Fe(Ni)-N纳米粒子的制备及电磁性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以直流电弧等离子法制备的Fe和Fe1-xNix(x=0.43,0.65)纳米粒子为前躯体,在氨气气氛中,在不同的反应温度,通过固-气反应合成了FexN(x=4,3)纳米粒子,γ'Fe2.6Ni1.4N纳米粒子和γ'-Fe1.7Ni2.3N包覆γ-Fe1.7Ni2.3纳米复合粒子。利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和振动样品强度计(VSM)对氮化产物的相结构、成分、微观形貌和磁性能进行表征。利用网络分析仪测试了2-18GHz范围内的电磁参数。
     Fe纳米粒子的氮化结果表明:由于Fe纳米粒子存在大量的缺陷,促使Fe的氮化反应在低温进行;随着反应温度的升高,氮化产物从γ'-Fe4N相向ε-Fe3N相转变,产物颗粒出现轻微的烧结。氮化产物的微观结构和本征介电性能引起的多重极化使得纳米粒子的复介电常数显著的提高,并且表现出明显的多重介电弛豫峰。而复磁导率具有相似的变化规律,实部随频率增加而减小,在高频趋于稳定;虚部出现宽的自然共振峰,但其自然共振频率低于Fe纳米颗粒。微波吸收模拟结果显示,Fe4N/Fe和Fe3N/Fe4N纳米粒子分别在3.6-11.2GHz和4.6-13.6GHz范围内反射损耗值小于-10dB,对应的匹配厚度分别为1-2.99mm和0.83-2.49mm。在4.6-7.6GHz和7.0-9.2GHz范围内反射损耗值小于-20dB。
     研究了FeNi合金纳米粒子中Ni含量对其氮化产物的相结构和电磁性能的影响。实验发现Fe1-xNix(x=0.43,0.65)的氮化产物分别为单相的γ'-Fe2.6Ni1.4N纳米粒子和γ'Fe1.7Ni2.3N包覆y-Fel.7Ni2.3纳米复合粒子,颗粒呈球形链状结构,保持了前躯体颗粒纳米形态,大小为10-100nm。FeNi合金的氮化产物的电磁性能表现出与Fe-N纳米粒子相近似的变化规律,γ'-Fe1.7Ni2.3N包覆γ-Fe1.7Ni2.3纳米复合粒子由于高的电导率和磁学性能导致其复介电常数和复磁导率大于γ'-Fe2.6Nil.4N纳米粒子。与Fe-N纳米粒子相比,镍的掺杂导致其自然共振频率向低频移动。γ'-Fe2.6Ni1.4N纳米粒子在2.6-18GHz范围内反射损耗值小于-10dB,对应的匹配厚度为0.74-4.4mm;在5.2GHz处出现最小的反射损耗值-39.9dB。不同含量的γ'-Fel.7Ni2.3N包覆γ-Fel.7Ni2.3纳米复合粒子分别在2-6.4GHz和3.6-7.8GHz范围内反射损耗值小于-10dB,最小的反射损耗值为-53.5dB和-35.4dB。可以通过前躯体的成分和氮化反应温度来控制反应产物,进而调节电磁参数来改变微波吸收频带,满足特定频带范围内的电磁波吸收要求。
The FexN(x=4,3) nanoparticles, Fe2.6Ni1.4N nanoparticles and Fe1.7Ni2.3N coated Fe1.7Ni2.3 nanocomposites are synthesised by solid-gas reaction in ammonia atmosphere at the different temperatures, using the Fe and Fe1-xNix(x=0.43,0.65) by DC arc-discharge plasma as a precursor. The phase struction, composition, morphology and magnetic properties are investigated by the X-ray diffraction (XRD), tansmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and vibrating sample magnetometer (VSM), respectively.The electromagnetic parameters also were studied in the 2-18GHz frequency range by vetor network analazer.
     The results of nitridation of iron show nitridation reaction were processed at lower temperature duo to a large number of defects. The resultance products changed fromγ'-Fe4N structure toε-Fe3N phase with increasing temperature. The slightly sintering phenomenon can be found but the grain sizes still retain in the nanoscale ranges. The complex permittivity show notabilily enhancement valves and exhibit the muitiple dielectric relaxation resonance in 10-18GHz range, which attribute to the muitiple polarization affected by microstructure and intrinsic dielectronic. The permeability exhibit the similar varation trendency and the real part of permeability slightly decreased in the lower frequency and then retained a approximately constant. The abroad nature resonance peaks appear in the nitride products and the nature resonance frequency of products nanoparticles were lower than that of Fe nanopaiticles duo to smaller magnetocrystalline anisotropy. It is calculated that the nitride products exhibit the excellent the microwave absortion properties. For Fe4N/Fe and Fe3N/Fe4N nanoparticles, the reflection loss exceeding-10dB was observed in the 3.6-11.2GHz and 4.6-13.6GHz range for the thickness of 1-2.99mm and 0.83-2.49mm. The reflection loss was less than-20dB in the 4.6-7.6GHz and 7.0-9.2GHz, respectively.
     The influence of Ni components on the phase and electromagnetic characteristics were investigated. It is found that nitride products are singleγ'-Fe2.6Ni1.4N nanoprticles andγ'-Fe1.7Ni2.3N coatedγ-Fe1.7Ni2.3 nanocomposites for Fe1-xNix(x=0.43,0.65), respectively. The products nanoparticles are spherial in shape like chain with its size ranges of 10-100nm and retain the morphology of the precuesor. The electromagnetic properties exhibit the similar variation trendency. The nanocomposites possess the higher the complex permittivity and the complex permeability than that the single nanoparticles duo to higher conductivity and magnetic properties. Comparaed to the Fe-N nanoparticles, the substituent of the Ni atoms resulted in the lower nature resonance frequency, which attribute to the lower magnetocrystalline anisotropy. For the singleγ'-Fe2.6Ni1.4N nanoprticles, the reflection loss less than -10 dB was obtained over the 2.6-18GHz with the thickness of 0.74-4.4 mm. An optical reflection loss of -39.9dB was observed at the 5.2GHz. The reflection loss exceeds-1OdB in the 2-6.4GHz and 3.6-7.8GHz and the minimum reflection loss was -53.5dB and-34.9dB for the nanocomposites with different y'-Fe1.7Ni2.3N components, respectively. Therefore, eleteromagnetic parameter adjusted by the precursor componenes and reaction temperature can tuned the frequency band of microwave absorption in order to meet the demands of electomagnetic absorption in the certain frequency range.
引文
[1]MUHAKAMT R I, YAMAMOTOAO H, KIM C K, et al. Electromagnetic wave slueding effectiveness of carbon fiber sheet coated fenite film by microwave-hydrothennal process[J]. Int. J. Mod. Phys. B.,2003,17(8):1235-1241.
    [2]LU B, HUANG H, DONG X L. Microwave absorption properties of the core/shell type iron and nickel nanoparticles[J]. J. Magn. Magn. Maters.,2008,320(6):1106-1111.
    [3]LI J G, HUANG J J, MA F. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability [J]. Appl. Phys. Lett.,2009,95(16):163108.
    [4]GONG Y X, JIANG J T, ZHEN L. Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method[J]. J. Appl. Phys.,2009,106(6):064302
    [5]ZHEN L, GONG Y X, JIANG J T. Electromagnetic properties of FeNi alloy nanoparticles prepared by hydrogen-thermal reduction method[J]. J. Appl. Phys.,2008,104(3): 034312.
    [6]XIE G Z, YUAN L K, WANG P. GHz microwave properties of melt spun Fe-Si alloys[J]. J. Non-Cryst. Solids.,2010,356 (2):83-86.
    [7]HORIKAWA T, MIURA K J, ITOH M, et al. Characterization and Microwave Absorbing Properties of Nd-Fe-Ti Intermetallic Compounds Derived From Nd-Fe-B Sintered Magnet Scraps[J]. IEEE. Trans. Magn.,2010,322(6):794-798.
    [8]KIM M S, MIN E K, KOH J G. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J]. J. Magn. Magn. Maters.,2009,321(6):581-585.
    [9]LIU J H, MA T Y, TONG H. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites [J]. J. Magn. Magn. Maters.,2010,322(8):940-944
    [10]WANG X, GONG R Z, LI P G. Effects of aspect ratio and particle size on the microwaveproperties of Fe-Cr-Si-Al alloy flakes[J]. Mater. Sci. Eng. A.,2007, 466(1):178-182.
    [11]WEI J Q, WANG J B, LIU Q F, et al. Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites[J]. J. Phys. D:Appl. Phys.,2010,43 (11):115001.
    [12]LEE S E, Choi 0, THOMAS H. Microwave properties of graphite nanoplatelet/epoxy composites[J]. J. Appl. Phys.,2008,104(3):033705.
    [13]ZENG J, WANG S, XU J C. Preparation and study on radar-absorbing materials of cupric ox ide-nanowi re-covered carbon fibers [J]. Appl. Surf. Sci.,2009,25(9):4916-4920.
    [13]ZENG J, WANG S, XU J C. Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers[J]. Appl. Surf. Sci.,2009, 25(9):4916-4920.
    [14]XIE W, CHENG H F, CHU Z Y. Preparation and microwave absorption properties of hollow carbon fibers[J]. Journal Of central south university of technology, 2007,14(2):112-114.
    [15]QI X Y, YANG Y, ZHONG W, et al. Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities[J]. J. Solid. State Chem.,2009,182(10):2691-2697.
    [16]张增富,罗国华,范壮军,等.不同结构碳纳米管的电磁波吸收性能研究[J].物理化学学报,2006,22(3):296-300.
    [17]ZHOU R F, Feng H T, LIANG Q. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs[J]. J. Phys. D:Appl. Phys.,2008,41 (18):185405.
    [18]LI H F, HUANG Y H, SUN G B. Directed Growth and Microwave Absorption Property of Crossed ZnO Netlike Micro-/Nanostructures[J].J. Phys. Chem. C,2010,114(22):10088-10091.
    [19]CHEN Y J, WANG T H, WAN Q, et al. Microwave absorption properties of the ZnO nanowire-polyester composites[J], Appl. Phys. Lett.,2004,84(17):367-3369.
    [20]ZHUO R F, QIAO L, FENG H T. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees[J]. J. Appl. Phys..2008,104(9):094101.
    [21]FENG H T, ZHUO R F, Chen J T. Synthesis, Characterization, and Microwave Absorption Propertyof the SnO2 Nanowire/Paraffin Composites[J], Nanoscale. Res. Lett.,2009, 4(12):1452-1457.
    [22]ZHOU M, ZHANG X, WEI J M. Morphology-Controlled Synthesis and Novel Microwave Absorption Properties of Hollow Urchinlike a-MnO2 Nanostructures[J]. J. Phys. Chem. C,2011,115 (5):1398-1402.
    [23]TONG G X, WU W H, GUAN J G, et al. Synthesis and characterization of nanosized urchin-like α-Fe203 and Fe304:Microwave electromagnetic and absorbing properties[J]. J. Alloys Compd.,2011,509(11):4320-4326.
    [24]SUN G B, DONG B X, CAO M H, et al. Hierarchical Dendrite-Like Magnetic Materials of Fe304, Y-Fe2O3, and Fe with High Performance of Microwave Absorption [J]. Chem. Mater., 2011,23(6):1587-1593.
    [25]WANG F L, LIU J R, KONG J, et al. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres[J]. J. Mater. Chem.,2011,21(12):4314-4320.
    [26]ZHANG B, LI J B, Sun J J. Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range [J], J. Eur. Ceram. Soc.,2002,22(1):93-99.
    [27]孟凡君,茹淼焱,等Si-C-N陶瓷在雷达吸收方面的应用研究[J].材料科学与工艺,2003,11(1):94-96.
    [28]CHIU S C, YU H C, LI Y B. High Electromagnetic Wave Absorption Performance of Silicon Carbide Nanowires in the Gigahertz Range[J]. J. Phys. Chem.'C,2010,114(4): 1947-1952.
    [29]ZHAO D L, LUO F, ZHOU W C. Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen[J]. J. Alloys Compd.,2010,490(1):190-194.
    [30]OHAWAN S K, SINGH N. Shielding effectiveness of conducting polyaniline coated fabrics in X-band, W-band and radio frequency range [J]. Synth. Met,2002,129(3):261-267.
    [31]WANG D H, MA F H, QI S H, et al. Synthesis and electromagnetic characterization of polyaniline nanorods using Schiff base through'seeding'polymerization [J]. Synth. Met.,2010,160(19):2207-2084.
    [32]HONG Y K, LEE C Y, JEONG C K, et al. Electromagnetic interference shielding characteristics of fabric complexes coated with eonduetive polypyrrole and thermally evaporated Ag[J]. Curr. Appl. Phys.,2001,1 (6):439-442.
    [33]KIM M S, KIM H K, JEONG S H, et al. PET fabric/polypyrrole composite with high electricalconductivity for EMI shielding [J]. Synth. Met.,2002,126(3):233-239.
    [34]LIU X G, GENG D Y, ZHANG Z D. Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules [J]. Appl. Phys. Lett.,2008,94(5):183118.
    [35]LIU X G, GENG D Y, ZHANG Z D. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules[J]. Appl. Phys. Lett.,2008, 92(24):243110.
    [36]ZHANG Z H, WANG X, ZHANG Z D, et al. Magnetic and microwave absorption properties of SnO-coated α-Fe (Sn) nanocapsules [J]. J. Phys. D:Appl. Phys.,2010,43 (49): 495404
    [37]LIU X G, GENG D Y, ZHANG Z D, et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles[J]. Carbon,2010,48(3): 891-897.
    [38]ZHANG L, HAN Z, ZHANG Z D, et al. Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite[J]. Appl. Phys. Lett.,2010, 97(13):133115.
    [39]ZHENG H, LI D, ZHANG Z D, et al. Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules [J].2009, J. Phys. D:Appl. Phys.,2009,42(5):055008.
    [40]LI Y B, CHEN G, LI Q H, et al. Facile synthesis, magnetic and microwave absorption properties of Fe304/polypyrrole core/shell nanocomposite[J]. J. Alloys Compd,2011, 509(10):4104-4107.
    [41]JACK K H. The iron-nitrogen system:the structures of Fe4N and Fe2N[J], Proc. Roy. Soc. A,1948,195(1040):34-40.
    [42]JACK K H. The occurrence and the crystal structure of a "-iron nitride:A new type of interstitial alloy formed during the tempering of nitrogen-martensite[J]. Proc. Roy. Soc. A,1951,208(1093):216-224.
    [43]SHIMIZU H, SHIRAI M, SUZUKI N. Electronic, Structural and Magnetic Properties of Transition-Metal Mononitrides[J]. phys. stat. sol.,1997,66 (10):3147-3152.
    [44]SHIMIZU H, SHIRAI M, SUZUKI N. Theoretical investigation of magnetic structure and hyperfine field of NaCl-type FeN[J]. J. Phys. Soc. Japn.,1998,67(3):922-926.
    [45]GALLGEO J M, GRACHEV S K. BORSA D M. Mechanisms of epitaxial growth and magnetic properties of Y'-Fe4N(1 00) on Cu(100) [J]. Phys. Rev. B,2004,70(11):115417
    [46]王晓芳.FeNiN薄膜结构和磁性的研究[D].天津:天津大学硕士论文,2007.
    [47]KIMMITERU T, EIJI K, AKIRA T. Synthesis of Fine Fe4N powder and Its Magnetic Characteristics [J]. Jpn. J. Appl. Phys.,1982,21 (11):1596-1598.
    [48]LEE P, Chen T R, Chin T S. Structure and magnetic properties of mechanically alloyednitride powders[J]. J. Alloy Compounds,1995,222(1):179-183.
    [49]ROBERSONA. S. L, FINELLOB D, BANKSA A D, et al. Growth of Fe3N films via chemical vapor deposition of iron acetylacetonate and anhydrous ammonia[J]. Thin Solid Films,1998,326(1):47-50.
    [50]WANG X, ZHENG W T, TIAN H W. Growth, structural, and magnetic properties of iron nitridethin films deposited by dc magnetron sputtering[J]. Appl. Surf. Sci.,2003, 220(4):30-39.
    [51]CHATBI H, VERGNAT M, BAUER P, et al. Growth and characterization studies of Fe4N thin films prepared by ion beam assisted evaporation [J]. Appl. Phys. Lett.,1995,67 (3): 430-432.
    [52]BAINBRIGE J, CHANNING D A, WHITLOW W H, et al. A MOssbauer and X-rayinvestigation ofε-Fe2N[J]. J. Phys. Chem. Solids,1973,34(9):1579-1586.
    [53]PANDA R N, GAJBHIYE N S. Magnetic Properties of Nanocrystalline γ'-Fe4N and ε-Fe3N Synthesized by Citrate Route [J]. IEEE. Trans. Magn,1998,34 (2):542-548.
    [54]GAJBHIYE N S. Magnetic and MOssbauer study of ε-FeyN(2< y<3) nanoparticles[J]. J. Nanopart. Res.,2010,12(4):1197-1209.
    [55]HAN J, WANG H M, ZHANG M H. Low-Temperature Approach to Synthesize Iron Nitride from Amorphous Iron[J]. Inorg. Chem.,2008,47(4):1261-1263.
    [56]周桂琴,高强,连法增.块状Y'-Fe(N)和Fe4N的合成及其磁特性[J].东北大学学报.1999,19(4):1-5.
    [57]玉玲,孙凤久,齐小龙,等.激光氮化制备铁氮化合物的研究及应用[J].激光技术,2002,26(5):344-345.
    [58]杨志民,毛吕辉,杜军,等.Fe4N电磁波吸收剂的合成及其吸波性能的研究[J].稀有金属.2002,26(2):103-107.
    [59]WIENER G W, BERGER J A. Structure and magnetic properties of some transition metal nitrides[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1955,203(2):360-368.
    [60]SIGERMARO N. Electronic Structure of Iron Nitrides Studied by Electron Diffraction Y'-Fe4N[J]. J. Phys. Soc. Jpn.,1968,25 (2:) 488-498.
    [61]SAKUMA A. Electronic and Magnetic Structure of Fe4N[J], J. Phys. Soc. Japn.,1991, 60(6):2007-2010.
    [62]ZHOU W, QU L J, ZHANG Q M. Interaction and charge transfer in the iron nitride Fe4N[J]. Phys. Rev. B,1989,40(9):6393-6397.
    [63]FIGUEIREDO de R S, FOCTA J, SANTOS dos A V. Crystallographic and electronic structure of CuxFe4-xN[J]. J. Alloys Compounds,2001,315(2):42-50.
    [64]ZHAO Z J, XUE D S, LI F S. X-ray diffraction and MOssbauer Studies of Y'-(Fe1-xSnx)4N compounds (0.0≤x≤0.3) [J]. J. Magn. Magn. Mater.,2001,232(3):155-160.
    [65]APPEN J, DRONKOWSKI R. Predicting New Ferromagnetic Nitrides from Electronic Structure Theory:IrFe3N and RhFe3N[J]. Angew. Chem. Int. Ed.,2005,36(20): 1205-1210.
    [66]HOUBEN A, BERGHAUS J, DRONSKOWSKI R. The Ternary Nitrides GaFe3N and AlFe3N:Improved Synthesis and Magnetic Properties [J]. Chem. Mater.,2009,21(18):4332-4338.
    [67]CHEN S K, JIN S, TIEFEL T H, et al. Magnetic properties and microstructure of Fe4N and (Fe,Ni)4N[J]. J. Appl. Phys.,1991,70(10):6247-6249.
    [68]WIENER G W, BERGER J A. Structure and Magnetic Properties of Some Transition Metal Nitrides[J], J. Met.,1955,7(11):360-367
    [69]SHIRANE G, TAKEI W J, RUBY S L. MOssbauer Study of Hyperfine Fields and Isomer Shifts in Fe4N and (Fe, Ni)4N[J], Phys. Rev.,1962,126(1):49-52.
    [70]MATAR S F, FOET J. Influence of palladium and platinum on the ordering of Y'-(Fe1-xMx)4N studied by MOssbauer spectroscopy and X-ray diffraction [J]. J. Inorg. Chem.,1992, 23(21):39-43.
    [71]LI F S, ZHAO Z J, DIAO X G, et al. A comparative study of Structural and magnetic properties of Y-Fe1-xNix alloys and their nitridesY '-(Fe1-xNix)4N[J]. Phys. Stat. SOI. (a),1999,174(1):255-262.
    [72]RECHENBERG H R, DIAO X G, Scorzelli R B. Easy-axis changes in perovskite-type Fe-Ni nitrides Y'-(Fe,-,Nix)4N:A MOssbauer study [J]. J. Appl. Phys.,2000,87(9): 6037-6039.
    [73]DIAO X G, LI F S, ZHAO Z J. Preparation and characterization of y'-Ni3FeN[J]. J. Mater. Sci. Lett.,1996,15(18):1590-1591.
    [74]RANDA R N, GAJBHIYE N S. Magnetic properties of nanocrstalline Y-Fe-Ni-N nitride systems [J]. J. Appl. Phys. (a),1999,86(6):3295-3302.
    [75]TECHITDHEERA W, THASSANA C, PECHARAPA W.3rd IEEE International Nanoelectronics Conference, City Univ Hong Kong Hong Kong PEOPLES R CHINA,2010[c]. Hong Kong:3rd IEEE International Nanoelectronics Conference,2010.
    [76]MOHN P, SCHWARZ K, MATAR S, et al. Calculated electronic and magnetic structure of the nitrides NiFe3N and PdFe3N[J]. Phys. Rev. B,1992,45(8):4000-4007.
    [77]KONG Y, LI F S. Linear muffin-tin orbital calculation of local electronic and magnetic properties in(Fe1-xNix)4N(O≤x≤1.0) [J]. Phys. Rev. B,1998,57(2):970-977.
    [78]李星国,复辉.直流电弧等离子体法合成金属和陶瓷纳米材料[J].过程工程学报,2002,2(4):295-300.
    [79]马骥Fe/SiO2纳米复合材料的微结构与磁性研究[D],兰州:兰州大学,2009.
    [80]JACOBS H, RECHENBACH, ZACHWIEJA U. Structure determination of Y'-Fe4N and ε-Fe3N[J]. J. Alloys Compd.,1995,227(1):10-17.
    [81]SCHAAF P. Laser nitriding of metals[J]. Prog. Mater. Sci.,2002,47(1):1-161.
    [82]WU X L, ZHONG W, JIANG H Y. Magnetic properties and thermal stability ofY'-Fe4N nanopaticles prepared by a combined methord of reduction and nitriding [J]. J. Magn. Magn. Mater.,2004,281 (1):77-81.
    [83]WANG L L, WANG X, ZHENG W T. Structural and magnetic properties of nanocrystalline Fe-N thin films and their thermal stability[J]. J. Alloys Compd.,2007,443 (1):43-47.
    [84]LI D, CHOI C J, KIM B K. Characterization of Fe/N nanoparticles synthesized by the chemical vapor condensation process[J]. J. Magn. Magn. Mater.,2004,277(1):64-70.
    [85]YU Z Q, ZHANG J R, DU Y W. Magnetic properties and preparation of FeaN compound [J]. J. Magn. Magn. Mater.1996,159(1):L8-L10.
    [86]HUANG W, WU J, GUO W. Study on the synthesis of ε-FesN-based magnetic fluid[J]. J. Magn. Magn. Mater.,2006,307 (2):198-204
    [87]LIU J R, ITOH M, MACHIDA K. Frequency dispersion of complex permeability and permittivity on iron-based nanocomposites derived from rare earth-iron intermetallic compounds [J]. J. Alloys Compd.,2006,408-412 (1):1396-1399.
    [88]SIBERCHICOT B. Effects of hydrogen absorption on physical properties of Y'-Fe4N[J]. J. Magn. Magn. Mater.,2009,321 (20):3422-3425.
    [89]YAN L G, WANG J B, HAN X H, et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell[J]. Nanotechnology,2010,21 (9):095708.
    [90]SHI C L, CAO M S, YUAN J, et al. Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe203 heterostructure nanocomposites[J]. Appl. Phys. Lett.,2008,93(18): 183118.
    [91]CHEN Y J, ZHANG F, ZHONG G Z, et al. Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods[J]. J. Phys. Chem. C,2010,114(20):9239-9244.
    [92]YAN S Z, ZHEN L, XU C Y, et al. Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core-shell structures. J. Phys. D:Appl. Phys.,2010,43(24): 245003.
    [93]LI X, WANG Z, ZUO Y L. The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7-Co nanoshell by thermal reduction [J]. Nanotechnology.2011,22(4):04577.
    [94]WEN F S, WANG N, ZHAGN F. Enhanced microwave absorption properties in BiFeO3 ceramics prepared by high-pressure synthesis [J]. Solid. State. Commun.,2010,150(39): 1888-1891.
    [95]HUANG X G, ZHANG J, WANG H Z. Er3--substituted W-type barium ferrite:preparation and electromagnetic properties [J]. J. Rare. Earths.,2010.28(6):940-943.
    [96]WANG B C, WEI J Q, YANG Y. Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite[J]. J. Magn. Magn. Mater.,2011,323(8): 1101-1103.
    [97]ZHANG B H, LU G, FENG Y. Electromagnetic and microwave absorption properties of Alnico powder composites [J]. J. Magn. Magn. Mater.,2006,299(1):205-210.
    [98]KONG I, AHMAD S, ABDULLAH M. Magnetic and microwave absorbing properties of magnetite thermoplastic natural rubber nanocomposites [J]. J. Magn. Magn. Mater.,2010,322(21): 3401-3409.
    [99]YU Z, LI F S. Fe-N and (Fe, Ni)N Fine Power For Magnetic Recording[J]. Hyper. Int. 1998,12(4):101
    [100]PANDA R N, GAJBHIYE N S. Magnetic properties of nanocrystalline Y-Fe-Ni-N nitride systems [J], J. Appl. Phys.,1999,86(6):3295-3302.
    [101]YONG B L, DENG L W, YAN A G, et al. Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles[J]. Solid. State. Sci.,2009,11 (8): 1319-1324.
    [102]SUNNY V, KURIAN P, MOHANAN P, et al. A flexible microwave absorber based on nickel ferrite nanocomposite[J]. J. Alloy. Compd.,2010,489(1):297-303.
    [103]GILLOT F, JUDITH 0, PALACM M R. Nickel nitride as negative electrode material for lithium ion batteries [J]. J. Mater. Chem.,2011,21 (18):6038-6042.
    [104]LI F S, YANG J B, XUE D S. MOssbauer study of the (Fe1-xNix)4N compounds (0    [105]ZHOU T D, ZHOU P H, LIANG D F. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching[J]. J. Alloy. Compd.,2009,484(2):545-549.
    [106]LIU J R, ITOH M, MACHIDA K. Electromagnetic wave absorption properties of α-Fe/Fe3B/Y203 nanocomposites in gigahertz range [J]. Appl. Phys. Lett.,2003,83(19): 4017-4019.
    [107]ZHANG L, ZHU H, SONG Y. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers[J]. Mater. Sci. Eng. B.,2008,153(3):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700