researched online from CNKI full-text databases and Vip databases and were obtained by manual retrieval for other related articles out of the two main databases. Those words were formulated for the retrieval that spinocerebellar ataxia OR MJD OR Machado-Joseph disease.
     Foreign languages articles: English articles were retrieved online from PUBMED, while those not included in the databases were obtained manually. Search formulas were spinocerebellar ataxia OR MJD OR Machado-Joseph disease OR Machado disease OR Joseph disease.
     The following information of the enrolled articles were investigated: 1) the country or area, institutes or hospitals where the studies were performed and the publishing dates; 2) presence or absence of genetic diagnosis, genotypes, numbers of pedigrees, numbers of the familial or sporadic patients and asymptomatic patients; 3) gender, age at onset, duration and clinical features of the patients with spinocerebellar ataxia.
     Results:
     1. Research history of spinocerebellar ataxias
     Two hundred and three research institutes or hospitals in thirty-nine countries or areas reported spinocerebellar ataxias patients. Among them, one hundred institutes or hospitals in 21 countries or areas used genetic approaches for diagnosis. In totally, there are 28 types of spinocerebellar ataxias in the world.
     In China, spinocerellar ataxias cases were reported in forty research institutes or hospitals in 20 provinces. Twenty five units are able to perform a genetic diagnosis., Six types of spinocerebellar ataxias were reported in mainland including SCA1, SCA2, MJD/SCA3, SCA6, SCA7 and SCA12, 3 types were reported in Hong Kong of SCA1, SCA3 and SCA6, and 8 types in Taiwan of SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA8, SCA17 and SCA22. However, there was no report in Macao.
     2. Distribution of spinocerebellar ataxias
     From the first patient reported in Caucasia Area in 1861, the cases of spinocerebellar ataxia had been reported in 39 counties or area in six continents (North America, South America, European, Asia, Africa and Oceania).
     In China, patients of spinocerebellar ataxia have been diagnosed in 20 provinces or areas, distributed mainly in east and south of China.
     3. Clinical characteristics of spinocerebellar ataxias
     There was no significant difference on gender in family patients and sporadic patients of spinocerebellar ataxia. Many spinocerebellar ataxia onset after 30 years old, except SCA6 which often occurs after 50 years old.
     Disease duration of SCA2 was longer than other types of spinocerebellar ataxias, while SCA1 and SCA7 were shorter than others with a possible faster progress.
     Every subtype of spinocerebellar ataxias has some own special characters, so physicians could estimate the gene type of patient.
     4. Diagnosis of spinocerebellar ataxias
     There were 482 Chinese pedigrees of spinocerebellar ataxias in mainland, 13 in Hong Kong and 251 in Taiwan.
     There were 1,750 patients of spinocerebellar ataxias in China. Among them, 1,133, 16 and 601 were reported in mainland, Hong Kong and Taiwan, respectively, including 288 and 68 sporadic patients in mainland and Taiwan.
     There were 45 asymptomatic patients in mainland of China and 41 in Taiwan and there are no any reports of asymptomatic patients with SCA6 in China.
     5. Therapy of spinocerebellar ataxias
     There are no effective drugs for spinocerebellar ataxias.
     Conclusions:
     1. Spinocerebellar ataxias is a global disease which were reported in 6 continents including 39 countries or areas. Spinocerebellar ataxia type 3 is the main subtype in 28 types of spinocerebellar ataxias.
     2. In mainland of China, there were 6 types of spinocerebellar ataxia reported which were SCA1-3, SCA6-7 and SCA12. In Hong Kong, 3 types of SCA1, SCA3 and SCA6 were observed. In Taiwan, there were 8 types of spinocerebellar ataxia reported which were SCA1-3,SCA6-8,SCA17 and SCA22.
     3. In mainland of China, there were 482 pedigrees,1133 familial patients,288 sporadic patients and 45 presymptomatic patients of spinocerebellar ataxias.
     4. In Taiwan, there were 251 pedigrees, 601 familial patients, 68 sporadic patients and 41 presymptomatic patients of spinocerebellar ataxias.
     Part II: Clinical and imaging characteristics of spinocerebellar ataxias in Three Gorge Reservoir Area.
     Objectives: To investigate the clinical and imaging characteristics of spinocerebellar ataxias patients in the Three Gorges Reservoir Area.
     Methods: All the patients of spinocerebellar ataxias in the Neurology Department of the Chongqing Daping Hospital were assessed. To analysis the 33 familial patients in the 6 unrelated Chinese pedigrees and 9 sporadic patients from the Three Gorge Reservoir Area, all of them were evaluated by International Cooperative Ataxia Rating Scale (ICARS), in addition to neurological examination and brain MRI scans at our hospital,.
     Results:
     1. Clinical features of spinocerebellar ataxias patients in the Three Gorge Reservoir Area
     There were not differences in onset age and disease duration of familial and sporadic patients in the Three Gorges Reservoir Area.
     Early-onset symptoms of some sporadic patients of spinocerebellar ataxias in Three Gorge Reservoir Area were tongue trips and vision impaired.
     Genetic anticipations were not clearly in all familial patients. But our 2 SCA3 pedigrees in Three Gorge Reservoir Area had significant genetic anticipation.
     Nystagmus and abnormal muscle tension were common in familial patients in the Three Gorge Reservoir Area.
     2. Image characters of spinocerebellar ataxias patients in the Three Gorge Reservoir Area
     All familial and sporadic patients had the imaging results of cerebellum atrophy. Some sporadic patients could have pons and medulla oblongata atrophy.
     Enlargement of fourth ventricle of familial patients were more significant compared to sporadic patients, whereas cerebellum and brain stem atrophy was more severe in sporadic patients.
     3. Risk factors of spinocerebellar ataxia patients in the Three Gorges Reservoir Area.
     Most spinocerebellar ataxia patients lived in countryside and got low education degree. Most spinocerebellar ataxia patients were Han Chinese.
     Poor traffics and consanguineous marriage were potential reasons in fist generation patients. With the improvement of those factors, disease genes of spinocerebellar ataxias were gradually weakened for the genetic dilution.
     Disease duration was associated with ICARS in the familial patients, but not in sporadic patients as well as the onset age.
     Conclusions:
     1. Onset symptom of spinocerebellar ataxias was gait instability and some sporadic patients featured of tongue trips and vision impaired in the Three Gorge Reservoir Area.
     2. The rate of nystagmus and abnormal muscle tension in familial patients was higher than sporadic patients in the Three Gorge Reservoir Area.
     3. The atrophy of cerebellum in head MRI of sporadic patients were more severe than those in familial patients in the Three Gorge Reservoir Area.
     4. By enlarging marriage circle and improving traffic condition, the incidence of spinocerebellar ataxias in pedigrees might be gradually decreased in the Three Gorge Reservoir Area.
     5. The disease duration was correlated to ICARS in familial patients of spinocerebellar ataxias in the Three Gorge Reservoir Area.
     Part III: Gene diagnosis and antenatal diagnosis of spinocerebellar ataxias in the Three Gorge Reservoir Area
     Objectives: To develop a method of gene diagnosis and antenatal diagnosis and to build database of spinocerebellar ataxias in the Three Gorge Reservoir Area.
     Methods: Five ml whole blood was obtained from each health member and patient in the affected family, sporadic patient of spinocerebellar ataxias. In addition, 5ml amniotic fluid was collected from every of 20 normal pregnant women. Gene DNA extracting from blood cell and cast-off cell in amniotic fluid were used to perform polymerase chain reaction. It was a way of antenatal diagnosis and gene diagnosis for patients with or without symptom of spinocerebellar ataxias.
     Results:
     The gene types of spinocerebellar ataxias could be a preliminary determined by 3% agarose gel electrophoresis. The polymerase chain reactions were useful to perform gene diagnosis of spinocerebellar ataxias type 1-3, 6-7 and 12.
     We totally observed the only type (type 3) of spinocerebellar ataxia, in the Three Gorges Reservoir Area, including 2 SCA3 pedigree, 20 familial patients and 1 sporadic patient.
     In the Three Gorge Reservoir Area, 5 asymptomatic patients of spinocerebellar ataxia type 3 were diagnosed. Gene DNA extracting from cast-off cell in amniotic fluid could be used for antenatal diagnosis, the same way as the blood cell for diagnosis making in asymptomatic patients.
     Conclusions:
     1.3% agarose gel electrophoresis could be used for a preliminary determination of gene type in spinocerebellar ataxias type 1-3, 6-7 and 12.
     2. We diagnosised 2 spinocerebellar ataxia type 3 pedigrees, including 20 familial patients, for the first time in the Three Gorge Reservoir Area.
     3. We diagnosised 1 sporadic patients of spinocerebellar ataxia type 3 for the first time in the Three Gorge Reservoir Area.
     4. We diagnosised 5 asymptomatic patients of spinocerebellar ataxia type 3 for the first time in the Three Gorge Reservoir Area.
     5. Gene DNA extracting from cast-off cell in amniotic fluid could be used to perform antenatal diagnosis of spinocerebellar ataxia type 1-3, 6-7 and 12.
引文
1. Volz A, Fonatsch C, Ziegler A. Regional mapping of the gene for autosomal dominant spinocerebellar ataxia (SCA1) by localizing the closely linked D6S89 locus to 6p24.2----p23.05. Cytogenet Cell Genet. 1992;60(1):37-9.
    2. Gispert S, Twells R, Orozco G, Brice A,et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet. 1993 Jul;4(3):295-9.
    3. Stevanin G, Cancel G, Dürr A, et al. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of approximately 3 cM on chromosome 14q24.3-q32.2. Am J Hum Genet. 1995 Jan;56(1):193-201.
    4. Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996 Aug;59(2):392-9.
    5. Ranum LP, Schut LJ, Lundgren JK,et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet. 1994 Nov;8(3):280-4.
    6. Ishikawa K, Tanaka H, Saito M, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet. 1997 Aug;61(2):336-46
    7. David G, Giunti P, Abbas N, et al. The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3p12-p13: genetic and physical mapping of the SCA7 locus. Am J Hum Genet. 1996 Dec;59(6):1328-36.
    8. Nikali K, Isosomppi J, L?nnqvist T, et al. Toward cloning of a novel ataxia gene: refined assignment and physical map of the IOSCA locus (SCA8) on 10q24. Genomics. 1997 Jan 15;39(2):185-91
    9. Zu L, Figueroa KP, Grewal R,et al. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet. 1999 Feb;64(2):594-9.
    10. Houlden H, Johnson J, Gardner-Thorpe C,et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11.Nat Genet. 2007 Dec;39(12):1434-6.
    11. Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet. 1999 Dec;23(4):391-2.
    12. Waters MF, Fee D, Figueroa KP, et al. An autosomal dominant ataxia maps to 19q13: Allelic heterogeneity of SCA13 or novel locus? Neurology. 2005 Oct 11;65(7):1111-3. Epub 2005 Aug 31.
    13. Yamashita I, Sasaki H, Yabe I,et al. A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol. 2000 Aug;48(2):156-63.
    14. Knight MA, Kennerson ML, Anney RJ,et al. Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis. 2003 Jul;13(2):147-57
    15. Miyoshi Y, Yamada T, Tanimura M,et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001 Jul 10;57(1):96-100.
    16. Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001 Jul 1;10(14):1441-8.
    17. Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet. 2002 May 8;114(4):450-7.
    18. Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus ( SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet. 2002 Oct;111(4-5):388-93.
    19. Knight MA, Hernandez D, Diede SJ,et al. A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet. 2008 Dec 15;17(24):3847-53.
    20. Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol. 2002 Nov; 52(5):666-70.
    21. Chung MY, Lu YC, Cheng NC, et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003 Jun;126(Pt 6):1293-9.
    22. Verbeek DS, van de Warrenburg BP, Wesseling P,et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain. 2004 Nov;127(Pt 11):2551-7.
    23. Stevanin G, Bouslam N, Thobois S,et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004 Jan;55(1):97-104.
    24. Yu GY, Howell MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005 Mar;57(3):349-54
    25. Brusse E, de Koning I, Maat-Kievit A, et al. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. 2006 Mar;21(3):396-401.
    26. Cagnoli C, Mariotti C, Taroni F,et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain. 2006 Jan;129(Pt 1):235-42.
    27. Jen JC, Lee H, Cha YH, et al. Genetic heterogeneity of autosomal dominant nonprogressive congenital ataxia. Neurology. 2006 Nov 14;67(9):1704-6.
    28. Storey E, Bahlo M, Fahey M, et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009 Apr;80(4):408-11.
    29.屈会起,张金钟,邱明才循证医学的系统评价中华医院管理杂志2000,16(6):344-6
    30.李静,李幼平不断完善与发展的Cochrane系统评价中国循证医学杂志2008, 8(9): 742~743
    31.张俊华,商洪才,张伯礼系统评价和meta分析质量的评价方法中西医结合学报2008,6(4):337-340
    32. Moseley ML, Benzow KA, Schut LJ, et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology. 1998 Dec;51(6): 1666-71.
    33. de Vargas Wolfgramm E, de Carvalho FM, De Nadai Sartori MP,et al. Molecular analysis of spinocerebellar ataxia trinucleotide repeat behavior in normal individuals of a Brazilian population. J Neurol Sci. 2008 Jun 15;269(1-2):113-7.
    34. Trott A, Jardim LB, Ludwig HT,et al. Spinocerebellar ataxias in 114 Brazilian families:clinical and molecular findings. Clin Genet. 2006 Aug;70(2):173-6.
    35. Kubis N, Dürr A, Gugenheim M, et al. Polyneuropathy in autosomal dominant cerebellar ataxias: phenotype-genotype correlation. Muscle Nerve. 1999 Jun;22(6):712-7
    36. Stevanin G, Dürr A, David G,et al. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology. 1997 Nov;49(5):1243-6.
    37. Sch?ls L, Amoiridis G, Büttner T, et al. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997 Dec;42(6):924-32.
    38. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC,et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002 Mar 12;58(5):702-8.
    39. Filla A, Mariotti C, Caruso G, et al. Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur Neurol. 2000;44(1):31-6.
    40. Bryer A, Krause A, Bill P, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci. 2003 Dec 15;216(1):47-54.
    41. Storey E, du Sart D, Shaw JH,et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000 Dec 11;95(4):351-7
    42. Gardner RJ , Knight MA , Hara K, et al. Spinocerebellar ataxia type 15. Cerebellum , 2005 , 4 (1) :47.
    43. Hara K, Fukushima T , Suzuki T , et al. J apanese SCA families with an unusual phenotype linked to a locus overlapping with SCA15 locus . Neurology , 2004 , 62(4) :648.
    44. Miyoshi Y,Yamada T ,Tanimura M ,et al. A novel autosomal dominant spinocerebellar ataxia ( SCA16) linked to chromosome 8q22. 1224. 1. Neurology , 2001 , 57 ( 1) : 96.
    45. Miura S , Shibata H , Furuya H , et al. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology ,2006 ,67 (7) :1236.
    46. Lasek K,Lencer R ,Gaser C ,et al . Morphological basis for the spect rum of clinical deficit s in spinocerebellar ataxia 17 (SCA17) . Brain ,2006 ,129 (Pt 9) :2341.
    47. Brkanac Z ,Fernandez M ,Mat sushita M ,et al. Autosomal dominant sensory/ motor neuropathy with ataxia (SMNA) : linkage to chromosome 7q222q32 . Am J Med Genet ,2002 ,114 :450.
    48. Verbeek DS , Schelhaas J H , Ippel EF ,et al. Identification of a novel SCA locus ( SCA19 ) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region
    49. 1p212q21. Hum Genet ,2002 ,111 (4 - 5) :388.
    50. Chung MY,Lu YC ,Cheng NC ,et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p212q23. Brain ,2003 ,126 ( Pt 6) :1293.
    51. Storey E , Knight MA , Forrest SM ,et al. Spinocerebellar ataxia type 20. Cerebellum ,2005 ,4 (1) :55.
    52. Vuillaume I ,Devos D ,Schraen2Maschke S ,et al. A new locus for spinocerebellar ataxia ( SCA21) maps to chromosome 7p21. 32p15. 1. Ann Neurol , 2002 , 52 ( 5) : 666.
    53. Verbeek DS ,van2de2Warrenburg BP ,Wesseling P ,et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p132123 . Brain ,2004 ,127 (Pt 11) :2551.
    54. Stevanin G,Bouslam N , Thobois S ,et al. Spinocerebellar ataxia with sensory neuropathy ( SCA25) maps to chromosome 2p. Ann Neurol ,2004 ,55 (1) :97.
    55. Yu GY, Howell MJ , Roller MJ , et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13. 3 adjacent to SCA6. Ann Neurol ,2005 ,57 (3) :349.
    56. van Swieten JC ,Brusse E ,de Graaf BM. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ( sic) ataxia. Am J Hum Genet , 2003 ,72 :191.
    57. Dalski A ,Atici J , Kreuz FR , et al. Mutation analysis in the fibroblast growth factor 14 gene :f rameshif t mutation and polymorphisms in patient s with inherited ataxias. Europ J Hum Genet ,2005 ,13 :118.
    58. Cagnoli C ,Mariotti C , Taroni F , et al. SCA28 , a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11. 222q11.2. Brain ,2006 ,129 (1) :235.
    59.黄怀钧,王凤霞28例遗传性共济失调临床与家系分析中国优生与遗传杂志,1994,4(2):77-81
    60.王进,袁志刚遗传性脊髓型Friedreich和脊髓小脑型共济失调的临床及系谱分析广西医科大学学报,1996,13(3):24-7
    61.刘圣珍,李晨MJD/SCA3一家系报告青岛卫生医药,1997,29(7):1-4
    62.张克雄,李乃忠中国人群遗传性共济失调症中脊髓小脑共济失调1亚型的基因分型与诊断上海医科大学学报,1997,24(3):211-3
    63.丁婉琼,袁光固脊髓小脑型共济失调一家系27例中国医学遗传学杂志,1998, 15 (2):128
    64.居乃畅,余国龙脊髓小脑型共济失调一家系23例中国医学遗传学杂志,1999,16 (5):306
    65.丁新生,程虹三核苷酸重复的监测在脊髓小脑型共济失调的应用研究临床神经病学杂志,1999,19(1):6-8
    66.张宝荣,应智林经DNA测序证实的脊髓小脑共济失调SCA3基因突变研究中华神经科杂志,2000,33(3):162-4
    67.张锋,李晨遗传性脊髓小脑型共济失调病人SCA3基因突变检测青岛大学医学院学报,2000,36(3):185-6
    68.黄智恒,徐评议遗传性脊髓小脑性共济失调7型的基因突变及临床特征分析临床神经病学杂志2001,14(5):272-5
    69.藤继军,张金玉常染色体显性遗传脊髓小脑型共济失调6型一家系中华医学遗传学杂志,2002,19(4):316
    70.杨咏梅,夏中信白族遗传性脊髓小脑共济失调7型一家系报告中华神经科杂志,2002,35(4):253-4
    71.张淑玲,刘桂玲脊髓小脑型共济失调一家系13例中华医学遗传学杂志,2002,19(2):158
    72.韩燕,郑惠明遗传性脊髓小脑共济失调7型的临床研究中国临床康复,2003,7(7):1114-5
    73.纪洪石,何晓欣脊髓小脑性共济失调伴结节性硬化1例沈阳医学院学报,2003,5(3):179
    74.梁可珍,黄燕脊髓小脑性共济失调一家系11例中华医学遗传学杂志,2003,20(2):106
    75.谢秋幼,梁秀龄我国南方汉族人脊髓小脑性共济失调不同基因亚型的频率分布中华检验医学杂志,2004,27(9):555-7
    76.姜森,金春莲东北地区正常汉族人群SCA1及SCA3/MJD基因内CAG重复变异研究中华医学遗传学杂志,2004,21(1):83-5
    77.姜晓华,叶蕾遗传性脊髓小脑型共济失调一例家系SCA3基因突变研究中华医学杂志,2005,85(12):848-9
    78.黄雨兰,喻良脊髓小脑性共济失调6型一家系12例报道卒中与神经疾病,2005,12(1):55
    79.徐严明,丁小君遗传性脊髓小脑性共济失调6型一家系八例中华医学遗传学杂志,2005,22(3):290
    80.宋兴旺,唐北沙湖南汉族人群遗传性脊髓小脑型共济失调患者三核苷酸突变频率分布中南大学学报(医学版),2006,31(5):702-5
    81.韩燕,郑惠民脊髓小脑共济失调1型的临床表现与基因诊断中风与神经疾病杂志,2006.23(5):520-2
    82.舒安利,蒲泉州脊髓小脑共济失调一家系的遗传学研究中国优生与遗传杂志,2006,14(6):122-4
    83.郝伟,许静遗传性共济失调一家系报告河北医科大学学报,2006,27(5):449
    84.宋畅,陈彪脊髓小脑共济失调1,2,3型的临床表现和基因分型疑难病杂志,2006,5(1):19-22
    85.雷晶,马建华8例脊髓小脑共济失调2型、3型患者的临床表现及MRI表现分析新疆医科大学学报,2007,30(11):1245-8
    86.韩燕,管阳太脊髓小脑性共济失调3型的临床与分子学特征临床神经病学杂志,2007,20(6):417-9
    87.顾卫红,郝莹脊髓小脑共济失调1型中等重复动态突变患者临床表型分析中日友好医院学报,2008,22(2):83-6
    88.李欣脊髓小脑性共济失调患者10例分析中国实用医药,2008,3(10):158
    89.顾卫红,王国相脊髓小脑共济失调3型ICARS评分相关因素分析中国现代神经疾病杂志,2008,8(2):139-41
    90.王俊岭,宋兴旺遗传性脊髓小脑型共济失调7型临床特征及基因突变分析中国神经免疫学与神经病学杂志,2008,15(3):174-8
    91.黄炯,胡叶文遗传性脊髓小脑共济失调病人心理感受的质性研究护士进修杂志,2008,23(9):790-2
    92.黄丽华,周华东三峡库区遗传性脊髓小脑型共济失调家系基因突变的研究重庆医学,2008,37(7):691-6
    93. Tsai HF, Liu CS, Leu TM,et al Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand. 2004 May;109(5):355-60
    94. Hsieh M, Tsai HF, Lu TM,et al. Studies of the CAG repeat in the Machado-Joseph disease gene in Taiwan. Hum Genet. 1997 Aug;100(2):155-62
    95. Hsieh M, Li SY, Tsai CJ,et al. Identification of five spinocerebellar ataxia type 2 pedigrees in patients with autosomal dominant cerebellar ataxia in Taiwan. Acta Neurol Scand. 1999 Sep;100(3):189-94
    96. Hsieh M, Lin SJ, Chen JF,et al. Identification of the spinocerebellar ataxia type 7 mutation in Taiwan: application of PCR-based Southern blot. J Neurol. 2000 Aug;247(8):623-9.
    97. Lee YC, Chen JT, Liao KK,et al. Prolonged cortical relay time of long latency reflex and central motor conduction in patients with spinocerebellar ataxia type 6. Clin Neurophysiol. 2003 Mar;114(3):458-62.
    98. Wang PS, Liu RS, Yang BH,et al. Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6 : a voxel-based FDG-positron emission tomography analysis. J Neurol. 2007 Jul;254(7):838-45.
    99. Lin IS, Wu RM, Lee-Chen GJ,et al. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord. 2007 May;13(4):246-9.
    100. Chung MY, Lu YC, Cheng NC,et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003 Jun;126(Pt 6):1293-9.
    101. Lin KP, Soong BW. Peripheral neuropathy of Machado-Joseph disease in Taiwan: a morphometric and genetic study. Eur Neurol. 2002;48(4):210-7.
    102. Soong B W, Lu Y C, Choo K B,et al. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol. 2001 Jul;58(7):1105-9
    103. Liu CS, Hsieh M, Chen YY,et al. Machado-Joseph shoe. Mov Disord. 2005 Jan;20(1):66-8
    104. Yeh TH, Lu CS, Chou YH, et al. Autonomic dysfunction in Machado-Joseph disease.Arch Neurol. 2005 Apr;62(4):630-6.
    105. Lu CS, Wu Chou YH, Kuo PC, et al. The parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol. 2004 Jan;61(1):35-8
    106. Lu MK, Shih HT, Huang KJ,et al. Movement-related cortical potentials in patients with Machado-Joseph disease. Clin Neurophysiol. 2008 May;119(5):1010-9.
    107. Yen TC, Lu CS, Tzen KY,et al. Decreased dopamine transporter binding in Machado- Joseph disease. J Nucl Med. 2000 Jun;41(6):994-8
    108. Wu YR, Chen IC, Soong BW, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles in neurological disorders and functional implications. Hum Genet. 2009 May;125(4):437-44.
    109. Lau KK, Au KM, Chen ML,et al. Spinocerebellar ataxia type 6. Hong Kong Med J. 2005 Jun;11(3):207-9
    110. Lau KK, Lam K, Shiu KL,et al. Clinical features of hereditary spinocerebellar ataxia diagnosed by molecular genetic analysis. Hong Kong Med J. 2004 Aug;10(4):255-9.
    111. Zesiewicz TA, Sullivan KL. Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin Neuropharmacol. 2008 Nov-Dec;31(6):363-5
    112. Nakamura K, Yoshida K, Miyazaki D, et al. Spinocerebellar ataxia type 6 (SCA6): clinical pilot trial with gabapentin. J Neurol Sci. 2009 Mar 15;278(1-2):107-11.
    113. Takei A, Honma S, Kawashima A, et al. Beneficial effects of tandospirone on ataxia of a patient with Machado-Joseph disease. Psychiatry Clin Neurosci. 2002 Apr; 56(2): 181-5.
    114. Takei A, Hamada T, Yabe I,et al. Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum. 2005;4(3):211-5.
    115. Liu CS, Hsu HM, Cheng WL, et al. Clinical and molecular events in patients with Machado-Joseph disease under lamotrigine therapy. Acta Neurol Scand. 2005 Jun;111(6):385-90.
    116. Sakai T, Antoku Y, Matsuishi T,et al. Tetrahydrobiopterin double-blind, crossover trial in Machado-Joseph disease. J Neurol Sci. 1996 Mar;136(1-2):71-2
    117. Sakai T. Effects of tetrahydrobiopterin on ataxia in Machado-Joseph disease may be based upon the theory of 'cerebellar long-term depression'. Med Hypotheses. 2001Aug;57(2):180-2
    118. Cardoso F, Puccioni-Sohler M, Lopes-Cendes I. Eyelid dystonia in Machado-Joseph disease. Mov Disord 2000;15:1028–1030.
    119. Yih-Ru W, Lee-Chen G, Lang A, Chen C, Lin H, Chen S. Dystonia as a presenting sign of spinocerebellar ataxia type 1. Mov Disord 2004;19:586–587.
    120. Freeman W, Wszolek Z. Botulinum toxin type A for treatment of spasticity in spinocerebellar ataxia type 3 (Machado-Joseph disease). Mov Disord. 2005 May; 20(5):644
    121. Xia H, Mao Q, Eliason SL, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004 Aug; 10(8):816-20.
    122. Alves S, Nascimento-Ferreira I, Auregan G,et al. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS ONE. 2008 Oct 8; 3(10):e3341.
    123. Priyadarshi Basu,Biswanath Chattopadhyay, Prasanta K Gangopadhaya,et al. Analysis of CAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern India. Hum Genet, 2002(106):597-604
    124. Lima M,Mayer FM, Coutinho P, et al. Origins of a mutation: population genetics of Machado-Joseph disease in the Azores (Portugal). Hum Biol, 1998, 70 (6): 1011 -23
    125. Matins S, Calafell F, Gaspar C, et al. Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch Neurol , 2007 ,64 (10) : 1502-8
    126. Ludger Schols,Georgios Amoiridis,ThomasButtner,et al. Autosomaol Dominant Cerebellar Ataxia:Phenotypic Differences in Genetically Defined Subtypes? Ann Neurol 1997,42:924-932
    127. Lazzarini A, Zimmerman TR Jr, Johnson WG, et al. A 17th-century founder gives rise to a large north American pedigree of autosomal dominant spinocerebellar ataxia not linked to the SCA1 locus on chromosome 6. Neurology. 1992 Nov;42(11):2118-24
    128. Lazzarini A, Zimmerman TR Jr, Johnson WG, et al. A 17th-century founder gives rise to a large north American pedigree of autosomal dominant spinocerebellar ataxia notlinked to the SCA1 locus on chromosome 6. Neurology. 1992 Nov;42(11):2118-24.
    129. Sasaki H, Wakisaka A, Koyama T, et al. Spinocerebellar ataxia 1--clinical study of 17 patients in a large pedigree No To Shinkei. 1993 Jun;45(6):502-8
    130. Yoritaka A, Nakagawa-Hattori Y,et al. A large Japanese family with Machado-Joseph disease: clinical and genetic analysis. Acta Neurol Scand. 1999 Apr;99(4):241-4
    131. Hellenbroich Y, Bubel S, Pawlack H, et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003 Jun;250(6):668-71.
    132. Alonso I, Barros J, Tuna A,et al. Phenotypes of spinocerebellar ataxia type 6 and familial hemiplegic migraine caused by a unique CACNA1A missense mutation in patients from a large family. Arch Neurol. 2003 Apr;60(4):610-4
    133. Lin Y, Zheng JY, Jin YH,et al. Trinucleotide expansions in the SCA7 gene in a large family with spinocerebellar ataxia and craniocervical dystonia. Neurosci Lett. 2008 Mar 28;434(2):230-3.
    134. Day JW, Schut LJ, Moseley ML, et al. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 2000 Sep 12;55(5):649-57.
    135. Bruni AC, Takahashi-Fujigasaki J, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004 Aug;61(8):1314-20.
    136. Globas C, du Montcel ST, Baliko L,et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008 Nov 15;23(15):2232-8.
    137. Christova P, Anderson JH, Gomez CM.et al. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008 Apr;65(4):530-6
    138. Trouillas P, Takayanagi T, Hallett M,et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997 Feb 12;145(2):205-11
    139. Storey E, Tuck K, Hester R, et al. Inter-rater reliability of the International Cooperative Ataxia Rating Scale (ICARS). Mov Disord, 2004, 19:190-192
    140. Tanja Schmitz-Hubsch,Sophie Tezenas du Montcel, Laszlo Baliko, et al. Reliability and Validity of the International Cooperative Ataxia Rating Scale: A study in 156Spinocerebellar Ataxia Patients. Movement Disorders, 2006,21 (5): 699-704
    141. Ikeda Y, Dick KA, Weatherspoon MR, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006 Feb;38(2):184-90.
    142. Tsuchiya K, Oda T, Yoshida M,et al. Degeneration of the inferior olive in spinocerebellar ataxia 6 may depend on disease duration: report of two autopsy cases and statistical analysis of autopsy cases reported to date. Neuropathology. 2005 Jun;25(2):125-35.
    143. Yamada S, Nishimiya J, Nakajima T,et al. Linear high intensity area along the medial margin of the internal segment of the globus pallidus in Machado-Joseph disease patients. J Neurol Neurosurg Psychiatry. 2005 Apr;76(4):573-5
    144. Oide T, Arima K, Yamazaki M,et al. Coexistence of familial transthyretin amyloidosis ATTR Val30Met and spinocerebellar ataxia type 1 in a Japanese family--a follow-up autopsy report. Amyloid. 2004 Sep;11(3):191-9
    145. Mochizuki Y, Kawata A, Mizutani T,et al. Hereditary paroxysmal ataxia with mental retardation: a clinicopathological study in relation to episodic ataxia type 2. Acta Neuropathol. 2004 Oct;108(4):345-9.
    146. Ohara S, Iwahashi T, Oide T,et al. Spinocerebellar ataxia type 6 with motor neuron loss: a follow-up autopsy report. J Neurol. 2002 May;249(5):633-5.
    147. Landau WM, Schmidt RE, McGlennen RC,et al. Hereditary spastic paraplegia and hereditary ataxia, Part 2: A family demonstrating various phenotypic manifestations with the SCA3 genotype. Arch Neurol. 2000 May;57(5):733-9.
    148. Martin J, Van Regemorter N, Del-Favero J,et al. Spinocerebellar ataxia type 7 (SCA7) - correlations between phenotype and genotype in one large Belgian family. J Neurol Sci. 1999 Sep 15;168(1):37-46
    149. Tashiro H, Suzuki SO, Hitotsumatsu T,et al. An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropathol. 1999 Jul-Aug;18(4):198-204.
    150. L?nnqvist T, Paetau A, Nikali K,et al. Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): neuropathological features. J Neurol Sci. 1998 Nov 26;161(1):57-65.
    151. Imon Y, Katayama S, Kawakami H, et al. A necropsied case of Machado-Josephdisease with a hyperintense signal of transverse pontine fibres on long TR sequences of magnetic resonance images. J Neurol Neurosurg Psychiatry. 1998 Jan;64(1):140-1.
    152. Gilman S, Sima AA, Junck L, et al. Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann Neurol. 1996 Feb;39(2):241-55.
    153. Melberg A, Hetta J, Dahl N, et al. Autosomal dominant cerebellar ataxia deafness and narcolepsy. J Neurol Sci. 1995 Dec;134(1-2):119-29.
    154. Bürk K, Abele M, Fetter M, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996 Oct;119 ( Pt 5):1497-505
    155. Higgins JJ, Harvey-White JD, Nee LE,et al. Brain MRI, lumbar CSF monoamine concentrations, and clinical descriptors of patients with spinocerebellar ataxia mutations. J Neurol Neurosurg Psychiatry. 1996 Dec;61(6):591-5
    156. Nakayama T, Nakayama K, Takahashi Y,et al. Case of spinocerebellar ataxia type 1 showing high intensity lesions in the frontal white matter on T2-weighted magnetic resonance images. Med Sci Monit. 2001 Mar-Apr; 7(2):299-303
    157. Armstrong J, Bonaventura I, Rojo A, et al. Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neurosci Lett. 2005 Jun 24;381(3):247-51.
    158. Lukas C, Sch?ls L, Bellenberg B, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006 Nov 20;408(3):230-5.
    159. Giuffrida S, Saponara R, Restivo DA,et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999 May;246(5):383-8.
    160. Yoshizawa T, Watanabe M, Frusho K, et al. Magnetic resonance imaging demonstrates differential atrophy of pontine base and tegmentum in Machado-Joseph disease. J Neurol Sci. 2003 Nov 15;215(1-2):45-50.
    161. Stevanin G, Herman A, Brice A, et al. Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology. 1999 Oct 12;53(6):1355-7
    162. Murata Y, Kawakami H, Yamaguchi S, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998 Oct;55(10):1348-52
    163. Bang OY, Lee PH, Kim SY,et al. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol NeurosurgPsychiatry. 2004 Oct;75(10):1452-6.
    164. Ikeda Y, Shizuka-Ikeda M, Watanabe M,et al. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci. 2000 Dec 15;182(1):76-9.
    165. Giuffrida S, Saponara R, Restivo DA,et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999 May;246(5):383-8.
    166. Murata Y, Kawakami H, Yamaguchi S, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998 Oct;55(10):1348-52
    167. Armstrong J, Bonaventura I, Rojo A, et al. Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neurosci Lett. 2005 Jun 24;381(3):247-51.
    168. Yoshizawa T, Watanabe M, Frusho K, et al. Magnetic resonance imaging demonstrates differential atrophy of pontine base and tegmentum in Machado-Joseph disease. J Neurol Sci. 2003 Nov 15;215(1-2):45-50.
    169. Gaspar C, Lopes-Cendes I, DeStefano AL,et al. Linkage disequilibrium analysis in Machado-Joseph disease patients of different ethnic origins. Hum Genet. 1996 Nov;98(5):620-4
    170. Pang J, Allotey R, Wadia N,et al. A common disease haplotype segregating in spinocerebellar ataxia 2 (SCA2) pedigrees of diverse ethnic origin. Eur J Hum Genet. 1999 Oct-Nov;7(7):841-5.
    171. Basu P, Chattopadhyay B, Gangopadhaya PK,et al. Analysis of CAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern India. Hum Genet. 2000 Jun;106(6):597-604.
    172. Zhao Y, Tan EK, Law HY,et al. Prevalence and ethnic differences of autosomal-dominant cerebellar ataxia in Singapore. Clin Genet. 2002 Dec;62(6): 478-81.
    173. Subramony SH, Hernandez D, Adam A,et al. Ethnic differences in the expression of neurodegenerative disease: Machado-Joseph disease in Africans and Caucasians. Mov Disord. 2002 Sep;17(5):1068-71
    174. Martins S, Calafell F, Gaspar C, et al. Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch Neurol. 2007 Oct;64(10):1502-8
    175. Rengaraj R, Dhanaraj M, Arulmozhi T,et al. High prevalence of spinocerebellar ataxia type 1 in an ethnic Tamil community in India. Neurol India. 2005 Sep;53(3):308-10; discussion 311.
    176. Annesi G, Muglia M, Conforti FL,et al. A simple and rapid nonisotopic method for sizing CAG repeats in the SCA1 gene. Hum Hered. 1997 Jan-Feb; 47(1):47-51.
    177. Cagnoli C, Michielotto C, Matsuura T,et al. Detection of large pathogenic expansions in FRDA1, SCA10, and SCA12 genes using a simple fluorescent repeat-primed PCR assay. J Mol Diagn. 2004 May;6(2):96-100
    178. Cagnoli C, Stevanin G, Michielotto C,et al. Large pathogenic expansions in the SCA2 and SCA7 genes can be detected by fluorescent repeat-primed polymerase chain reaction assay. J Mol Diagn. 2006 Feb;8(1):128-32
    179. Condorelli DF, Trovato-Salinaro A, Spinella F,et al. Rapid touchdown PCR assay for the molecular diagnosis of spinocerebellar ataxia type 2. Int J Clin Lab Res. 1998;28(3):174-8.
    180. Matilla T, Volpini V, Genís D,et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet. 1993 Dec;2(12):2123-8.
    181. Christova P, Anderson JH, Gomez CM. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008 Apr; 65(4):530-6
    182. Shrimpton AE, Davidson R, MacDonald N,et al. Presymptomatic testing for autosomal dominant spinocerebellar ataxia type 1. J Med Genet. 1993 Jul;30(7):616-7.
    183. Lucotte G, Sémonin O, Mercier G. Presymptomatic testing for autosomal dominant spinocerebellar ataxia type 1 in a French family. Genet Couns. 2001;12(2):173-5.
    184. Smith CO, Lipe HP, Bird TD. Impact of presymptomatic genetic testing for hereditary ataxia and neuromuscular disorders. Arch Neurol. 2004 Jun;61(6):875-80.
    185. Rolim L, Zagalo-Cardoso JA, Paúl C,et al. The perceived advantages and disadvantages of presymptomatic testing for Machado-Joseph disease: development of a new self-response inventory. J Genet Couns. 2006 Oct;15(5):375-91.
    186. Moutou C, Nicod JC, Gardes N, et al. Birth after pre-implantation genetic diagnosis (PGD) of spinocerebellar ataxia 2 (Sca2). Prenat Diagn. 2008 Feb;28(2):126-30.
    187. Drüsedau M, Dreesen JC, De Die-Smulders C,et al. Preimplantation genetic diagnosis of spinocerebellar ataxia 3 by (CAG)(n) repeat detection. Mol Hum Reprod. 2004 Jan;10(1):71-5
    188. Tsai HF, Liu CS, Chen GD, et al. Prenatal diagnosis of Machado-Joseph disease/Spinocerebellar Ataxia Type 3 in Taiwan: early detection of expanded ataxin-3. J Clin Lab Anal. 2003;17(5):195-200.
    189. Lima M, Kay T, Vasconcelos J,et al. Disease knowledge and attitudes toward predictive testing and prenatal diagnosis in families with Machado-Joseph disease from the Azores Islands (Portugal). Community Genet. 2001;4(1):36-42
    190. Sequeiros J, Maciel P, Taborda F, et al. Prenatal diagnosis of Machado-Joseph disease by direct mutation analysis. Prenat Diagn. 1998 Jun;18(6):611-7.
    1. Seifried,-C; Velazquez-Perez,-L; Santos-Falcon,-N; etal Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann-N-Y-Acad-Sci. 2005 Apr; 1039: 524-7
    2. Zu,-L; Figueroa,-K-P; Grewal,-R; et al. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am-J-Hum-Genet. 1999 Feb; 64(2): 594-9.
    3. Gardner,-R-J; Knight,-M-A; Hara,-K, et al. Spinocerebellar ataxia type 15. Cerebellum. 2005; 4(1): 47-50.
    4. Hara,-K; Fukushima,-T; Suzuki,-T; et al. Japanese SCA families with an unusual phenotype linked to a locus overlapping with SCA15 locus. Neurology. 2004 Feb 24; 62(4): 648-51.
    5. Miyoshi,-Y; Yamada,-T; Tanimura,-M; et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001 Jul 10; 57(1): 96-100.
    6. Miura,-S; Shibata,-H; Furuya,-H; et al. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology. 2006 Oct 10; 67(7): 1236-41.
    7. Lasek,-K; Lencer,-R; Gaser,-C; et al Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006 Sep; 129(Pt 9): 2341-52.
    8. Brkanac, Z.; Fernandez, M.; Matsushita, M.; et al Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am. J. Med. Genet. 114: 450-457, 2002
    9. Verbeek,-D-S; Schelhaas,-J-H; Ippel,-E-F;et al Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum-Genet. 2002 Oct; 111(4-5): 388-93.
    10. Chung,-M-Y; Lu,-Y-C; Cheng,-N-C; et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003 Jun; 126(Pt 6): 1293-9.
    11. Storey,-E; Knight,-M-A; Forrest,-S-M; et al. Spinocerebellar ataxia type 20. Cerebellum 2005; 4(1): 55-7.
    12. Vuillaume,-I; Devos,-D; Schraen-Maschke,-S; et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann-Neurol. 2002 Nov; 52(5):666-70.
    13. Verbeek,-D-S; van-de-Warrenburg,-B-P; Wesseling,-P; et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain. 2004 Nov; 127(Pt 11): 2551-7
    14. Stevanin,-G; Bouslam,-N; Thobois,-S; et al Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann-Neurol. 2004 Jan; 55(1): 97-104.
    15. Yu,-G-Y; Howell,-M-J; Roller,-M-J; et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann-Neurol. 2005 Mar; 57(3): 349-54
    16. van Swieten, J. C.; Brusse, E.; de Graaf, B. M.; A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral (sic) ataxia. Am. J. Hum. Genet. 72: 191-199, 2003.
    17. Dalski, A.; Atici, J.; Kreuz, F. R, et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Europ. J. Hum. Genet. 13: 118-120, 2005.
    18. Claudia Cagnoli, Caterina Mariotti,, Franco Taroni, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22–q11.2 Brain 2006 129(1):235-242
    19. Waragai,-M; Nagamitsu,-S; Xu,-W; et al Ataxin 10 induces neuritogenesis via interaction with G-protein beta2 subunit. J-Neurosci-Res. 2006 May 15; 83(7): 1170-8.
    20. Helmlinger,-D; Hardy,-S; Eberlin,-A; et al Both normal and polyglutamine- expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase- containing complexes. Biochem-Soc-Symp. 2006; (73): 155-63.
    21. Strom,-A-L; Forsgren,-L; Holmberg,-M;et al A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol-Dis. 2005 Dec; 20(3): 646-55.
    22. van-Roon-Mom,-W-M; Reid,-S-J; Faull,-R-L;et al TATA-binding protein in neurodegenerative disease. Neuroscience. 2005; 133(4): 863-72.
    23. Kordasiewicz,-H-B; Thompson,-R-M; Clark,-H-B; et al C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum-Mol-Genet. 2006 May 15; 15(10): 1587-99.
    24. Holmes,-S-E; O'Hearn,-E; Margolis,-R-L;et al Why is SCA12 different from other SCAs? Cytogenet-Genome-Res. 2003; 100(1-4): 189-97.
    25. Hellenbroich,-Y; Pawlack,-H; Rub,-U; et al Spinocerebellar ataxia type 4. Investigation of 34 candidate genes. J-Neurol. 2005 Dec; 252(12): 1472-5
    26. Bauer,-P; Schols,-L; Riess,-O; et al. Spectrin mutations in spinocerebellar ataxia (SCA). Bioessays. 2006 Aug; 28(8): 785-7.
    27. Burk,-K; Zuhlke,-C; Konig,-I-R; et al. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology. 2004 Jan 27; 62(2): 327-9.
    28. Klebe,-S; Durr,-A; Rentschler,-A; et al New mutations in protein kinase Cgamma associated with spinocerebellar ataxia type 14. Ann-Neurol. 2005 Nov; 58(5): 720-9.
    29. ; Costa,-C; Gomes,-A; et al A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. Alonso,-I J-Hum-Genet. 2005; 50(10): 523-9.
    30. Dalski,-A; Atici,-J; Kreuz,-F-R; et al Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur-J-Hum-Genet. 2005 Jan; 13(1): 118-20.
    31. Waters,-M-F; Fee,-D; Figueroa,-K-P; et al. An autosomal dominant ataxia maps to 19q13: Allelic heterogeneity of SCA13 or novel locus? Neurology. 2005 Oct 11; 65(7): 1111-3.
    32. Evert,-B-O; Araujo,-J; Vieira-Saecker,-A-M; et al Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J-Neurosci. 2006 Nov 1; 26(44): 11474-86.
    33. Duenas,-A-M; Goold,-R; Giunti,-P;et al Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006 Jun; 129(Pt 6): 1357-70.
    34. Tsai,-H-F; Liu,-C-S; Chen,-G-D;et al Prenatal diagnosis of Machado-Joseph disease/Spinocerebellar Ataxia Type 3 in Taiwan: early detection of expanded ataxin-3. J-Clin-Lab-Anal. 2003; 17(5): 195-200.
    1. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2-6
    2. Caqnoli C; Mariotti C; Taroni F; et al. SCA28,a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006 Jan;129(Pt 1):235-42
    3. Storey E; Bahlo M;Fahey M; et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009 Apr;80(4):408-11
    4. Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–26
    5. David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17:65–70
    6. Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91
    7. Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–28
    8. Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6)associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997;15:62–69
    9. Orr HT, Chung MY, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6
    10. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes- Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76
    11. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8
    12. Zhunchenko et al.1997 Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1-voltage-dependent calcium channel. Nat Genet. 1997;15:62–9
    13. David et al.1997 David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17:65– 70
    14. Holmes SE, O’Hearn EE, Mclnnis MG, Gorelick-Feldman DA , Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5Vregion of a PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2
    15. Storey E, Tuck K, Hester R, et al. Inter-rater reliability of the International Cooperative Ataxia Rating Scale (ICARS). Mov Disord. 2004, 19:190-192
    16. Tanja Schmitz-Hubsch,Sophie Tezenas du Montcel, Laszlo Baliko, et al. Reliability and Validity of the International Cooperative Ataxia Rating Scale: A study in 156 Spinocerebellar Ataxia Patients. Mov Disord, 2006,21 (5): 699-704
    17. Andrea Ginestroni; Riccardo Della Nave; Carlo Tessa; et al. Brain structural damage in spinocerebellar ataxia type 1 A VBM study. J Neurol,2008,255:1153-1158
    18. Anelyssa D’Abreu; Marcondes Franca; lscia Lopes-Cendes; et al. The International Cooperative Ataxia Rating Scale in Machado-Joseph Disease. Comparison with the Unified Multiple System Atrophy Rating Scale. Mov Disord, 2007, 22(13):1976-9
    19. Lee WY, Jin DK, Oh MR,et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol. 2003 Jun;60(6):858-63
    20. Bang OY, Huh K, Lee PH, et al. Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch Neurol. 2003 Nov, 60(11):1566-74
    21. Hellenbroich Y; Pawlack H; Rub U; et al. Spinocerebellar ataxia type 4. Investigation of 34 candidate genes. J Neurol. 2005 Dec; 252(12): 1472-5
    22. Hara,-K; Fukushima,-T; Suzuki,-T. Japanese SCA families with an unusual phenotype linked to a locus overlapping with SCA15 locus. Neurology. 2004 Feb 24; 62(4): 648-51
    23. Yabe I; Sasaki H; Chen DH; et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol. 2003 Dec; 60(12): 1749-51
    24. Maruyama H; Izumi Y; Morino H; et al. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet. 2002 Jul 8; 114(5): 578-83
    25. Ikeda Y; Shizuka-Ikeda M; Watanabe M; et al. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci. 2000 Dec 15;182(1):76-9
    26. Tsai HF; Liu CS; Leu TM; et al. Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand. 2004 May; 109(5): 355-60
    27. Wu YR; Lin HY; Chen CM; et al. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet. 2004 Mar; 65(3): 209-14
    28. Chung MY; Lu YC; Cheng NC; et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003 Jun; 126(Pt 6): 1293-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700