高功率光纤放大器优化设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信业务容量在爆炸式增长,大容量、长距离的DWDM干线传输技术的发展及日益复杂的光网络拓扑结构,需要饱和输出功率较高的光放大器。Er/Yb共掺双包层光纤放大器(EYDFA),在Er~(3+)离子掺杂的基础上,加入了相当比例的Yb~(3+)离子,解决了Er~(3+)离子掺杂浓度过高时的浓度淬灭问题,抑制了自脉冲效应,且加宽了吸收谱;此外,基于双包层结构光纤的包层抽运技术,提高了泵浦光的吸收效率,降低了对抽运光的单模要求。Er/Yb共掺双包层光纤放大器以其在1550nm光通信波段的高饱和输出功率,来满足光纤通信技术对放大器日益增加的功率需求,具有广泛的应用前景。
     本文给出了Er/Yb共掺双包层光纤放大器的理论模型及求解方法,在此基础上采用光学设计软件对放大器各参数进行了仿真优化,基于仿真优化的结果,搭建了放大器的实验系统并测试了其输出性能,实现了信号功率10dBm,抽运电流8A的情况下,最大30.29dBm (1.07W )的功率输出。论文具体工作内容如下:
     首先,阐述了Er/Yb共掺双包层光纤放大器中Yb~(3+)离子作为敏化剂的作用,以及双包层的光纤结构在实现高功率放大方面的优势,介绍了不同的内包层形状对包层抽运耦合效率的影响。分析了放大过程中Er/Yb共掺能级系统中的能量传递关系,据此给出了放大器基于速率方程和功率传输方程的理论模型,根据离子活动的特点对模型进行了简化并给出了其稳态情况下的四阶Runge-Kutta数值求解方法。根据方程的求解结果,给出了在不同的信号、抽运功率条件下,放大器增益随光纤长度的变化情况。较为全面的介绍了实现双包层光纤放大器的关键技术—包层抽运耦合技术。
     其次,以基于速率方程和功率传输方程的放大器理论模型为基础,采用光学设计软件对放大器各参数进行了仿真优化。搭建了前向、后向、双向三种不同抽运方式下放大器的仿真模型,并对其性能进行了对比分析。研究了不同信号光、抽运光输入时的放大特性,对有源光纤长度、稀土离子掺杂浓度、包层大小等参数对放大器输出性能的影响进行了分析。对双级结构的放大器和放大器的脉冲放大特性进行了初步研究。最后,根据对放大器各参数仿真优化的结果,搭建了前向抽运的Er/Yb共掺
     双包层光纤放大器。实现了信号功率10dBm ,抽运电流8A的情况下,最大30.29dBm (1.07W )的功率输出,以及同样8A的抽运电流下,信号光功率为? 10dBm时,33.48dB的放大器最大增益。测试了放大器在不同的抽运功率条件下,对不同功率、不同波长输入信号光的放大输出性能,并分析了信号光功率、波长及抽运功率对放大器性能的影响。简述了放大器放大过程中自激振荡产生的原因及其与信号光、抽运光功率的关系。
     本文在对放大器理论分析的基础上,仿真优化并实验研究了Er/Yb共掺双包层光纤放大器的输出性能。实验输出与仿真优化结果的变化趋势是一致的,但由于仿真模型与实际放大器存在的一定差异性、各器件的理想化以及实际实验当中存在熔接损耗、插入损耗等因素,导致了实验所测放大器的输出与放大器仿真优化结果存在着一定的差距。
The capacity of communications business is increasing explosively. The development of large capacity, long-distance DWDM trunk transmission technology and increasingly complicated optical network topology need optical amplifiers of high saturated output power. On the basis of the doped Er~(3+) ions, Er/Yb co-doped double-clad fiber amplifier(EYDFA) incorporate a considerable proportion of Yb~(3+) ions. This can resolve the concentration quenching caused by high concentration of Er~(3+), inhibit self-pulsing and widen the absorption spectrum. In addition, based on double-clad fiber, the cladding pumping technology increases the pump absorption efficiency, and reduces the requirements of single-mode pump. With the high saturated output power in the optical communication wavelength of 1550nm, Er/Yb co-doped double-clad fiber amplifier can meet the growing power demand of the amplifier which is needed by fiber communications technology. So it has a broad application prospect.
     This paper gives the theory model and solution of Er/Yb co-doped double-clad fiber amplifier. On this basis, the parameters of amplifier are simulated and optimized by optical design software. On the result of optimization, the amplifier experimental system is established, and the performance of the amplifier is tested and analyzed. Under the condition of 10dBm signal power and 8A pump current, maximum output power of 30.29dBm(1.07W) is obtained. The works done in this paper are as follows:
     Firstly, the effect of Yb~(3+) ions as sensitizer and the advantage of double-clad fiber structure in the high power in Er/Yb co-doped double-clad fiber amplifier are expounded. The effect of different inner cladding shapes on pump coupling efficiency is introduced. The energy transfer relationship of Er/Yb co-doped system is analyzed, and hereby the theoretical model of amplifier based on rate equations and power propagation is given. The model is simplified according to the ion activity characteristics and the numerical solution of fourth-order Runge-Kutta method during steady-state is given. According to the results of the equations, the changes of amplifier gain with fiber length under the condition of different signal and pump power are also given. As the key technology of double-clad fiber amplifier, the clad pump coupling technology is introduced comprehensively.
     Secondly, based on the amplifier theoretical model of rate equations and power propagation, simulation and optimization of the amplifier parameters are made by optical design software. The amplifier simulation models in three different ways of forward, backward and bi-directional pumping are established, and their performance is compared and analyzed. The amplification characteristics under the condition of different signal and pump power are researched. The effect of the parameters such as active fiber length, doping concentration ratio of rare earth ions and cladding size etc. on amplifier output performance is analyzed. The amplifier of two-stage structure and pulse amplification are preliminary studied.
     Finally, according to the result of simulation and optimization on amplifier parameters, Er/Yb co-doped double-clad fiber amplifier with the forward pumping is established. The maximum output power of 30.29dBm(1.07W) is obtained under the condition of 10dBm signal power and 8A pump current. And the maximum amplified gain of 33.48dB is obtained under the condition of -10dBm signal power and also 8A pump current. The amplification characteristics to different power and wavelength of input signal light under the condition of different pump power are tested. And the effects of signal power, wavelength and pump power on amplification characteristics are analyzed. The causes of self-oscillation in amplification process and the relationship with signal and pump power are briefly introduced.
     Based on the theory analysis, this paper simulates, optimizes and experimentally researches the output performance of Er/Yb co-doped double-clad fiber amplifier. The trend between the experimental output and the optimization result is consistent. However, due to some differences between the simulation model and the actual amplifier, idealization of devices, the splicing loss, insertion loss and other factors existing in actual experimental, some gap between amplified output in experimental and the optimization result of amplifier still exist.
引文
[1]张明德,孙小涵.光纤通信原理与系统(第3版)[M].南京:东南大学出版社,2003.
    [2] Jeff Hecht著,贾东方,余震虹,王肇颖等译.光纤光学(第4版)[M].北京:人民邮电出版社,2004.
    [3]胡先志.光器件及其应用[M].北京:电子工业出版社,2010.
    [4]杨祥林.光放大器及其应用[M].北京:电子工业出版社,2000.
    [5] E.Snitzer. Optical maser action of Nd3+ in a barium crown class [J]. Phys. Rev. Lett., 1961, (7): 444-449.
    [6] C.J.Koester, E.Snitzer. Amplification in a fiber laser [J]. Applied., 1964, 3 (10):1182-1186.
    [7] Poole, Payne, Ferman et al. Fabrication of low-loss optical fibers containing rare-earth ions [J]. Electron. Lett., 1985, 21: 737-738.
    [8] R.J.Mears, L.Reekie, I.M.Jauncey and D.N.Payne. Low-noise erhium doped fiber amplifier operating at 1.54μm [J]. Elect. Lett., 1987, 23(19):1026-1028.
    [9] Desurvire. Erbium-doped amplifiers: principles and applications [C]. A Wiley-Interscience, New York:1985.
    [10]李俊杰.从OFC2007看DWDM技术的发展趋势[J].电信科学,2007,(7):96-99.
    [11]毛谦.我国FTTH应用开始走向高潮[J].邮电设计技术,2008,(6):1-7.
    [12] L. Goldberg, J. P. Koplow, A. V. Kliner. Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping [J]. IEEE photon. Technol. Lett., 1998, 10(6): 793-795.
    [13] A. Liem, J. Limpert, H. Zellmer, and A. T¨unnermann. 100-W single frequency master-oscillator fiber power amplifier [J]. Opt. Lett., 2003, 28(17):1537-1539.
    [14] MingYuan Cheng, YuChung Chang, Galvanauskas A et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-mm core highly multimode Yb-doped fiber amplifiers [J]. Opt. Lett., 2005, 30(4):358-360.
    [15] Dupriez P, Piper A, Malinowski A et al. High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at1060nm [J]. IEEE Photon. Technol. Lett., 2006, 18(9):1013-1015.
    [16] Lingfeng Kong, Qihong Lou, Jun Zhou et al. 133-W pulsed fiber amplifier with large mode area fiber [J]. Opt. Eng. Lett., 2006, 45(1):010502
    [17]郭占城,贾秀杰,付圣贵等.基于全国产器件的大模面积掺镱双包层光纤放大器的实验研究[J].南开大学学报,2007,40(4):66-69.
    [18] G. Wilson. Low-Noise 1-Watt Er/Yb fiber amplifier for CATV distribution in HFC and FTTH/C systems [C]. Proc. Conference Optical Fiber Communication (OFC’2000), Baltimore, USA: 2000.FD :58-60
    [19] Deiss, McIntosh.C.M, Williams G.M et al. Gain flatness of a 30 dBm tandem Er3+-Er3+/Yb3+ double clad fiber amplifier for WDM transmission [C]. 2002’OFC, 2002:249-251.
    [20] J. P. Koplow, S. W. Moore, A. V. Kliner. A new method for side pumping of double-clad fiber sources [J]. IEEE J. Quantum Electron. , 2003, 39(4): 529-540.
    [21] Mark Dubinskii, Jun Zhang and Igor Kudryashov. Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling [J]. Appl. Phys. Lett., 2008, 93(3): 1-3.
    [22] Wang Q, Dutta NK. Er-Yb double-clad fiber amplifier [J]. Optical Engineering, 2004, 43(5): 1030-1034.
    [23] P.Peterka1, I.Ka?ík, V.Matejec et al. Amplifier Performance of Double-Clad Er/Yb-Doped Fiber with Cross-Section Tailored for Direct Splicing to the Pump and Signal Fibers [C]. 2007 Optical Society of America, 25-29 March 2007, P1-3
    [24] Liu Y. G., Feng X.H. Li L.J. et al. High-power Er3+/Yb3+ codoped double-clading fiber amplifier with more than 2W output power [J]. Chin. Phys. Lett., 2005, 22(2):343-345.
    [25]杜伟敏,伍波,侯天晋等. Er3+/Yb3+共掺双包层光纤放大器实验研究[J].中国激光,2008,35(s2):9-12
    [26]刘德福,段吉安.高回波损耗光纤连接器研究展望与发展[J].光通信技术,2004,24(11):42-45
    [27]王加莹.长途超大容量DWDM光通信技术及发展[J].光通信技术,2003,27(2):1-4.
    [28]张芳沛,楼祺洪,周军等.高功率双包层光纤放大器[J].激光与光电子学进展,2008,44(1):38-44.
    [29] N. Sugimoto, Y. Kuroiwa, K. Ochiai et al. Optical Amplifiers and their Applications, (2000), PD-3.
    [30]高宇,杨亚培,刘爽等. Er3+/Yb3+共掺磷酸盐光纤放大器增益分析新模型[J].半导体光电,2006,27(4):396-398.
    [31]王华,李乙钢,陈胜平等.双包层Er3+/Yb3+共掺光纤放大器[J].光电子技术,2005,25(4):234-238.
    [32]向望华,张良,裴新等. Er3+- Yb3+共掺杂环形腔光纤激光器[J].光电子.激光,2003,14(10):1015-1017.
    [33] Kringleboin J T, Archambault J L, Reckie L et al. Highly efficient, low noise grating feedback Er: Yb co-doped fiber laser [J]. Electron. Lett., 1994, 30(12):972-973.
    [34] Sinivasagam V, Abdullah M K, Ahmad H. EYDFL giving higher efficiency and smaller power fluctuation as compared to EDFL [C]. Malaysia Bangi: IEEE. ICSE’98, Proc., 1998.
    [35] Ding Ming, Peter K. Effects of Yb: Er-codoping on suppressing self-pulsing in Er-doped fiber lasers [J]. IEEE Photon. Technol. Lett., 1997, 9(3):324-326.
    [36] Sanchez F, Boudec P I, Francois P L et al., Effects of ion pairs on the dynamics of erbium-doped fiber lasers [J]. Phys. Rev. (A), 1993, 48(3):2220-2229.
    [37] Ding M, Cheo P K. Dependence of ion-pair induced self-pulsing in Er-doped fiber lasers on emission to absorption ratio [J]. IEEE Photon. Technol. Lett., 1996, 8(12):1627-1629.
    [38] P.Glas, M.Naumann, A.Schirrmacher, et al. A high power neodymium-doped fiber laser using a novel fiber geometry, Optics Comm., 1997, 141:336-342.
    [39] A.Liu and K.Ueda, The absorption characteristics of circular,offset,and rectangular double-cald fibers [J]. Opt. Comm. 1996 132: 511-518.
    [40] H.Po.E.Snitzer, R.Tumminelli, et al. Optical Fiber Communication’89, Postdeadlinepaper PD7,1989.
    [41] Taccheo S, Laporta P, Longhi S et al. Diode-pumped bulk erbium-ytterbium lasers [J]. Appl. Phys., 1996, B63:425-436.
    [42] Martin A, Robert J, Peng P, et al. Gain and noise in ytterbium-sensitized erbium-doped fiber amplifier: measurements simulations[J]. Journal of Lightwave Technology, 2001, 19(10):1521-1526.
    [43] Nguyen Dan T, Chavez-Pirson Arturo, Jiang Shibin, et al. A Novel Approach of Modeling Cladding-Pumped Highly Er–Yb Co-Doped Fiber Amplifiers [J]. IEEE Journal of Quantum Electronics, 2007, 43(11):1018-1027.
    [44] Mirek Karasek. Optimum Design of Er3+ -Yb3+ Co-doped Fibers for Large-Signal High-Pump-Power Applications [J]. IEEE J Quantum Electron, 1997, 33(10):1699-1705.
    [45] Shooshtari A, Meshkinfam P, Touam T et al. Ion-exchanged Er/Yb phosphate glass waveguide amplifiers and lasers [J]. Opt Engng., 1998, 37(4):1188-1192.
    [46]占生宝,朱蕊频,马志强等.双包层Er3+/Yb3+共掺光纤放大器ASE的动态特性[J].空军工程大学学报.2006,7(2):73-77.
    [47]吕可诚,刘伟伟,吕福云等.包层泵浦光纤激光器[J].中国科学基金,1999,(5):288-292
    [48] Paul. E. Barclay, K. Srinivasa, et al. Efficient input and output fiber coupling to a photonic crystal waveguide [J]. Optics Letters, 2004, 29(7):697-700
    [49]许兆文.掺鐿双包层光纤激光器的研究[D].天津:南开大学,2003.
    [50]韦文楼,欧攀,阎平等.双包层光纤的侧面泵浦耦合技术[J].激光技术,2004,28(2):115-120
    [51] Takahashi M. Compatibility of conventional ferrule with step- ferrule for angled convex optical connector [C]. The 45th Proceedings of IEEE Electronic Components and Technology Conference, 1995:406-412
    [52]刘德福,段吉安.高回波损耗光纤连接器研究展望与发展[J].光通信技术,2004,24(11):42-45
    [53]凌磊,傅焰峰,张石等. Er/Yb共掺光纤放大器前向放大自发辐射模型[J].中国激光,2008,35(5):734-738
    [54] Fabrizio Di Pasquale. Modeling of Highly-Efficient Grating-Feedback and Fabry-Perot Er3+-Yb3+ Co-Doped Fiber Laser [J]. IEEE J Quantum Electron, 1996, 32(2):326-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700