基于酶生物传感器检测植物多酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物多酚作为一类储量丰富的可再生绿色资源,不仅在农业、生态环境、食品、医药化工等领域有重要意义,而且与人们的日常生活密切相关,随着多酚在不同领域的应用研究取得越来越多的成果,其必将成为人类利用的重要资源之一。因此,开发简单、快速、有效的检测植物多酚的手段和方法将越来越受到人们的关注。而酶生物传感器能够将酶的专一性、灵敏性和电学的简便、迅速巧妙地结合起来,可以在一个复杂的体系中,不受其他物质的干扰,快速准确的测出某些物质的含量。因此,开发酶生物传感器在植物多酚的检测方面将具有十分重要的意义。在传感器的构建过程中,固定材料的选择及固定方法的有效应用决定着酶生物传感器的稳定性、选择性和灵敏性等主要性能。本论文探讨设计了三种新型的酶生物传感器,并对其在植物多酚检测中的应用进行了研究。研究内容主要分为以下三部分:
     (1)以Zn(Ac)_2和N,N-二甲基甲酰胺为原料,采用水热合成法在160°C下合成出了纳米ZnO,并用X-射线衍射、透射电镜表征了所制备纳米ZnO的结构,同时以制备的纳米ZnO固定酪氨酸酶制备了多酚生物传感器,结果表明高等电点的纳米ZnO在很大程度上促进了酪氨酸酶与电极之间的直接电子传递,能够有效地用于多酚的测定。
     (2)通过将酪氨酸酶固定在类水滑石修饰的玻碳电极表面,构建了一种新型的酪氨酸酶生物传感器,用于对植物多酚的检测。利用静电吸附作用,类水滑石将表面带有负电荷的酪氨酸酶牢固的修饰在玻碳电极表面,并且使其保持了原有的生物活性。通过循环伏安法、电化学交流阻抗法对修饰电极进行了表征。同时,对检测条件如底液的pH值、温度、酪氨酸酶固定量进行了研究和优化。在最优条件下,对邻苯二酚、咖啡酸、槲皮素在浓度为3–300,0.888–444,0.066–396μmol/L范围内进行了检测,检测限分别为0.1,0.05和0.003μmol/L (S/N=3)。此外,论文对酶电极的重复性和稳定性进行了研究。通过对实际样品中植物多酚含量的测定,对所构建的Tyr/HTLc/GCE生物传感器的实际应用也进行了研究。
     (3)通过将血红蛋白固定在Cu_2S纳米棒和Nafion纳米复合材料修饰的玻碳电极表面,构建了一种新型的血红蛋白生物传感器,在H_2O_2存在的条件下,用于对植物多酚的检测。Cu_2S纳米棒/Nafion无机-有机混合材料不仅为血红蛋白提供了生物适宜的微环境,而且提高了传感器检测多酚的灵敏度。通过线性扫描伏安法和电化学交流阻抗法对修饰电极进行了表征。同时,对测量条件如底液的pH值、H_2O_2浓度、应用电位进行了研究和优化。在最优条件下,对邻苯二酚、对苯二酚、间苯二酚在浓度为7.0–110,0.6–10和8–100μmol/L范围内进行了检测,检测限分别为0.5,0.03,0.6μmol/L (S/N=3)。该生物传感器对多酚检测的响应时间仅为8 s,且具有良好的稳定性和重现性。同时通过对实际样品中植物多酚含量的测定,对所构建的生物传感器的实际应用进行了研究。
Being one kind of rich reserves and renewable green resources, plant polyphenols not only play an important role in agriculture, environment, food, medicine and chemical industry, but also are closely related to people’daily life, and will certainly to become of capital stocks for humanity use. Therefore, the development of simple, fast and effective methods for plant polyphenols detection has gained more and more people's attention. Combining the specifity, sensitive of enzymes and the simply, rapid of electrochemistry, enzyme-based biosensors can determine the content of certain substances in a complex system quickly and accurately, and not affected by other materials. Therefore, the development of enzyme biosensors has the very vital significance in plant polyphenols detection. However, the methods and materials used to immobilize enzymes are one of the crucial factors for improving the stability, selectivity and sensitivity of biosensor in the preparation. Three new-typed enzyme-based biosensors were prepared, and their application in detection of plant polyphenols was studied in this paper. The dissertation is divided into three main parts:
     (1) Using Zn(Ac)_2 and N,N-Dimethylformamide as raw materials, nanometersized ZnO was prepared at 160°C by hydrothermal reaction method. The X-ray diffraction (XRD) and Transmission electron microscopy (TEM) were used to analyse the structure of nanometersized ZnO. At the same time, the application of nanometersized ZnO using in modifying electrodes to detect the polyphenol was preliminarily studied, the results showed that the high-isoelectric point nano-ZnO promoted the direct electron transfer between the tyrosinase and the electrode to a large extent, could be effectively used for the determination of polyphenol.
     (2) A tyrosinase (Tyr) biosensor has been constructed by immobilizing tyrosinase on the surface of Mg-Al-CO3 hydrotalcite-like compound film (HTLc) modified glassy carbon electrode (GCE) for the determination of polyphenols. The negatively charged tyrosinase was adsorbed firmly on the surface of positively charged HTLc/GCE by the electrostatic interactions and retained its activity to a great degree. The modified electrode was characterized by cyclic voltammetry and AC impedance spectra. Polyphenols were determined by the direct reduction of biocatalytically generated quinone species. The different parameters, including pH, temperature and enzyme loading were investigated and optimized. Under the optimum conditions, Tyr/HTLc electrode gave linear response ranges of 3–300, 0.888–444 and 0.066–396μmol/L with the detection limits (S/N=3) of 0.1, 0.05 and 0.003μmol/L for catechol, caffeic acid and quercetin. In addition, the repeatability and stability of the enzyme electrode were estimated. Total polyphenol contents of real samples were also determined to study the potential applicability of the Tyr/HTLc/GCE biosensor.
     (3) A hemoglobin (Hb) biosensor was fabricated based on Hb immobilized onto Cu_2S nanorods/Nafion nanocomposite film for the detection of polyphenols in the presence of H_2O_2. The nanostructured inorganic–organic hybrid material formed by Cu_2S nanorods and Nafion provided a biocompatible microenvironment for Hb and increased the sensitivity for polyphenols detection. The modified electrodes were characterized by electrochemical impedance spectroscopy and linear sweep voltammetry. Parameters such as pH, H_2O_2 concentration and applied potential were optimized. Under optimum conditions, the biosensor gave linear response ranges of 7.0–110, 0.6–10 and 8–100μmol/L with the detection limits (S/N=3) of 0.5, 0.03 and 0.6μmol/L for catechol, hydroquinone and resorcin, respectively. The developed biosensor exhibited a short response time within only 8 s with good stability and reproducibility. Such new Hb biosensor showed great promise for rapid, simple analysis of polyphenols contents in real samples.
引文
艾仕云,金利通,周杰,路福绥.均一形貌的ZnO纳米棒的制备及其光催化性能的研究无机化学学报, 2005, 2: 270-273
    柴多里,刘忠煌,杨保俊.气-固相还原硫酸盐制备系列硫化物纳米晶.无机化学学报, 2010, 26: 153-156
    邓文靖,周立祥.植物多酚物质原位钝化污染土壤重金属的研究: I.对土壤Cu吸持与溶出的影响.环境科学学报, 2003, 4 : 458-462
    董永平,张超,张千峰.邻苯二酚在金纳米粒子-碳纳米管复合修饰电极上的电化学行为. 2010, 46: 1316-1318
    冯丽,宋曙辉,赵霖,徐桂花.植物多酚及其提取方法的研究进展.中国食物与营养, 2007, 10: 39-41
    付美云,周立祥.物多酚在环境保护与农业生产中的应.应用生态学报, 2004, 15: 1673-1677
    傅玉凡,杨春贤,赵亚特,赵文婷,刘小强,曾令江,廖志华,张启堂.不同叶菜型甘薯品种茎尖绿原酸含量及清除DPPH·能力.中国农业科学, 2010, 43: 4814-4822
    高盐生,付秀军,吴定宏.生物传感器中酶的固定化方法.山东化工, 2008, 37: 21-30
    胡源,刘克武,喻东.马铃薯酪氨酸酶的性质.化学研究与应用, 2005,17: 55-57
    李健,杨昌鹏,李群梅,黄虹心.植物多酚的应用研究进展.广西轻工业, 2008, 121: 1-4
    林樱姬,赵萍,王雅.植物多酚的提取方法和生物活性研究进展.陕西农业科学, 2009, 6: 105-107
    刘真真,张敏,姚海军,程发良.酶生物传感器的研究进展.东莞理工学院学报, 2007, 14: 97-101
    李孝君,李兰,马洁,薛颖,吴国华.电化学免疫法测定鸡肉组织中青霉素.应用化学, 2009, 26: 716-720
    罗丽萍,熊绍员.固定化酶及其在食品工业中的应用.江西食品工业, 2003, 3: 10-12
    乔丽娜,周在德,肖丹.酶生物传感器中酶的固定化技术.化学研究与应用, 2005, 17: 299-302
    齐文娟,陈兰化.动力学荧光法测定废水中痕量邻苯二酚.淮北煤炭师范学院学报, 2010, 31: 26-28
    宋丽,宋宝东,蒋亚庆.酶的固定化及在生物传感器的应用.化学与生物工程, 2006, 23: 54-56
    王龙,孙建设.类黄酮的化学结构及其生物学功能.河北农业大学学报, 2003, 26: 144-147
    王旗,刘恩岐.植物多酚的研究现状.山西农业科学, 2009, 37: 92 - 94
    王忠猛,谢江辉,杨晓红,胡玉林,王军玲.植物多酚的分离、检测及其在抗性领域的应用进展.广东农业科学, 2007, 6: 69-73
    王卓,周真,郭宗文,郭建英.检验苯丙酮尿症的酶生物传感器研究.哈尔滨理工大学学报, 2002, 7: 54-56
    万谦,肖国光,杨平华,樊华.基于碳纳米管修饰电极的酶生物传感器研究进展.广东化工. 2010, 37: 112-114
    魏福祥,王振川,王金梅.乙酰胆碱酯酶生物传感器法测定蔬菜水果中有机磷农药残留. 食品科学, 2007, 28: 229-231
    伍林,曹淑超,易德莲,刘娟,秦晓蓉,欧阳兆辉.酶生物传感器的研究进展.传感器技术, 2005, 24: 4-7
    许艳霞,胡成国,胡胜水.血红蛋白直接电化学的界面设计与传感研究进展.分析科学学报, 2008, 24:705-712
    杨丽娟,郑文刚,赵春江,于海业.用于农药残留检测的酶生物传感器.化学通报, 2009, 72: 208-214
    袁若,卓颖,柴雅琴,张英,孙爱丽.基于纳米金/硫堇层层自组装的新型电流型酶-癌胚抗原免疫传感器.中国科学B辑化学, 2006, 36: 425~432
    张绍岩,丁士文,刘淑娟.均相沉淀法合成纳米ZnO及其光催化性能研究.化学学报, 2002, 60: 1225 -1229
    张立科,何琴,杨风岭,范顺利.流动注射化学发光法测定痕量邻苯二酚.理化简报-化学分册, 2010, 46: 897-899
    赵利,党占海,李毅.亚麻木酚素研究进展.中国农学通报, 2006, 22: 88-93
    周俊清,林亲录,邓靖.白藜芦醇的研究进展.中国食物与营养, 2003, 8: 20-22
    Abdullah J., Ahmad M., Karuppiah N., Heng L.Y.and Sidek H. Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuators B, 2006, 114: 604–609
    Ai H.H., Huan X.T., Zhu Z.H., Liu J.P., Chi Q.B, Li Y.Y, Li Z.K. and Ji X.X. A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Biosens Bioelectron., 2008, 24: 1048–1052
    Aradi T., Hornok V. and Dékány I. Layered double hydroxides for ultrathin hybrid film preparation using layer-by-layer and spin coating methods. Colloid Surface A, 2008, 319: 116–121
    Ballarin B., Morigi M., Scavetta E., Seeber R. and Tonelli D. Hydrotalcite-like compounds as ionophores for the development of anion potentiometric sensors. J Electroanal Chem, 2000, 492: 7–14
    Bond A.M. Modern Polarographic Methods in Analytical Chemistry. Marcel Dekker, New York, 1980
    Bo X.J., Bai J., Wang L.X. and Guo L.P. In situ growth of copper sulfide nanoparticles on orderedmesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide, Talanta, 2010, 81: 339– 345
    Cabello F.M., Tichit D., Coq B., Vaccari A. and Dung N.T. Hydrogenation of Acetonitrile on Nickel-Based Catalysts Prepared from Hydrotalcite-like Precursors. J Catal, 1997, 167: 142–152
    Carralero V., Mena M.L., Gonzalez C.A., Yáńez S.P. and Pingarrón J.M. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite–Teflon electrode modified with gold nanoparticles. Biosens Bioelectron., 2006, 22: 730–736
    Chang K.Y. Interaction of phenol with the polysaccharide of bacterial cell wall. Biochem Bioph Res Co, 1973, 51: 900-906
    Clark L.C. and Lyons C. Electrode systems for continuous monitoring in cardinovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102: 29
    Cooray H.C., Janvilisri T., van Veen H.W., Hladky S.B. and Barrand M.A. Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Bioph Res Co, 2004, 317: 269–275
    Ding Y.H., Liu X.X. and Guo R.G.. Shape evolution of Cu_2S nanostructures in Triton X-100/cyclohexane/water reverse micelles, Mater Res Bull, 2008, 43: 748– 758
    Du J.X., Li Y.H. and Lu J.R. Flow injection chemiluminescence determination ofpolyhydroxy phenols using luminol–ferricyanide/ferrocyanide system. Talanta, 2001, 55: 1055–1058
    Escarpa A. and González M.C. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal Chim Acta, 2001, 427: 119–127
    Ferguson L.R. Role of plant polyphenols in genomic stability. Mutat Res: Fund Mol M, 2001, 475: 89–111
    García A.A., Grande B.C. and Gándara J.S. Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet absorbance detection for the determination of polyphenols in alcohol-free beers. J Chromatogr A, 2004, 1054: 175–180
    Geonel R.G., Patricia S.J. and Jozsef N. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts. J Phys Chem. B, 2003, 107: 12597~12604
    Gladine C., Morand C., Rock E., Bauchart D. and Durand D. Plant extracts rich in polyphenols (PERP) are efficient antioxidants to prevent lipoperoxidation in plasma lipids from animals fed n?3 PUFA supplemented diets. Anim Feed Sci Tech, 2007, 136: 281–296
    Gomes S.A.S.S., Nogueira J.M.F. and Rebelo M.J.F. An amperometric biosensor for polyphenolic compounds in red wine. Biosens Bioelectron., 2004, 20: 1211–1216
    Guo C.X., Hu F.P, Li C.M. and Shen P.K. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. Biosens Bioelectron., 2008, 24: 819–824
    Gupta K.C. and Sutar A.K. Polymer anchored Schiff base complexes of transition metal ions and their catalytic activities in oxidation of phenol. J Mol Catal A: Chem, 2007, 272: 64–74
    Hadi S.M., Showket H.B., Asfar S.A., Sarmad H., Uzma S. and Ullah M.F. Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticacer properties. Semin Cancer Biol, 2007, 17: 370-376
    Hibino T. and Ohya H. Synthesis of crystalline layered double hydroxides: Precipitation byusing urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions. Appl Clay Sci, 2009, 45: 123–132
    Ivanova E., Toshkova R. and Serkedjieva J.A plant polyphenol-rich extract restores the suppressed functions of phagocytes in influenza virus-infected mice. Microbes Infect, 2005, 7: 391–398
    Já? P., Polá?ek M. and Pospí?ilováM. Recent trends in the determination of polyphenols by electromigration methods. J Pharmaceut Biomed, 2006, 40: 805–814
    Jarosz-Wilko?azka A., Ruzgas T. and Gorton L. Use of laccase-modified electrode for amperometric detection of plant flavonoids, Enzyme Microb Technol, 2004, 35: 238– 241
    Jean C.S., Thierry C., Mamadou N., Min H.O., Jasser E.B., Marta C. and Schini-Kerth V.B. Vascular protection by dietary polyphenols. Eur J Pharmacol, 2004, 500: 299–313
    Julija R., Vidut? G., Aist? V., Liucija M. and Irina B., Rolandas M., Valdas L. Sens Actuators B, 2003, 95: 378- 383
    Kafi A.K.M., Lee D.Y., Park S.H. and Kwon Y.S. Potential application of hemoglobin as an alternative to peroxidase in a phenol biosensor. Thin Solid Films, 2008, 516: 2816–2821
    Kamatou G.P.P., Viljoen A.M. and Steenkamp P. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem., 2010, 119: 684–688
    Korkut S., Keskinler B. and Erhan E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives, Talanta, 2008, 76: 1147– 1152
    Kuroda Y. and Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res: Rev Mutat., 1999, 436: 69–97
    Lee H.J., Yoon S.W., Kim E.J. and Park J. In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials, Nano Lett, 2007, 7: 778– 784
    Lindgren A., Emnéus J., Ruzgas T., Gorton L. and Varga G.M. Amperometric detection of phenols using peroxidase-modified graphite electrodes, Anal Chim Acta, 1997, 347: 51–
    Lin Z.J., Deng J.Q. and Li D. A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilize tyrosinase and the mediator. Anal Chim Acta, 2000, 407: 87- 96
    Liu B. and Zeng H.C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc, 2003, 125: 4430~4431
    Liu Q., Cai W.S. and Shao X.G. Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta, 2008, 77: 679–683
    Liu Z.M., Liu Y.L., Yang H.F., Yang Y., Shen G.L. and Yu R. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode, Anal Chim Acta, 2005, 533: 3– 9
    Liu Z.P., Xu D., Liang J.B., Shen J.M., Zhang S.Y. and Qian Y.T. Growth of Cu_2S Ultrathin Nanowires in a Binary Surfactant Solvent, J Phys Chem B, 2005, 109: 10699– 10704
    Mello L.D., Sotomayor M.D.P.T. and Kubota L.T. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens Actuators B, 2003, 96: 636–645
    Min K. and Yoo Y.J. Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta, 2009, 80: 1007–1011
    Mossion A.C., Balayssac S., Gilard V., Martino M.M., Gautier M.P. and Behra P. Interaction mechanisms between caffeine and polyphenols in infusions of Camellia sinensis leaves. Food Chem, 2010, 119: 173–181
    Mousty C., Vieille L. and Cosnier S. Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor. Biosens Bioelectron., 2007, 22: 1733-1738
    Mustafa K.S. and Erhan D. Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate. Talanta, 2005, 65: 998–1002
    Narita E., Yamagishi T., Aizu K. and Han K.N. The formation of layered hydrotalcite-like compounds by coprecipitation of Co(II) and Ni(II) with Al(III) in aqueous ammoniacal solutions. Int J Miner Process, 1990, 29: 267-278
    Nistor C., Emnéus J., Gorton L. and Ciucu A. Improved stability and altered selectivity oftyrosinase based graphite electrodes for detection of phenolic compounds. Anal Chim Acta, 1999, 387: 309–326
    Palomino O., Gómez-Serranillos M.P., Slowing K., Carretero E. and Villar A. Study of polyphenols in grape berries by reversed-phase high-performance liquid chromatography. J Chromatogr A, 2000, 870: 449–451
    Qiu D.P. and Hou W.G. Synthesis and characterization of indole-3-butyric acid/hydrotalcite-like compound nanohybrids. Colloid Surface A 2009, 336: 12–17
    Quang T.N., Ping Z.H. and Tuyen N. Simple method for immobilization of bio-macromolecules onto membranes of different types. J Membrane Sci 2003, 213: 85- 95
    Rodriguez J.A., Jirsak T. and Dvorak J. Reaction of NO2 with Zn and ZnO: photoemission, XANES, and density functional studies on the formation of NO3. J Phys Chem B, 2000, 104: 319~328
    Rooma D., Manish T. and Pundira. C.S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens Bioelectron., 2011, 26: 3420–3426
    Roy P. and Srivastava S.K. Hydrothermal Growth of CuS Nanowires from Cu Dithiooxamide, a Novel Single-Source Precursor. Cryst Growth Des, 2006, 6: 1921– 1926
    Salimi A., MamKhezri H., Hallaj R. and Zandi S. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection. Electrochim Acta, 2007, 52: 6097–6105
    Seyda K., Bulent K. and Elif E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta, 2008, 76 :1147–1152
    Soleas G.J., Yan J. and Goldberg D.M. Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J Chromatogr B, 2001, 757: 161–172
    Topoglidis E., Cass A.E.G. and Op Regan B. Immobilisation and bioelectron chemistry of p roteins on nanoporous TiO2 and ZnO films. J Elecetroanal Chem, 2001, 517: 20-27
    Tsai Y.C. and Chiu C.C. Amperometric biosensors based on multiwalledcarbonnanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sens Actuators B: Chem, 2007, 125: 10–16
    Vakurov. A., Simpson. C.E. and Daly C.L. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection I. Modification of carbon surface for immobilization of acetylcholinesterase. Biosens Bioelectron., 2004, 20: 1118-1125
    Wang B., Zhang J. and Dong S. Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens Bioelectron., 2000, 15: 397–402
    Wang H.Y, Zhao M.M, Yang B., Jiang Y.M. and Rao G.H. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chem, 2008, 107: 1399-1406
    Wang S.G., Tan Y.M., Zhao D.M. and Liu G.D. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron, 2008, 23: 1781–1787
    Wang S.L., Hseu R.J., Chang R.R., Chiang P.N., Chen J.H. and Tzou Y.M. Adsorptionand thermal desorption of Cr(VI) on Li/Al layered double hydroxide. Colloid Surface A, 2006, 277: 8–14
    Xue H.G. and Shen Z.Q. A highly stable biosensor for phenols prepared by immobilizingpolyphenol oxidase into polyaniline-polyacrylonitrile composite matrix. Talanta, 2002, 27: 289-295
    Xu Y.X., Hu C.G. and Hu S.S. A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb–Ag sol films, Sens Actuators B, 2008, 130: 816– 822
    Yamazaki I., Araiso T., Hayashi Y., Yamada H. and Makino R. Analysis of acid–base properties of peroxidase and myoglobin. Adv Biophys, 1978, 11: 249– 281
    Yin H.S., Cui L., Ai S.Y., Fan H. and Zhu L.S. Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy. Electrochim Acta, 2010, 55: 603-610
    Zafra A., Juárez M.J.B., Blanc R., Navalón A., González J. and Vílchez J.L. Determination of polyphenolic compounds in wastewater olive oil by gas chromatography–mass spectrometry. Talanta, 2006, 70: 213–218
    Zhang J., Lei J.P., Liu Y.Y., Zhao J.W. and Ju H.G. Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens Bioelectron., 2009, 24: 1858-1863
    Zhang J., Lei J.P., Liu Y.Y., Zhao J.W. and Ju H.X. Highly sensitive amperometric biosensors for phenols based on polyaniline–ionic liquid–carbon nanofiber composite. Biosens Bioelectron, 2009, 24: 1858–1863
    Zhao Z.X., Qiao M.Q., Yin F., Shao B., Wu B.Y., Wang Y.Y., Wang X.S., Qin X., Li S., Yu L. and Chen Q. Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization. Biosens Bioelectron., 2007, 22: 3021–3027

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700