梅花花器官cDNA文库的构建及其PmAP_3、PmPI、PmAG基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅花(Prunus mume Sieb.et.Zucc.)是我国传统名花,品种繁多,蕴含丰富的遗传信息。梅幼年期较长,杂交育种进展缓慢,致使梅花重要的观赏性状和农艺性状研究严重滞后。通过梅花花器官cDNA文库的构建以及花发育相关基因的克隆,研究梅花花发育相关理论,为加速梅花育种及性状改良提供理论依据。主要结果如下:
     1.用Biozol法、SDS法和CTAB法三种方法提取梅花组织总RNA。Biozol法操作简单,实验过程短,但总RNA完整性被破坏。SDS法提取的总RNA有降解,并且还有少量DNA污染。CTAB法能够提取高质量总RNA,总RNA完整性较好,没有降解,28s RNA和18s RNA的比例接近2∶1。
     2.构建梅花花器官cDNA文库,随机挑选克隆测序获得了239条高质量EST序列。构建的原始文库滴度为5.41×10~6 pfu/ml,重组率为97.29%,所得原始文库滴度及重组率符合建库要求;原始文库经扩增后共得到约200ml库液,扩增文库的滴度1.31×10~(10)pfu/ml,扩增文库滴度符合预期数量级;文库插入片段在500bp-1200bp之间,平均为800bp左右,插入片段大小基本符合要求,文库质量比较高。利用MIPS数据库对239条EST序列比对。结果175条序列和拟南芥已知基因相似性很高,占73.22%;35条序列与拟南芥基因功能尚未确定的假定蛋白或未知蛋白同源性很高,占14.64%;29条序列和拟南芥已知基因没有同源性,占12.13%。3.通过同源序列法,利用RACE和TAIL-PCR从梅花花器官中成功克隆到PmAP_3、PmPI、PmAG三个全长基因。PmAP_3的全长为975bp,包含一个完整的读码框,编码202个氨基酸。将PmAP_3基因推测的氨基酸序列在NCBI上进行Blastp搜索发现,PmAP_3蛋白是AP_3-like蛋白。PmPI的全长为888bp,包含一个完整的读码框,编码210个氨基酸。将PmPI基因推测的氨基酸序列在NCBI上进行Blastp搜索发现,PmPI推测蛋白是PI-like蛋白。PmAG的全长为1171bp,包含一个完整的读码框,编码243个氨基酸。将PmAG基因推测的氨基酸序列在NCBI上进行Blastp搜索发现,PmAG推测蛋白是AG-like蛋白。
     4.成功构建PmAP_3、PmPI基因超量表达载体,为进一步研究B类基因的功能打下基础。
Mei flower(Prunus mume Sieb.et.Zucc),an traditional famous flower,has numerous cultivars and contains a wealth of genetic informations.It has a longer childhood and slowly development of cross breeding,which resulted in lagging study of important ornamental and agronomic traits.In order to clarify the mechanism of Mei floral organ development and accelerate its breeding program with improved genetic characteristics,the floral organ cDNA library were constructed and related genes in flower development were cloned,
     1.Comparing the quality of Mei total RNA extracted by the Biozol、SDS and CTAB methods resepctively,the results showed that the procedure of Biozol reagent extraction was simpler and time shorter but integrity of RNA was destroyed.By the means of the SDS,total RNA was partly degradation in the extraction process and there was a small amount of genomic DNA contamination.Quality and integrity of total RNA were best by the CTAB method and there was no significant degradation.Ratio of Concentration of 28s RNA and 18s RNA are close to 2:1.
     2.cDNA library of Mei floral organs was successfully constructed and obtained 239 EST by sequencing of random selecting clones.The titer of primary library was 5.41×10~6 pfu/ml and recombinant percent accounted for 97.29%,which reached the demands.The primary library was amplified and 200ml liquid containing bacterium was collected.The titer of the amplified library was 1.31×10~(10) pfu/ml,which got the expected magnitude.The size of insert fragments basically ranged from 0.5 kb to 1.2 kb with average of 0.8 kb.The size of insert fragments was consonant with the demands.The results indicated that it was a relatively high quality library.By blast of the sequences in MIPS database,the results were as follows:175 EST sequences of 73.22%showed high homologue with the genes of Arabidopsis thaliana,whose protein function were classified; 35 EST sequences of 14.64%matched to the genes ofArabidopsis thaliana,whose protein function were unclassified;29 EST sequences of 12.13%had no identity sequence in MIPS.
     3.Three full-length gene PmAP_3,PmPI and PmAG from Mei using RACE and TAIL-PCR through homologous cloning.Full length of PmAP_3 was 975bp,containing a complete ORF and encoding 202 amino acids.Through BLASTP Research in NCBI using PmAP_3 amino acid sequence,we found that the deduced protein of PmAP_3 was AP_3-like protein.Full length of PmPI was 888bp,which contained a complete ORF,encoding 210 amino acids.BLASTP results showed that the deduced protein of PmPI was PI-like protein.PmAG was 1171 bp,containing a complete ORF,and encoded 243 amino acids. BLASTP research found that the deduced protein of PmAG was AG-like protein.
     4.Over-expression vectors of PmAP_3,PmPI were successfully constructed for the further function study of B class genes.
引文
1.蔡小钿,王金发.植物MADS盒基因的功能和调节机理.植物生理学通,2000,36:277-281
    2.陈俊愉,张启翔,李振坚等.梅花抗寒品种之选育与推广问题.北京林业大学学报,2003,25(特刊):1-5
    3.储昭晖,彭开蔓,张利达等.水稻全生育期均一化cDNA文库的构建和鉴定.科学通报,2002,47(21):1656-1662.
    4.崔永兰,张露黄,敏仁.植物MADS盒基因研究进展.中国生物工程杂,2003,23(9):14-17
    5.董志敏,张宝石,关荣霞,常汝镇,邱丽娟.全长cDNA文库的构建方法.农业生物技术科学,2006,22(2):51-55
    6.胡惠蓉,包满珠,王彩云等.赤霉素(GA3)对武汉市露地梅花部分品种花期的影响.华中农业大学学报,2003,22(2):167-171
    7.胡丽芳,金志强,徐碧玉.MADS-box基因对花的发育及开花早晚的影响.生命科学研究,2004,8(4):7-11
    8.胡松年.基因表达序列标签(EST)数据分析手册.浙江:浙江大学出版社,2005
    9.蒋泽平,梁珍海,刘根林等.ZT、IAA对梅花‘长蕊绿萼'试管苗增殖与生长的影响.见:张启翔主编.中国观赏园艺研究进展.北京:中国林业出版社,2004,255-257
    10.金冬雁,黎孟枫等译.分子克隆实验指南.科学出版社,1993,396-431
    11.李金荣,李金兰.梅花在节日开放的诀窍.湖南林业,2004,4:19
    12.李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769-776
    13.刘建武,孙成华,刘宁.花器官决定的ABC模型和四因子模型.植物学通报,2004,21(3):346-351
    14.刘连森,贺善文,林美红.湖南省果梅品种资源种质杂化状况的初步研究.园艺学报,1993,20(4):225-230
    15.刘青林,陈俊愉.世界梅花研究概.花木盆景.1997,2:8-10
    16.刘青林,陈青华,陈俊愉.梅花愈伤组织培养研究初报.北京林业大学学报,1999,21(2):100-105
    17.卢圣栋主编.现代分子生物学实验技术(第二版).北京:中国协和医科大学出 版社,1999
    18.吕山花,孟征.MADS-box基因家族基因重复及其功能的多样性.植物学通报,2007,24(1):60-70
    19.栾业亮.梅花的栽培.天津农林科技,2003,3:45
    20.骆蒙,孔秀英,贾继增.几种cDNA差减文库构建方法的比较.生物技术通报,2000,6:14-17
    21.马辉,张智俊,罗淑萍植物MADS-box基因研究进展.生物技术通报,2006,6:14-18
    22.毛新国,景蕊莲,孔秀英,赵光耀,贾继增.几种全长cDNA文库构建方法比较.遗传,2006,28(7):865-873
    23.孟征,许智宏.高等植物的同源异型基因.植物生理学通讯,1997,33:233-239
    24.牛传堂等.辐射诱变梅花突变体的研究.核农学报,1995,9(3):144-148
    25.田海生,马磊等.两个标准化cNDA差减文库的构建.中国血吸虫病防治杂志,2001,13(2):75-78
    26.王关林,方宏筠主编.植物基因工程(第二版).北京:科学出版社,2002,82-84
    27.王玉成.杨传.平姜静木本植物组织总RNA提取的要点与原理.东北林业大学学报,2002,30(2):1-4
    28.许兰珍,何永睿,姜国金,刘小丰,陈善春.cDNA文库构建及其在植物抗性研究中的应用.安徽农业科学,2007,35(3):660-662
    29.许智宏,刘春明.植物发育的分子机理.北京:科学出版社,1998,39-53;89-106
    30.许智宏.植物发育与生殖的研究:进展和展望.植物学报,1999,41:909-920
    31.晏慧君,黄兴奇,程在全.cDNA文库构建策略及其分析研究进展.云南农业大学学报,2006,26(1):1-6
    32.晏晓兰,张波.武汉梅花新品种培育.北京林业大学学报,2004,26(增刊):37-38
    33.杨朝东,张俊卫,熊彩凤,包满珠.AFLP技术对梅花杂交种的快速鉴定.北京林业大学学报,2004,26(增刊):45-47
    34.杨成君,王军东.cDNA文库的构建策略及其应用.生物技术通报,2007,1:5-9
    35.姚世响,兰海燕.cDNA文库构建策略及其在盐生植物中的应用.新疆农业科学.2008,45(6):1017-1023
    36.翟礼嘉,顾红雅,胡苹等.现代生物技术.北京:高等教育出版社,2004
    37.张朝红.无核葡萄胚珠发育进程中EST的分析及败育相关基因的克隆.[博士学位论文].西安.西北农林科技大学.2007
    38.张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱的RAPD分析.北京林业大学学报,1998,20(2):12-15
    39.张俊卫,包满珠.利用RAPD分析梅栽培品种间的遗传变异.北京林业大学学报,2007,29(增刊):54-58
    40.张俊卫,柴玉荣,包满珠.利用RAPD标记鉴定和区分梅花42个宫粉型品种.园艺学报,2004,31(4):487-490
    41.张秦英,陈俊愉,申作连.不同激素对‘美人'梅叶片离体培养的影响及其细胞学观察.北京林业大学学报,2004,26(增刊):42-45
    42.赵昶灵,陈俊愉.理化因素对梅花‘南京红须'花色色素颜色呈现的效应.南京林业大学学报,2004a,28(2):27-32
    43.赵昶灵,郭维明,陈俊愉.梅花花色色素种类和含量的初步研究.北京林业大学学报,2004b,26(2):68-73
    44.Adams M D,Kelley J M,Gocayne J D et al.Complementary DNA sequencing:expressed sequence tags and human genome project.Science,1991,252(5013):1651-1658
    45.Angenent G C,Franken J,Busscher M et al.A novel class of MADS box genes is involved in ovule development in Petunia.Plant Cell,1995,7:1569-1582
    46.Bonaldo M F,Lennon G,Soares M B.Normalization and substraction:Two approaches to facilitate gene discovery.Genomes Research,1996,6(9):791-806
    47.Bouchez D,Hofte H.Functional genomics in plants.Plant Physio-logy,1998,118:725-732
    48.Bowman J L,Drews G N,Meyerowitz E M.Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specfic cell types late in flower development.Plant Cell,1991b,3:749-758
    49.Bowman J L,Smyth D R,Meyerowitz E M.Genetic interactions among floral homeotic genes of Arabidopsis.Development,1991a,112:1-20
    50.Carninci P,Shibata Y,Hayatsu Net al.Normalization and Subtraction of Cap -Trapper-Selected cDNAs to Prepare Full-Length cDNA Libraries for Rapid Discovery of New Genes. Genome Research, 2000, 10 (10):1617-1630
    51. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37
    52. Diatchenko L, LauY F C, Campbel A P et al. Suppression subtractive hybridization: A method for generating diferentially regulated or tissue-specific cDNA probes and libraries. Pro Natl Acad Sci USA, 1996, 93:6025-6030
    53. Diatchenko L, Lau Y C, Campbeu A P et al. Proc Natl AcadSci USA, 1996, 93( 12):6025-6030
    54. Favaro R, Pinyopich A, Battaglia R et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15:2603-2611
    55. Flanagan C A, Ma H. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flower. Plant Mol.Biol, 1994,26:581-595
    56. Frohman M A, Dush M K, Martin G R. Rapidp reduction of full-length cDNAs from rare transcripts. Proc Natl Acad Sci USA, 1988, 85 ( 23):8998- 9002
    57. Galaud J P, Carriere et al. Plant J, 1999, 17( 1): 111-118
    58. Gendall A R, Levy Y Y, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001, 107 (4):525-535
    59. Gubler U, Hoffman B J. A simple and very efficient method for generating cDNA libraries. Gene, 1983, 25 (2-3):263-269.
    60. Hawkins V et al. Nucleic Acids Res, 1999, 27(1):204-208
    61. Hofstetter H, Schambock A, van den Berg J et al. Specific excision of the inserted DNA segment from hybrid, plasmids constructed by the poly(dA), poly(dT) method. Biochim. Biophys. Acta. 1976,454:587-591
    62. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409:525-529
    63. Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992, 68:683-697
    64. Jin Z, Roger A, Gorski, Dean Hamer et al. Differential cDNA cloning by enzymatic degrading subtraction (EDS) . Nucleic Acid Res, 1996, 24:4381-4385
    65. Kato S, Sekine S, Oh S W, Kim N S, Umezawa Y, Abe N, Yokoyama Kobayashi M, Aoki T. Construction of a human full-length cDNA bank. Gene, 1994, 150 (2):243-250
    66. Liu Y G, Whittier R F . Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert and fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25:674- 681
    67. Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev, 1991, 5: 484-495
    68. Oharao, Dofitrl, Gilbertw. One-sided polymerase chain reaction: the amplification of cDNA. Proc. Natl. Acad. Sci. USA, 1989, 86:5673-5677
    69. Pelaz S, Gustafson-Brown C, Kohalmi S E et al. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J, 2001, 26:385-394
    70. Pelaz.S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203
    71. Peterson LA et al. Cancer Res, 1998, 58( 23):5326-5328.
    72. Pinyopich A, Ditta G S, Savidge B et al. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003, 424:85-88
    73. Ratcliffe O J, Nadzan G C, Reuber T L, Riechmann J L. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol, 2001, 126:122-132
    74. Ren B Z. Biochemistry and Clinical medcine. Changsha: Hunan Sience and Technical Press, 1993
    75. Sargent T D, Dawid I B. Differential gene expression in the Gastrula of Xenopus laevis. Science, 1983,222:135-139
    76. Sasaki Y F, Ayusawa D, Oishi M. Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system. Nucleic Acids Research, 1994, 22:987-992
    77. Schneiderbauer A, Sandermann H Jr, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds. Anal Biochem, 1991, 197:91-95
    78. Schraml P et al. cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST). Trends Genet, 1993, (9):70-71
    79. Sive H L, John T S. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Neucleic Acids Res, 1988, 16:10937
    80. Theissen G, Becker A, Rosa A D, Kanno A, Kim J T, Minister T, Winter K U, Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol, 2000, 42:115-149
    81. Theissen G, Saedler H. Floral quartets. Nature, 2001, 409:469-471
    82. Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85
    83. Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85
    84. Thomas Roeder. Solid-phase cDNA library construction a versatile approach. Nucleic Acids Research, 1998, 26(14):3451-3452
    85. Vitek M P, Kreissman S G, Gross R H. The isolation of ecdysterone inducible genes by hybridization subtraction chromatography. Nucleic Acids Res, 1981, 9:1191 -1202
    86. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. Science, 2002, 296( 5566):343-346
    87. Weissman S M . Molecular genetic techniques for mapping the human genome. MolBiolMed, 1987, 4(3):133-143.
    88. Wellenreuther R, Schupp I, Poustka A, Wiemann S. The German cDNA Consortium. SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones. BMC Genomics, 2004, 5 (1):36
    89. White JA, Todd J, Newman T et al. A new set of arabidopsis expressed sequence tags from developing seeds. Plant Physiology, 2000, 124:1582-1594
    90. Wolfgang M, Schmid T, Manfred W et al. Controlled ribonnucleotide tailing of cDNA ends(CRTC) by terminal deoxynucleotidy I transferase: a new approach in PCR-mediated of mRNA sequences. Nucleic Acids Research, 1996, 21(9):1789-1791
    91. Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J, 2003,33:47-59.
    92. Zahn L M, Kong H, Leebens-Mack J H, Kim S, Soltis P S, Landherr L L, Soltis D E, Depamphilis C W, Ma H. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangisperm origin with multiple duplications throughout angiosperm history. Genetics, 2005, 169:2209-2223
    93. Zhang HM, Brian G, Forde. An Arabidopsis MADS-box gene that controls nutitient-induced changes in root architecture .Science, 1998, 279( 16):407-409
    94. Zhu Y Y, Machleder E M, Chenchik A, Li R, Siebert P D. Reverse transcriptase template switching: a SMART approach for Full-length cDNA library construction. Biotechniques, 2001, 30(4):892-897
    95. Zhulidov P A, Bogdanova E A, Shcheglov A S et al. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research, 2004, 32 (3):37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700