脱细胞软骨基质三维支架材料修复兔关节骨软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节软骨缺乏直接的血液供应、淋巴循环和神经支配,代谢能力低,自身难以修复,而目前临床常用的修复方法均有一定局限性,脱细胞基质以其良好的生物相容性、细胞吸附性及良好的亲水性,成为组织工程支架选择的又一亮点。与人工材料相比,天然材料的优点是生物相容性好、结构成分与ECM相似,适合种子细胞的生长、增殖及分化,与其他天然仿生材料相比,由于软骨细胞ECM生化成分与结构复杂,脱细胞基质支架材料可以更加接近软骨组织的复杂天然结构及生物学特性。本研究通过制备脱细胞软骨基质三维支架修复兔关节骨软骨缺损。
     第一部分脱细胞软骨基质三维支架的制备及特性研究
     目的:探索脱细胞软骨基质三维多孔支架的制备及其特性研究。方法:新鲜牛膝关节软骨粉碎后,梯度离心法获取软骨微粒,采用改进的Courtman改良法处理细胞后,再冷冻干燥,制备脱细胞软骨基质三维多孔支架。然后,采用京尼平对三维支架进行交联,再次冷冻干燥后,对支架材料进行大体、组织学染色及扫描电镜观察,分别测定支架的孔隙率、溶胀率、降解率。结果:大体观察示支架呈疏松多孔状,京尼平交联后整体呈深蓝色。组织学观察示支架材料无软骨细胞碎片残留,苏木精-伊红(HE)染色,甲苯胺兰染色观察均未见软骨细胞残留。扫描电镜显示支架内孔洞较明显。测量示支架孔隙率为90%,溶胀率为(1314±337)%,降解率2周为(13.69±7.3)%,4周为(25.99±8.9)%。结论:经改进的Courtman改良法处理的软骨基质三维多孔支架脱细胞更彻底,保留了软骨的天然细胞外基质成分,天然交联剂京尼平交联后支架材料机械强度和抗降解性得到了提高。
     第二部分脱细胞软骨基质三维支架的生物相容性研究
     目的:运用兔骨髓基质细胞(BMSCs)接种于支架上评价支架的生物相容性。方法:原代培养兔骨髓基质细胞(BMSCs),传至第二代后以2.0×106个/ml的细胞浓度接种于支架上,采用MTT法检测BMSCs在支架材料上后1、3、5、7、9d的生长、增殖情况,并描绘出柱形图。1w后扫描电镜观察兔骨髓基质细胞于支架上的黏附情况。结果:MTT法显示细胞在支架上生长良好,与对照组DMEM培养液吸光度值比较,差异无统计学意义(P>0.05),提示支架无细胞毒性。扫描电镜显示1w后BMSCs通过细胞突起黏附于支架表面,黏附良好,能较好地在其上生长。结论:天然交联剂京尼平交联后支架的细胞生物相容性好,细胞在材料上能很好的黏附和生长增殖,可作为骨软骨组织工程的良好载体。
     第三部分脱细胞软骨基质三维支架复合bBMP后修复兔关节骨软骨缺损
     目的:运用制备好的脱细胞软骨基质三维支架修复兔关节骨软骨缺损。方法:用盐酸胍溶液溶解bBMP,将脱细胞软骨基质支架浸泡于此溶液中,包于透析膜内,蒸馏水透析4d后冷冻干燥,环氧乙烷消毒备用。扫描电镜观察复合bBMP后支架的结构以及BMSCs接种9d后在支架上的生长状况。取日本大耳兔12只,在其股骨髁部造成一直径4mm深达骨髓腔的缺损,其中18个膝盖植入复合有bBMP的脱细胞软骨基质支架,作为实验组,剩余的6个膝盖旷置为空白对照组。术后12w,24w取材,大体观察及HE、甲苯胺兰组织学观察。结果:扫描电镜观察可见9d后复合体材料表面有大量细胞黏附生长,并连接成片状覆盖于支架表面,细胞生长旺盛,广泛分布于支架上。12w,实验组缺损处可见白色组织大部分覆盖于缺损表面,与周围正常组织界限不明显,组织学观察为新生软骨,能见到透明软骨结构及软骨下骨结构,支架基本降解;对照组缺损明显,以纤维样组织填充于缺损部位。24w,实验组缺损处可见白色组织基本完全覆盖于缺损表面,与周围正常组织界限基本消失,组织学观察为新生透明软骨,结构层次分明,并与软骨下骨连接紧密;对照组为纤维样组织修复,缺损仍然明显。结论:在体内关节腔和骨髓腔不同的微环境诱导下,复合bBMP的脱细胞软骨基质支架材料能对兔关节骨软骨缺损达到较好的修复效果,为骨软骨组织工程修复提供了又一方法。
     实验结果表明,脱细胞软骨基质三维支架材料改进的Courtman改良法处理后脱细胞更彻底,保留了天然软骨的细胞外基质成分,天然交联剂京尼平交联后支架的细胞相容性好,抗降解性得到了提高,复合bBMP后的支架材料对兔关节骨软骨缺损修复效果良好,是一种适用于骨软骨组织工程的良好载体。
Articular cartilage is hard to repair because it lacks a direct blood supply,lymph circulation ,innervation and has a low metabolism.Presnt clinical common repair method has certain limitation.Acullular matrix which has good biocompatibility and hydrophilicity becomes another choice for tissue engineering scaffold.Compared with artificial material,natural materials have an advantage of good biocompatibility,similarity to structure composition of ECM and suitability for cell’s growth,proliferation and differentiation.Compared to other natural materials,a acellular matrix scaffold can get more closer to cartilage’s complex natural structure and biological characteristics.In this study we prepared a cartilage acellular matrix scaffold and repaired the articular osteochondral defect.
     PartⅠ. Preparation of a three-dimentional acellular cartilage matrix scaffold and its characteristics.
     Objective: To prepare a cartilage acellular matrix scaffold and to evaluate its characteristics. Methods: Calf cartilage microparticles were prepared after being physically shattered and gradient centrifugation, and then treated by a modified Courtman’s four-step method which is improved to produce the acellular cartilage matrix.3-D cartilage acellular matrix were prepared with the freeze-drying method.The scaffolds were cross-linked by a neotype crosslinking agent Genepin for 48h,and then placede into glycine solution server times for removing redundant Genepin.The freeze-drying method was used to prepare the CACM.The scaffolds were investigated with gross observation,histological staining(hematoxylin-eosin,toluidine blue),Scan electronic microscope(SEM) and porosity measurement,water absorption rate and degradation rate analysis. Results: Gross observation showed the scaffolds were loose porous and dark blue cross-linked by Genepin.The histological staining(haematoxylin- eosin, toluidine blue staining)showed that there were no chondrocyte fragments in the scaffolds.SEM showed that the scaffolds were porous.The CACM scaffold had 90% porosity,(1314±337)% water absorption rate and (13.69±7.3)%, (25.99±8.9)% degradation rate(2w,4w). Conclusion: The Courtman’s four-step method which is improved makes acellular effects more thoroughly and a retention of the natural cartilage extracellular matrix components.The neotype crosslinking agent Genepin makes scaffolds’mechanical strength and resistance to degradation be enhanced.
     PartⅡ.Evaluation of Biocompatibility of acellular cartilage matrix scaffolds
     Objective: Evaluate the biocompatibility of acellular cartilage matrix scoffolds by use of bone marrow stromal cells seeded onto scoffolds. Methods: After being cultivated for ten days,BMSCs of rabbit were seeded onto the scaffold with a cell density of 2.0×106/ml. MTT test and SEM were done to assess the growth and proliferation of BMSCs. Results: MTT test showed that BMSCs grew well in the 3-D CACM scaffolds of logarithmic trend, Absorbance compared with the control group,the difference was not statistically significant(P>0.05) ,supporting that the scaffolds had no cytotoxic effect on BMSCs.SEM micrographs indicated that cells covered the scaffolds firmly with cell processes. Conclusion: After being cross-linked by Genepin,the 3-D CACM scaffold has good biocompatibility and can be a good choice for osteochondral tissue engineering.
     PartⅢ.Repair of the articular osteochondral defects in rabbits with the bBMP-scaffold complexes
     Objective: To repair the articular osteochondral defects in rabbits with the bBMP-scaffold complexes. Methods: After dissolving 40mg bBMP in 4ml,4M guanidine hydrochloride,put the scaffolds into the solution.Put the scaffolds into a dialysisi-membrane and dialyze to distilled water for 4 days,and then use the freeze-drying method to prepare the bBMP-scaffold complexes.Seed BMSCs onto complexes at a concentration of 2.0×106/ml.9d later,SEM was used to assess the growth of BMSCs. The Articular osteochondral defects of rabbits with 4mm in diameter and reaching medullary cavity were made in the femoral condyles.18 bBMP-scaffold complexes were implanted into articular osteochondral defects of rabbits,6 articular osteochondral defects without treatment were the control group.At 12th and 24th week, Reparative effect of the defects was investigated by gross observation and histological staining (hematoxylin-eosim,toluidine blue). Results: SEM showed that BMSCs grew very well onto bBMP-scaffold complexes and the structure of the scaffold was the same as before. At 12th week,the defects with bBMP-scaffold complexes were filled with hyaline tissue. Histological staining indicated that the defects were mostly repaired with chondrogenesis and subchondral osteogenesis regeneration.The scaffolds were almost degraded.The defects were still existed in control group filled with fibrous tissue.At 24th week, defects with bBMP-scaffold complexes were completely repaired with chondrogenesis and subchondral osteogenesis fully regenerated indicated by histological staining.The control group were filled with fibrous tissue at the surface of the defects and still had deep defects. Conclusion: We found that BMSCs could differentiated into bone and cartilage induced by vivo different environment.The bBMP-scaffold complexes shows a good effect in repairing the articular osteochondral defects in rabbits.
     This experiment indicate that the Courtman’s four-step method which is improved makes acellular effects more thoroughly.The 3-D CACM scaffold reserves most of extracelluar matrix.After being cross-linked by Genepin,the 3-D CACM scaffold has good biocompatibility and degradation rate of the scaffolds is decreased,which make it a suitable carrier for osteochondral tissue engineering.After being combined with bBMP, the bBMP-scaffold complexes repair osteochondral defects better.
引文
[1] Urita Y, Komuro H, Chen G, et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model.[J]. Pediatr Surg Int,2007,23(1):21-26.
    [2] Holton L R, Chung T, Silverman R P, et al. Comparison of acellular dermal matrix and synthetic mesh for lateral chest wall reconstruction in a rabbit model.[J]. Plast Reconstr Surg,2007,119(4):1238-1246.
    [3] Bruen K, Downey E. Successful repair of a diaphragmatic hernia through a pericardial window with acellular dermal matrix.[J]. J Laparoendosc Adv Surg Tech A,2007,17(3):383-386.
    [4] Ayyildiz A, Akgul K T, Huri E, et al. Use of porcine small intestinal submucosa in bladder augmentation in rabbit: long-term histological outcome.[J]. ANZ J Surg,2008,78(1-2):82-86.
    [5] Piasecki D P, Spindler K P, Warren T A, et al. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences.[J]. Am J Sports Med,2003,31(4):601-605.
    [6] D'Lima D D, Jr Colwell C W. Clinical objectives for cartilage repair.[J]. Clin Orthop Relat Res,2001(391 Suppl):S402-S405.
    [7] Moore E E, Bendele A M, Thompson D L, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis.[J]. Osteoarthritis Cartilage,2005,13(7): 623- 631.
    [8] Hubbard M J. Articular debridement versus washout for degeneration ofthe medial femoral condyle. A five-year study.[J]. J Bone Joint Surg Br,1996,78(2):217-219.
    [9] Steadman J R, Rodkey W G, Rodrigo J J. Microfracture: surgical technique and rehabilitation to treat chondral defects.[J]. Clin Orthop Relat Res, 2001(391 Suppl):S362-S369.
    [10] Cain E L, Clancy W G. Treatment algorithm for osteochondral injuries of the knee.[J]. Clin Sports Med,2001,20(2):321-342.
    [11] Miller B S, Steadman J R, Briggs K K, et al. Patient satisfaction and outcome after microfracture of the degenerative knee.[J]. J Knee Surg, 2004, 17(1):13-17.
    [12] Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption.[J]. Arthroscopy,1993,9(3):318-321.
    [13] Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study.[J]. Knee Surg Sports Traumatol Arthrosc,1996,3(4):262-264.
    [14] Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience.[J]. J Bone Joint Surg Am,2003,85-A Suppl 2:25-32.
    [15] Kotani A, Ishii Y, Sasaki S. Autogenous osteochondral grafts for osteonecrosis of the femoral condyle.[J]. J Orthop Surg (Hong Kong),2003, 11(2): 117-122.
    [16] Wang C J. Treatment of focal articular cartilage lesions of the knee with autogenous osteochondral graftsA 2- to 4-year follow-up study.[J]. Arch Orthop Trauma Surg,2002,122(3):169-172.
    [17] Vacanti C A, Langer R, Schloo B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.[J]. Plast Reconstr Surg,1991,88(5):753-759.
    [18] Whiteside R A, Bryant J T, Jakob R P, et al. Short-term load bearing capacity of osteochondral autografts implanted by the mosaicplasty technique: an in vitro porcine model.[J]. J Biomech,2003,36(8): 1203- 1208.
    [19] Hennig A, Abate J. Osteochondral allografts in the treatment of articular cartilage injuries of the knee.[J]. Sports Med Arthrosc,2007,15(3): 126- 132.
    [20] Jamali A A, Emmerson B C, Chung C, et al. Fresh osteochondral allografts: results in the patellofemoral joint.[J]. Clin Orthop Relat Res,2005(437):176-185.
    [21] Williams R R, Ranawat A S, Potter H G, et al. Fresh stored allografts for the treatment of osteochondral defects of the knee.[J]. J Bone Joint Surg Am,2007,89(4):718-726.
    [22] Gross A E, Kim W, Las H F, et al. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup.[J]. Clin Orthop Relat Res,2008,466(8):1863-1870.
    [23] Aubin P P, Cheah H K, Davis A M, et al. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects.[J]. Clin Orthop Relat Res,2001(391 Suppl):S318-S327.
    [24] Raikin S M. Stage VI: massive osteochondral defects of the talus.[J]. Foot Ankle Clin,2004,9(4):737-744.
    [25] Meehan R, Mcfarlin S, Bugbee W, et al. Fresh ankle osteochondral allograft transplantation for tibiotalar joint arthritis.[J]. Foot AnkleInt,2005,26(10):793-802.
    [26] Argun M, Baktir A, Turk C Y, et al. The chondrogenic potential of free autogenous periosteal and fascial grafts for biological resurfacing of major full-thickness defects in joint surfaces (an experimental investigation in the rabbit).[J]. Tokai J Exp Clin Med,1993,18(3-6):107-116.
    [27]白雪东,胡蕴玉,严乐平, et al.一体化层状梯度修复体用于骨软骨组织工程的实验研究[J].中国矫形外科杂志,2007(17).
    [28] Bouwmeester S J, Beckers J M, Kuijer R, et al. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee.[J]. Int Orthop,1997,21(5):313-317.
    [29] Slynarski K, Deszczynski J, Karpinski J. Fresh bone marrow and periosteum transplantation for cartilage defects of the knee.[J]. Transplant Proc,2006,38(1):318-319.
    [30] Dounchis J S, Bae W C, Chen A C, et al. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts.[J]. Clin Orthop Relat Res,2000(377):248-264.
    [31] Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.[J]. N Engl J Med,1994,331(14):889-895.
    [32] Brittberg M, Tallheden T, Sjogren-Jansson B, et al. Autologous chondrocytes used for articular cartilage repair: an update.[J]. Clin Orthop Relat Res,2001(391 Suppl):S337-S348.
    [33] Micheli L J, Browne J E, Erggelet C, et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up.[J]. Clin J Sport Med,2001,11(4):223-228.
    [34] Bentley G, Biant L C, Carrington R W, et al. A prospective, randomisedcomparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.[J]. J Bone Joint Surg Br, 2003, 85(2):223-230.
    [35] Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.[J]. Clin Orthop Relat Res,2000(374):212-234.
    [36] Chesterman P J, Smith A U. Homotransplantation of articular cartilage and isolated chondrocytes. An experimental study in rabbits.[J]. J Bone Joint Surg Br,1968,50(1):184-197.
    [37] Grande D A, Pitman M I, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation.[J]. J Orthop Res,1989,7(2):208-218.
    [38] Kawasaki K, Ochi M, Uchio Y. [Autologous chondrocytes transplantation][J]. Clin Calcium,2002,12(2):243-249.
    [39] Melamed E, Robinson D, Halperin N, et al. Restoration of arthritic cartilage defects using autologous chondrocytes transplantation is superior to cartilage-paste graft in rabbits.[J]. J Knee Surg,2004,17(1):6-12.
    [40] Vogt S, Braun S, Imhoff A B. [Stage oriented surgical cartilage therapy. Current situation][J]. Z Rheumatol,2007,66(6):493-503, 504.
    [41] Darling E M, Hu J C, Athanasiou K A. Zonal and topographical differences in articular cartilage gene expression.[J]. J Orthop Res,2004, 22(6): 1182-1187.
    [42] Eyre D. Collagen of articular cartilage.[J]. Arthritis Res,2002,4(1):30-35.
    [43] Burg M A, Tillet E, Timpl R, et al. Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules.[J]. J Biol Chem,1996,271(42):26110-26116.
    [44] Holden P, Meadows R S, Chapman K L, et al. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family.[J]. J Biol Chem,2001,276(8):6046-6055.
    [45] Shakibaei M, Merker H J. Beta1-integrins in the cartilage matrix.[J]. Cell Tissue Res,1999,296(3):565-573.
    [46] Lahiji K, Polotsky A, Hungerford D S, et al. Cyclic strain stimulates proliferative capacity, alpha2 and alpha5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes.[J]. In Vitro Cell Dev Biol Anim,2004,40(5-6):138-142.
    [47] Barry F, Boynton R E, Liu B, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.[J]. Exp Cell Res,2001, 268(2): 189-200.
    [48] Morales T I, Joyce M E, Sobel M E, et al. Transforming growth factor-beta in calf articular cartilage organ cultures: synthesis and distribution. [J]. Arch Biochem Biophys,1991,288(2):397-405.
    [49] Schalkwijk J, Joosten L A, Van Den Berg W B, et al. Insulin-like growth factor stimulation of chondrocyte proteoglycan synthesis by human synovial fluid.[J]. Arthritis Rheum,1989,32(1):66-71.
    [50] Blunk T, Sieminski A L, Appel B, et al. Bone morphogenetic protein 9: a potent modulator of cartilage development in vitro.[J]. Growth Factors, 2003, 21(2):71-77.
    [51] Bobacz K, Ullrich R, Amoyo L, et al. Stimulatory effects of distinct members of the bone morphogenetic protein family on ligament fibroblasts.[J]. Ann Rheum Dis,2006,65(2):169-177.
    [52] Arevalo-Silva C A, Cao Y, Weng Y, et al. The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage.[J]. Tissue Eng,2001,7(1): 81-88.
    [53] Vacanti C A, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices.[J]. Clin Plast Surg,1994,21(3):445-462.
    [54] Brittberg M, Peterson L, Sjogren-Jansson E, et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments.[J]. J Bone Joint Surg Am,2003,85-A Suppl 3:109-115.
    [55] Boopalan P R, Sathishkumar S, Kumar S, et al. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation.[J]. Int Orthop, 2006, 30(5):357-361.
    [56] Bernardo M E, Emons J A, Karperien M, et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources.[J]. Connect Tissue Res,2007, 48(3):132-140.
    [57] Abdallah B M, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications.[J]. Gene Ther,2008,15(2):109-116.
    [58] Lu F Z, Fujino M, Kitazawa Y, et al. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood.[J]. J Lab Clin Med,2005,146(5):271-278.
    [59] Kramer J, Bohrnsen F, Schlenke P, et al. Stem cell-derived chondrocytes for regenerative medicine.[J]. Transplant Proc,2006,38(3):762-765.
    [60] Huang W, Chung U I, Kronenberg H M, et al. The chondrogenictranscription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones.[J]. Proc Natl Acad Sci U S A,2001,98(1):160-165.
    [61] Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees.[J]. Osteoarthritis Cartilage,2002, 10(3):199-206.
    [62] Kuroda R, Usas A, Kubo S, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells.[J]. Arthritis Rheum,2006,54(2):433-442.
    [63] Lee R H, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.[J]. Cell Physiol Biochem,2004,14(4-6):311-324.
    [64] Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies.[J]. Tissue Eng,2001, 7(2): 211-228.
    [65] Im G I, Shin Y W, Lee K B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?[J]. Osteoarthritis Cartilage,2005,13(10):845-853.
    [66] Zhang X, Ziran N, Goater J J, et al. Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation.[J]. Bone,2004,34(5):809-817.
    [67] Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4.[J]. Mech Dev,2000,92(2):193-205.
    [68] Kawamura K, Chu C R, Sobajima S, et al. Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures.[J]. Exp Hematol,2005, 33(8):865-872.
    [69] Bagaria V, Patil N, Sapre V, et al. Stem cells in orthopedics: current concepts and possible future applications.[J]. Indian J Med Sci,2006,60(4): 162-169.
    [70] Hunziker E B. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements.[J]. Clin Orthop Relat Res,1999(367 Suppl):S135-S146.
    [71] Kubo M, Imai S, Fujimiya M, et al. Exogenous collagen-enhanced recruitment of mesenchymal stem cells during rabbit articular cartilage repair.[J]. Acta Orthop,2007,78(6):845-855.
    [72] Perka C, Schultz O, Lindenhayn K, et al. Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin matrices.[J]. Clin Exp Rheumatol,2000,18(1):13-22.
    [73] Wakitani S, Kimura T, Hirooka A, et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel.[J]. J Bone Joint Surg Br,1989,71(1):74-80.
    [74] Yates K E, Allemann F, Glowacki J. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes.[J]. Cell Tissue Bank,2005,6(1):45-54.
    [75] Willers C, Chen J, Wood D, et al. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits.[J]. Tissue Eng,2005,11(7-8):1065-1076.
    [76] Marlovits S, Striessnig G, Kutscha-Lissberg F, et al. Early postoperativeadherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle.[J]. Knee Surg Sports Traumatol Arthrosc,2005,13(6):451-457.
    [77] Sung H W, Huang R N, Huang L L, et al. Feasibility study of a natural crosslinking reagent for biological tissue fixation.[J]. J Biomed Mater Res,1998,42(4):560-567.
    [78] Sung H W, Huang R N, Huang L L, et al. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation.[J]. J Biomater Sci Polym Ed,1999,10(1):63-78.
    [79] Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.[J]. Biomaterials,2006, 27(8): 1496- 1506.
    [80] Sechriest V F, Miao Y J, Niyibizi C, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis.[J]. J Biomed Mater Res,2000,49(4): 534-541.
    [81] Homminga G N, Buma P, Koot H W, et al. Chondrocyte behavior in fibrin glue in vitro.[J]. Acta Orthop Scand,1993,64(4):441-445.
    [82] Vandevord P J, Matthew H W, Desilva S P, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice.[J]. J Biomed Mater Res,2002,59(3):585-590.
    [83] Di Martino A, Sittinger M, Risbud M V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering.[J]. Biomaterials,2005, 26(30): 5983- 5990.
    [84] Mao J S, Cui Y L, Wang X H, et al. A preliminary study on chitosan andgelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis.[J]. Biomaterials,2004,25(18):3973-3981.
    [85] Jeon Y H, Choi J H, Sung J K, et al. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering.[J]. J Craniofac Surg,2007,18(6):1249-1258.
    [86] Elisseeff J, Anseth K, Sims D, et al. Transdermal photopolymerization for minimally invasive implantation.[J]. Proc Natl Acad Sci U S A,1999, 96(6):3104-3107.
    [87] Freed L E, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors.[J]. J Cell Biochem,1993,51(3):257-264.
    [88] Seyedin S M, Rosen D M, Segarini P R. Modulation of chondroblast phenotype by transforming growth factor-beta.[J]. Pathol Immunopathol Res,1988,7(1-2):38-42.
    [89] Trippel S B. Growth factor actions on articular cartilage.[J]. J Rheumatol Suppl,1995,43:129-132.
    [90] Iwamoto M, Sato K, Nakashima K, et al. Regulation of colony formation of differentiated chondrocytes in soft agar by transforming growth factor-beta.[J]. Biochem Biophys Res Commun,1989,159(3):1006-1011.
    [91] Gooch K J, Blunk T, Courter D L, et al. Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage.[J]. Tissue Eng,2002,8(4):591-601.
    [92] Majumdar M K, Wang E, Morris E A. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1.[J]. J Cell Physiol,2001,189(3): 275-284.
    [93] Loeser R F, Pacione C A, Chubinskaya S. The combination of insulin-likegrowth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes.[J]. Arthritis Rheum,2003,48(8):2188-2196.
    [94]崔玉明,伍骥,胡蕴玉. PLGA和胶原海绵复合BMP修复兔关节软骨缺损的对比研究[J].中国修复重建外科杂志,2008(02).
    [95] Schmidt C E, Baier J M. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering.[J]. Biomaterials,2000, 21(22): 2215-2231.
    [96] Conklin B S, Richter E R, Kreutziger K L, et al. Development and evaluation of a novel decellularized vascular xenograft.[J]. Med Eng Phys,2002,24(3):173-183.
    [97] Kropp B P, Eppley B L, Prevel C D, et al. Experimental assessment of small intestinal submucosa as a bladder wall substitute.[J]. Urology,1995, 46(3): 396-400.
    [98] Badylak S F, Tullius R, Kokini K, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model.[J]. J Biomed Mater Res,1995,29(8):977-985.
    [99] Freytes D O, Badylak S F, Webster T J, et al. Biaxial strength of multilaminated extracellular matrix scaffolds.[J]. Biomaterials,2004, 25(12): 2353-2361.
    [100] Gilbert T W, Stolz D B, Biancaniello F, et al. Production and characterization of ECM powder: implications for tissue engineering applications.[J]. Biomaterials,2005,26(12):1431-1435.
    [101] Cartmell J S, Dunn M G. Effect of chemical treatments on tendon cellularity and mechanical properties.[J]. J Biomed Mater Res,2000,49(1): 134-140.
    [102] Woods T, Gratzer P F. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft.[J]. Biomaterials,2005,26(35):7339-7349.
    [103] Roberts T S, Jr Drez D, Mccarthy W, et al. Anterior cruciate ligament reconstruction using freeze-dried, ethylene oxide-sterilized, bone-patellar tendon-bone allografts. Two year results in thirty-six patients.[J]. Am J Sports Med,1991,19(1):35-41.
    [104] Jackson D W, Windler G E, Simon T M. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon- bone allografts in the reconstruction of the anterior cruciate ligament.[J]. Am J Sports Med,1990,18(1):1-10, 10-11.
    [105] Lin P, Chan W C, Badylak S F, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering.[J]. Tissue Eng,2004,10(7-8): 1046-1053.
    [106] Dahl S L, Koh J, Prabhakar V, et al. Decellularized native and engineered arterial scaffolds for transplantation.[J]. Cell Transplant,2003,12(6): 659-666.
    [107] Schenke-Layland K, Vasilevski O, Opitz F, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves.[J]. J Struct Biol,2003,143(3):201-208.
    [108] Yoo J J, Meng J, Oberpenning F, et al. Bladder augmentation using allogenic bladder submucosa seeded with cells.[J]. Urology,1998,51(2): 221-225.
    [109] De Filippo R E, Yoo J J, Atala A. Urethral replacement using cell seeded tubularized collagen matrices.[J]. J Urol,2002,168(4 Pt 2):1789-1792, 1792-1793.
    [110] Hodde J, Hiles M. Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method.[J]. Biotechnol Bioeng,2002, 79(2): 211-216.
    [111] Pruss A, Kao M, Kiesewetter H, et al. Virus safety of avital bone tissue transplants: evaluation of sterilization steps of spongiosa cuboids using a peracetic acid-methanol mixture.[J]. Biologicals,1999,27(3):195-201.
    [112] Hodde J, Record R, Tullius R, et al. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix.[J]. Biomaterials, 2002, 23(8): 1841-1848.
    [113] Voytik-Harbin S L, Brightman A O, Kraine M R, et al. Identification of extractable growth factors from small intestinal submucosa.[J]. J Cell Biochem,1997,67(4):478-491.
    [114] Hodde J P, Record R D, Liang H A, et al. Vascular endothelial growth factor in porcine-derived extracellular matrix.[J]. Endothelium,2001, 8(1): 11-24.
    [115] Seddon A M, Curnow P, Booth P J. Membrane proteins, lipids and detergents: not just a soap opera.[J]. Biochim Biophys Acta,2004, 1666 (1-2): 105-117.
    [116] Grauss R W, Hazekamp M G, Van Vliet S, et al. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling.[J]. J Thorac Cardiovasc Surg,2003,126(6):2003-2010.
    [117] Grauss R W, Hazekamp M G, Oppenhuizen F, et al. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods.[J]. Eur J Cardiothorac Surg,2005, 27(4): 566-571.
    [118] Hudson T W, Zawko S, Deister C, et al. Optimized acellular nerve graft isimmunologically tolerated and supports regeneration.[J]. Tissue Eng,2004, 10(11-12): 1641-1651.
    [119] Ketchedjian A, Jones A L, Krueger P, et al. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions.[J]. Ann Thorac Surg,2005,79(3):888-896, 896.
    [120] Hudson T W, Liu S Y, Schmidt C E. Engineering an improved acellular nerve graft via optimized chemical processing.[J]. Tissue Eng,2004, 10(9-10): 1346-1358.
    [121] Goissis G, Suzigan S, Parreira D R, et al. Preparation and characterization of collagen-elastin matrices from blood vessels intended as small diameter vascular grafts.[J]. Artif Organs,2000,24(3):217-223.
    [122] Vyavahare N, Hirsch D, Lerner E, et al. Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms.[J]. Circulation,1997,95(2):479-488.
    [123] Moore R, Madara J L, Macleod R J. Enterocytes adhere preferentially to collagen IV in a differentially regulated divalent cation-dependent manner.[J]. Am J Physiol,1994,266(6 Pt 1):G1099-G1107.
    [124] Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations.[J]. J Biol Chem,1988,263(26):12927-12932.
    [125] Gamba P G, Conconi M T, Lo P R, et al. Experimental abdominal wall defect repaired with acellular matrix.[J]. Pediatr Surg Int,2002,18(5-6): 327-331.
    [126] Mcfetridge P S, Daniel J W, Bodamyali T, et al. Preparation of porcine carotid arteries for vascular tissue engineering applications.[J]. J Biomed Mater Res A,2004,70(2):224-234.
    [127] Kapuscinski J, Skoczylas B. Fluorescent complexes of DNA with DAPI4',6-diamidine-2-phenyl indole.2HCl or DCI 4',6-dicarboxyamide- 2-phenyl indole.[J]. Nucleic Acids Res,1978,5(10):3775-3799.
    [128] Quintana J R, Lipanov A A, Dickerson R E. Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G.[J]. Biochemistry,1991,30(42):10294-10306.
    [129] Jackson D W, Simon T M. Donor cell survival and repopulation after intraarticular transplantation of tendon and ligament allografts.[J]. Microsc Res Tech,2002,58(1):25-33.
    [130] Kral T, Widerak K, Langner M, et al. Propidium iodide and PicoGreen as dyes for the DNA fluorescence correlation spectroscopy measurements.[J]. J Fluoresc,2005,15(2):179-183.
    [131] Kelley T F, Sutton F M, Wallace V P, et al. Chondrocyte repopulation of allograft cartilage: a preliminary investigation and strategy for developing cartilage matrices for reconstruction.[J]. Otolaryngol Head Neck Surg,2002,127(4):265-270.
    [132] Courtman D W, Pereira C A, Kashef V, et al. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.[J]. J Biomed Mater Res,1994,28(6):655-666.
    [133]张建党,卢世璧,黄靖香, et al.人关节软骨脱细胞基质的制备[J].中国矫形外科杂志,2005(04).
    [134]杨强,彭江,卢世璧, et al.新型脱细胞软骨基质三维多孔支架的制备[J].中国修复重建外科杂志,2008(03).
    [135] Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stemcells.[J]. Biomaterials,2008,29(15):2378-2387.
    [136]栾杰,蔡哲,杨佩瑛, et al.软骨细胞在异体脱细胞软骨基质上的体外培养实验[J].中华整形烧伤外科杂志,1999(03).
    [137]韩雪峰,杨大平,郭铁芳, et al.软骨细胞与异体软骨微粒脱细胞基质体外相容性的研究[J].中华医学杂志,2005(27).
    [138] Rohrich R J, Reagan B J, Jr Adams W P, et al. Early results of vermilion lip augmentation using acellular allogeneic dermis: an adjunct in facial rejuvenation.[J]. Plast Reconstr Surg,2000,105(1):409-416, 417-418.
    [139] Sclafani A P, Romo T R, Jacono A A, et al. Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis.[J]. Arch Facial Plast Surg,2000,2(2):130-136.
    [140]张晨,景士兵,杨琨, et al.软骨脱细胞基质支架材料的软骨组织工程实验研究[J].中国修复重建外科杂志,2008(07).
    [141] Gilbert T W, Sellaro T L, Badylak S F. Decellularization of tissues and organs.[J]. Biomaterials,2006,27(19):3675-3683.
    [142] Martin I, Shastri V P, Padera R F, et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams.[J]. J Biomed Mater Res,2001,55(2):229-235.
    [143] Haaijman A, Karperien M, Lanske B, et al. Inhibition of terminal chondrocyte differentiation by bone morphogenetic protein 7 (OP-1) in vitro depends on the periarticular region but is independent of parathyroid hormone-related peptide.[J]. Bone,1999,25(4):397-404.
    [144]孙效棠,胡蕴玉,赵黎, et al. Compositional variation of fibrous callus and joint cartilage in different internal environments[J]. Chinese Journal of Traumatology,2006(06).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700