生物活性炭纤维负载CuO降解苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物模板法是近年来发展起来的制备纳米材料的一种新技术。其方法是利用生物天然形成的结构作为模板,通过模板在前驱体溶液浸渍、焙烧两步法形成目标材料。然而利用这种技术制备得到的目标材料为单一氧化物,未能保留生物模板中的炭,而生物活性炭有很好的吸附性能,在许多领域尤其是催化方面有广泛应用。
     在以前的相关研究中,生物模板中的炭元素没有得到充分利用。针对这一问题,本论文研究了活性炭纤维负载CuO的复合催化剂。CuO是降解苯酚的良好催化剂,而生物活性炭纤维由于其特殊的孔道结构具有很好的吸附性能,生物活性炭纤维负载CuO催化剂具备二者的复合作用,能有效地催化降解污水中的苯酚等有机物。
     作为基础研究,本文选取具有典型结构的天然植物木棉纤维为模板材料,进行炭化、活化处理,制备具有高比表面积的生物活性炭纤维。然后再经金属盐溶液的浸渍、气氛保护烧结,制备出保留有原生物模板形态的复合催化剂。
     本论文探索了一种利用生物模板制备生物活性炭负载氧化物的复合催化剂的工艺方法。利用硝酸铜溶液为前驱体溶液,木棉纤维为模板,研究了实验工艺条件对合成的目标材料的影响,确定了制备活性炭纤维的最佳工艺条件。通过对实验工艺的探索,实现了对目标材料形貌的合理控制,成功制备出目标材料并对其催化性能进行了表征。
     本论文研究了物理和化学两种活化方法对木棉基活性炭纤维的结构与性能的影响。制备了木棉基活性炭纤维负载的CuO复合催化剂,分析了不同CuO负载量的催化剂在结构、形貌等方面的特征,并测试了所制备的催化剂对苯酚的吸附和降解作用。通过能谱仪(EDS)、扫描电子显微镜(SEM)、拉曼光谱仪、X射线衍射仪(XRD)和红外(FTIR)、氮气吸附脱附等测试方法对材料进行结构分析和表征。利用亚甲基蓝吸附及苯酚降解实验对目标材料的性能进行了表征。
     得到如下主要结论:
     1.以木棉纤维作为模板,通过模板炭化、活化处理,成功制备出了木棉基生物活性炭纤维(ACFs)。得到制备高比表面积的活性炭纤维的炭化温度为850℃、最佳活化温度为1000℃,活化剂CO_2通气量为20 ml/min,活化时间为2h时制备的活性炭纤维具有最大比表面积(1400 m2/g)。
     2.采用不同浓度的KOH、NaOH和ZnCl_2对木棉炭纤维进行活化,制备了活性炭纤维并测试分析了各组样品的结构和形貌特征。结果表明经过10%的KOH和10%与40%的NaOH活化的木棉基炭纤维的比表面积较大。
     3.以生物活性炭纤维为模板,通过其在硝酸铜溶液中浸渍、烘干、氮气保护焙烧制得了负载CuO的活性炭纤维复合催化剂。活性炭纤维/CuO复合催化剂的制备工艺为:浸渍时间为24 h,活性炭纤维和CuO质量比为1:1和1:9,氮气保护焙烧温度为350℃。
     4.用不同CuO负载量的CuO/生物活性炭纤维复合催化剂催化降解苯酚,催化结果表明:活性炭纤维和CuO质量比为1:1的样品物理吸附速度较快而活性炭纤维和CuO质量比为1:9的样品对苯酚的降解作用较强。这是因为前者活性炭纤维含量较大,在与苯酚的反应过程中活性炭的物理吸附作用占主导地位,后者是因为大量的CuO附着在活性炭上,降低了孔结构的含量,因此物理吸附速度不如前者快但是催化降解作用更强。
Biological template method is a new technology developed in recent years for preparing nano materials. The method is that the nano structures of inartificial biological materials are used as the templates and the target materials can be formed through two steps of impregnation in precursor and air calcination. The target materials prepared by this technology are always single oxides without the remaining of carbon element in the templates. However, the biological activated carbon exhibits excellent properties of physical adsorption, which can be employed widely in many fields especially for the catalytic applications.
     In the relative investigations before, the carbon element in the bio-template has not been utilized adequately. Aiming to this problem, the study to obtain the composite materials of CuO/ activated carbon fibers is performed in this thesis. Because CuO is an excellent catalyst for phenol degradation, and biological activated carbon fibers possess superior properties of physical adsorption due to their unique structure with pore channels. Proceed from the composite effect, the biological activated carbon fibers loading with CuO catalyst can effectively catalyze the degradation of phenol and other organic matters in sewage.
     As a basic study, natural plant kapok fiber with a typical structure is chosen as the template materialin this thesis. The biological activated carbon fibers with high surface area and good morphology are prepared through the process of carbonization and activation for kapok fiber. And the composite materials retaining the original biological template form are fabricated by impregnating the template in metal salt solution and the process of sintering under atmosphere protection.
     A simple process route for preparing composite catalyst of biological activated carbon supported oxide through biological templates is attempted in this thesis. With copper nitrate solution as the precursor solution and kapok as the template, the optimum preparing conditions for activated carbon fibers are determined and the effect of experimental conditions on the synthesized target materials is studied. Through the exploration for experimental process, the reasonable control for the morphology of the target material is achieved. As a result, the target material CuO/ activated carbon fibers are prepared successfully and their catalytic properties are characterized.
     In this thesis, the effect of physical and chemical activation methods on the structures and properties of kapok based biological activated carbon fiber (kapok-ACFs) is studied. CuO/ACF composite catalyst is prepared and the characters on structure and mophology as well as the adsorption and degradation to phenol of catalyst with different CuO contents are analyzied. Energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), infrared (FTIR), and nitrogen adsorption-desorption test method are adopted for the analysis and characterization on structure of materials. Methylene blue adsorption and phenol degradation test are utilized to characterize the properties of materials.
     The main conclusions are as follows:
     1. Using the kapok fiber as a template, kapok-ACFs are successfully prepared through carbonization and activation for template. For fabricating kapok-ACFs with high specific surface, the best carbonization temperature is 850℃, activation temperature is 1000, ventilation of activator CO_2 is 20 ml/min and activation time is 2h. Under this preparing process, the obtained kapok-ACFs show the largest specific surface of 1400 m2/g.
     2. Employing different concentrations of KOH, NaOH and ZnCl_2 for the activators, the kapok-ACFs are prepared and their structures and morphologies are analyzed. The results show that the kapok-ACFs activating by KOH of 10% and 40%as well as NaOH of 40% possess larger specific surface.
     3. With biological activated carbon fiber (kapok-ACFs) as a template, through immersing of the template in the copper nitrate solution, drying and calcination in nitrogen atmophere, CuO/ACF composite catalyst is obtained. The immersing time of 24 h, activated carbon fibers and CuO mass ratio of 1:1 and 1:9, and calcination temperature of 350℃in nitrogen are adopted as the process parameters for preparing CuO/ACF composite catalyst.
     4. The CuO /ACF composite catalyst with different CuO contents are used to the degradation of phenol. The catalytic results show that sample with activated carbon fiber and CuO mass ratio of 1:1 exhibits faster physical adsorption while that with activated carbon fibers and CuO mass ratio of 1:9 shows stronger degradation capability to phenol. This phenomenon is due to the higher content of the activated carbon fiber in the former which result in that the physical adsorption of activated carbon fibers is dominate in the reaction between CuO/ACF and phenol. However, the activated carbon fibers attached by a large number of CuO shows reducing content of the pore, and possess a slower physical adsorption rate while a stronger ability of the catalytic degradation.
引文
[1]松村雄次.超级活性炭的开发[J].化学与工业.1990,43 (3):358-362.
    [2]杨骏,高比.表面活性炭的制备及表征[J].炭素技术,1994,74 (6):5-9.
    [3]宋燕,李开喜,杨常玲等.石油焦制备高比表面积活性炭的研究[J].石油化工,2002, 31(6):431-435.
    [4] V. Verheyen, R. Rathbone, M. Jagtoyen, F. Derbyshire. Activated extrudates by oxidation and KOH activation of bituminous coal[J], Carbon, 1995, 33 (6):763–772.
    [5] K. Gergova, S. Eser. Effects of activation method on the pore structure of activated carbons from apricot stones[J], Carbon, 1996, 34 (7):879–888.
    [6] N. Kannan, G. Rengasamy. Comparison of cadmium ion adsorption on various activated carbons[J], Water Air Soil Pollut, 2005,163 (4) :185–201.
    [7] N. Tancredi, N. Medero, F. M?ller, J. Piriz, C. Plada, T. Cordero. Phenol adsorption onto powdered and granular activated carbon prepared from Eucalyptuswood[J]. Colloid Interface Sci, 2004, 279:357–363.
    [8] N. Kannan, A.Rajakumar. Comparative study of removal of lead (II) by adsorption on various carbons[J], Carbon.2002,11 (3):160–164.
    [9] F. Rodrigez-Reinoso, M. Molina-Sabio. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview[J], Carbon, 1992, 30:1111–1118.
    [10] M. Jagtoyen, F. Derbyshire. Activated carbons from yellowpoplar and white oak by H3PO4 activation[J], Carbon, 1998,36 (7):1085–1097.
    [11]阎怀国,张俊贞,赵惠敏等.活性碳纤维的应用[J].城市环境与城市生态, 1998,3:5-7.
    [12]张利波,彭金辉,张世敏等.磷酸活化烟草杆制备中孔活性炭的研究[J].化学工业与工程技术, 2006, 27(2):1-5.
    [13]余梅芳,胡晓斌,王康成等. KOH活化制备高比表面积竹活性炭研究[J].浙江林业与科技,2006,26(5):17-20.
    [14] Laine J, Calafat A. Factors affecting the preparation of activated carbons from coconut shell catalyzed by potassium[J]. Carbon,1991,29:949-953.
    [15] Wigmans T. Industrial aspects of production and use of activated carbons[J]. Carbon, 1989, 27:13-22.
    [16] Pis Joséj, Parra Joséb, Dela puente Gema, et al. Development of macroporosity in activated carbons by effect of coal preoxidation and burnoff [J]. Carbon, 1998, 77 (6):625-630.
    [17] Smisek M, Cerny P, Brychta M, Flasar M, Ku stka M, Stuchlik H, Valter V. Aktivni Uhli. Prague: SNTL[M], 1964.
    [18] Jagtoyen M, Derbyshire F. Some considerations of the origins of porosity on carbons fromchemically activated wood[J]. Carbon, 1993, 31(7):1185–1192.
    [19] Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation[J]. Carbon, 1998, 36(7–8):1085–1097.
    [20] Benaddi H, Legras D, Rouzaud JN, Beguin F. Influence of the atmosphere in the chemical activation of wood by phosphoric acid[J]. Carbon, 1998, 36(3):306–309.
    [21] Lopez M, Labady M, Laine M. Preparation of activated carbon from wood monolith[J]. Carbon, 1996, 34(6):825–827.
    [22] Jagtoyen M, Derbyshire F, Rimmer S, Rathbone R. Relationship between reflectance and structure of high surface area carbons[J]. Fuel, 1995, 74(4):610–614.
    [23] Lee WH, Reucroft PJ. Vapor adsorption on coal- and woodbased chemically activated carbons[J]. Surface oxidation states and adsorption of H2O. Carbon, 1999, 37(1):7–14.
    [24] Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F. Evolution of carbon structure in chemically activated wood[J]. Carbon, 1995, 33(9):1247–1254.
    [25] Benaddi H, Bandosz TJ, Jagiello J, Schwarz JA, Rouzaud JN, Legras D, Be′guin F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood[J]. Carbon, 2000, 38:669–674.
    [26] Salame II, Bandosz TJ. Comparison of the surface features of two wood-based activated carbons[J]. Ind Eng Chem Res, 2000, 39:301–306.
    [27]Laine J, Calafat A, Labady M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid[J]. Carbon, 1989, 27(2):191–195.
    [28] Laine J, Calafat A. factors affecting the preparation of activated carbons from coconut shell catalyzed by potassium[J], Carbon,1991, 29(7):949–953.
    [29] Laine J, Simoni S, Calles R. Preparation of activated carbonfrom coconut shell in a small scale cocurrent flow rotarykiln[J]. Chem Eng Commun, 1991, 99:15–23.
    [30] Laine J, Yunes S. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell[J].Carbon, 1992, 30(4):601–604.
    [31] Rao PS, Mise SR, Manjuhanta GS. Kinetic studies on adsorption of chromium by coconut shell carbons from synthetic effluents. J Environ Sci Health 1992, 27(8):2227– 2241.
    [32] Toles CA, Marshall WE, Johns MM. Granular activated carbons from nutshells for the uptake of metals and organic compounds[J]. Carbon, 1997, 35(9):1407–1414.
    [33] Toles CA, Marshall WE, Johns MM. Surface groups on Caracid-activated nutshell carbons[J]. Carbon, 1999, 37(8):1207–1214
    [34] Toles CA, Marshall WE, Johns MM. Phosphoric acid activation of nutshells for metal and organic remediation: process optimization[J]. J Chem Technol Biotechnol, 1998, 72:255–263.
    [35] Johns MM, Marshall WE, Toles CA. The effect of activation method on the properties of pecan shell-activated carbons[J]. J Chem Technol Biotechnol 1999, 74:1037–1044.
    [36] Toles CA, Marshall WE, Johns MM, Wartelle LH, McAloon A. Acid-activated carbons from almond shells: Physical, chemical and adsorptive properties and estimated cost of production[J]. Biores Technol, 2000, 71:87–92.
    [37] Molina-Sabio M, Rodr′?guez-Reinoso F, Caturla F, Selle′s MJ. Porosity in granular carbons activated with phosphoric acid[J]. Carbon, 1995, 33(8):1105–1113.
    [38] Molina-Sabio M, Caturla F, Rodr′?guez-Reinoso F. Influence of the atmosphere used in the carbonization of phosphoric acid impregnated peach stones[J].Carbon,1995, 33(8):1180–1182.
    [39] Molina-Sabio M, Rodr′?guez-Reinoso F, Caturla F, Selle′s MJ. Development of porosity in combined phosphoric acid-carbon dioxide activation[J]. Carbon, 1996, 34(4):457–462.
    [40] MacDonald JAF, Quinn DF. Adsorbents for methane storage made by phosphoric acid activation of peach pits[J]. Carbon,1996, 34(9):1103–1108.
    [41] Sua′rez-Garcia F, Mart′?nez-Alonso A, Tasco′n JMD. Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp[J]. Carbon, 2001,39(7):1111–1115.
    [42] Diao Y, Walawender WP, Fan LT. Production of activated carbons from wheat using phosphoric acid activation[J]. Adv Environ Res, 1999, 3(3):333–342.
    [43] Girgis BS, Ishak MF. Activated carbon from cotton stalks by impregnation with phosphoric acid[J]. Mater Lett, 1999, 39:107–114.
    [44] Freeman JJ, Gimblett FGR, Roberts RA, Sing KSW. Studies of activated charcoal cloth III: Mesopore development heterogeinduced by phosphate impregnants[J]. Carbon,1988, 26(1):7–11.
    [45] Freeman JJ, Gimblett FGR. Studies of activated charcoal cloth IV: Influence of phosphate impregnants on the rate of activation in carbon dioxide gas[J]. Carbon, 1988, 26(4):501–505.
    [46] Huidobro A, Pastor AC, Rodr′?guez-Reinoso F. Preparation of activated carbon cloth from viscous rayon IV: Chemical activation[J]. Carbon, 2001, 39:389–398.
    [47] Jagtoyen M, Thwaites M, Stencel J, McEnaney B, Derbyshire F. Adsorbent carbon synthesis from coals by phosphoric acid activation[J]. Carbon, 1992, 30(7):1089–1096.
    [48] Jagtoyen M, Groppo J, Derbyshire F. Activated carbons from bituminous coals by reaction with H3PO4: The influence of coal cleaning[J]. Fuel Process Technol, 1993, 34:85–96.
    [49] Stencel JM, Yang J, Neathery JK. Desulfurization of bituminous coals: fluidized bed gasification of coal/phos-concentraphoric acid mixtures[J]. Fuel Process Technol, 1995, 41:135–146.
    [50] El-Nabarawy T, Petro NS, El-Aziz SA. Adsorption characteristics of coal-based activated carbonsI:Adsorption of nitrogen and carbon dioxide[J]. Adsorpt Sci Technol, 1996, 13(3):177–186.
    [51] Carrasco-Mar′?n F, Alvarez-Merino MA, Moreno-Castilla C. Microporous activated carbons from a bituminous coal[J]. Fuel, 1996, 76(8):966–970.
    [52] Teng H, Yeh TS, Hsu LY. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon, 1998, 36(9):1387–1395.
    [53] Toles C, Rimmer S, Hower JC. Production of activated carbons from a Washington lignite using phosphoric acid activation. Carbon, 1996:34(11):1419–26.
    [54] Ahmadpour A, Do D. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon, 1997, 35:1723-1732.
    [55] M.A. Lillo-Rodenas, J.P.Marco-Lozar,D. Cazorla-Amoros,A. Linares-Solano,Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide[J]. J. Anal. Appl. Pyrolysis, 2007, 80: 166–174.
    [56] A.P. Carvalho, M. Gomes, A.S. Mestre, J. Pires, B.M. Carvalho, Activated carbons from cork waste by chemical activation with K2CO3: application to adsorption of natural gas components[J], Carbon, 2004,42: 672–674.
    [57] M.L. Martinez, M.M. Torres, C.A. Guzemam, D.M.Maestri, Preparation and characteristics of activated carbon from olive stones and walnut shells[J], Ind. Crops Prod, 2006, 23: 23–28.
    [58] Y. Sudaryanto, S.B. Hartono, W. Irawaty, H. Hindarso, S. Ismadji, High surface area activated carbon prepared fromcassava peel by chemical activation, Bioresour[J]. Technol, 2006,97(5): 734–739.
    [59]张晓昕,郭树才,邓贻钊.高比表面积活性炭的制备[J].材料科学与工程,1996,14 (4):34-37.
    [60]李志贤.木棉纤维及其应用[J],山东纺织科技, 2006, 3:52-54.
    [61] Mansou S H . Kapok[J]. Journal of Applied Polymer Science, 2006(06).
    [62]肖红,于伟东,施楣梧.木棉纤维应用前景[J],东华大学学报, 2005(02):121-125.
    [63]李秉让.木棉(大百科全书纺织卷) [M], 1984,北京:中国大百科全书出版社.
    [64] Keko Hori, Maxima E. Flavier, Shigenori Kuga, Thi Bach Tuyet Lam, Kenji Iiyama. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application[J]. The Japan Wood Research Society, 2000, 46:401-404.
    [65]王元庆,周美华.木棉基活性炭纤维的结构与吸附性能[J].合成纤维工业, 2009, 32 (3) : 11-14.
    [66]荣达,周美华.木棉基活性炭纤维吸附性能的研究[J].环境工程学报, 2009,3(8):17-20.
    [67]江燕斌,钱宇,黄理纳等.炼油碱渣废水处理技术萃取脱酚试验研究[J] .化学工程, 2000, 28 (5): 39-41.
    [68]殷中意,郑旭煦,向夕品等.固定相络合萃取剂处理水中苯酚的性能研究[J].重庆环境科学, 2002, 24(5): 45-47.
    [69]夏北成.环境污染物生物降解[ M],北京:化学工业出版社, 2002.
    [70]张金利,李韦华,袁兵.生物流化床法处理高浓度含酚废水的研究[J].化学反应工程与工艺, 2001, 17( 2):148-152.
    [71]王绍洪,王红军,徐志康等.膜萃取器设计及应用研究进展[J].膜科学与技术, 2002, 22(1):39-42.
    [72]张风君,林学任,刘虹等.苯酚的膜蒸馏及结晶回收处理研究[J].水处理技术, 2002, 28(3) : 137-139.
    [73]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M ],北京:化学工业出版社, 2002.
    [74] HaagW R, Yao C C D1 Rate constants for reaction of hydroxyl radicals with several drinking waster contam inants [J ]. Environ Sci Technol, 1992, 26: 1005-1013.
    [75] Kuo W g. Decolorizing dye waste water with Fenton’s reagent [J ]. Water Res, 1992, 26: 88-886.
    [76]邓霞,李多松,李艳芬等.苯酚:苯酚废水的高级氧化处理技术[J].环保科技, 2008, 24(1):37-42.
    [77] Comninellis Ch, Pulgarin C. Anodic Oxidation of Phenol for waste water Tratment [J ]. App lied Electro chemistry, 1991, 21: 703-708.
    [78] Belhadj N, Savall A. Electrochemical Degradation of Phenol in A queous Solution on B ismuth Doped Lead Dioxide: A Comparison of the Activities of Various Electrode Formulations [J]. Appl Electro chem, 1999, 29: 277-283.
    [79]王怡中,胡春,汤鸿霄.在TiO2催化剂上苯酚光催化氧化反应研究[J].环境科学学报, 1995, 15 (4): 472-479.
    [80] Zhang H. Regeneration of exhausted activated carbon by electrochemical method [J]. Chem ical Engineering Journal, 2002, 85: 81-85.
    [81] Dubey A, RivesV, Kannan S. Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu, Ni and Al [J]. Journal ofMolecular CatalysisA: chemical, 2002, 181: 151-160.
    [82] Zhu K Z, L iu C B, Ye X K, et al. Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation [J]. Appl Catal A: General, 1998, 168: 365-372.
    [83]陈春霞,徐成华,冯良荣. CuO/纳米载体催化苯酚羟基化反应[J].合成化学, 2005,13(5):454-457.
    [84]雷智平,刘振宇,郭彦霞. Cu-Ce/AC吸附-催化剂对所吸附苯酚的催化氧化行为的研究[J].燃料化学学报, 2009,37(1): 93-97.
    [85] Rey-MayLiou, Shih-Hsiung Chen. CuO impregnated activated carbon for catalytic wet per-oxide oxidation of phenol [J]. Journal of Hazardous Materials, 2009, 172: 498-506.
    [86]杨南如,岳文海.无机非金属材料图谱手册[M].武汉工业大学出版社, 2000.
    [87]李虬,陈惠明.木棉科植物引种及繁殖研究[J],广东园林, 1996,4:10-13.
    [88]肖红.木棉纤维结构和性能及其集合体的浸润与浮力特征研究[D], 2005.
    [89] Sumnonu O k, Abdullahl D. Charactertrization of Fibers from the Plant Ceiba pentandra [J], J.Text. Inst, 1981, 2:273-274.
    [90] Kunio Nakamura. Studies on bound water of cellulose by differential scanning calorimetry[J].Textilc Res.J, 1981,51:607-613.
    [91]肖红,于伟东,施楣梧.木棉纤维的基本结构和性能[J].纺织学报,2005, 26(4):4-6.
    [92]王丹军,郭莉,李东升等. CuO纳米粒子的谱学特性研究[J].光谱学与光谱分析, 2008,4:788-792.
    [93] J.K.Kim, I.S. Metcalfe. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts[J]. Chemosphere, 2007, 69(5): 689-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700