多功能纳米结构材料的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对介孔金属复合物纳米结构和磁性核/壳纳米结构材料的合成与应用开展了基础研究。介孔材料由于具有高的比表面积、可调控的孔径大小、孔道的长程有序排列而被广泛地研究。而多功能的磁性核/壳纳米结构材料由于其独特的性能在生物医学临床诊断和综合治疗方面具有潜在的应用前景。
     在论文第一部分(第三章),我们采用纳米硬模板技术,以大孔径的3D-KIT-6 (Iα3d)为模板,水为溶剂合成了介孔3D-NiFe2O4 Iα3d)铁氧体材料。模板的介孔孔道起了纳米反应器的作用,水作为单一溶剂更绿色环保。合成材料比表面积达到121m2/g,平均孔径大小为3nm,平均孔壁厚度为7nm,在磁学性质上表现为和纳米磁体一致的超顺磁性。将介孔3D-NiFe2O4 (Iα3d)铁氧体材料作为先进的微波吸收材料,发现当其匹配厚度为3mm时,在高频X波段(8.5~12.5GHz)范围有较强的吸收,在12GHz吸收强度达到-22.5dB。因此其可以作为先进的微波吸收材料应用在电子、军事隐身等各个高科技领域。
     在论文第二部分(第四章),我们采用介孔Co3O4(Ia3d)为前驱体,利用连续原位生成的金属Co0纳米颗粒为催化剂,通过Boudouard歧化反应,合成了石墨包覆金属钴核/壳结构纳米胶囊材料。和已报道的研究结果不同的是,在合成中并没有发现有副产物碳纳米管和碳纳米纤维的存在。高度结晶的金属钴主要是以六方晶相存在,平均粒径大小为25nm,被8~9nm的石墨壳层所包覆,磁饱和量达到85emu/g。原位生成的石墨壳层不仅保护金属钴核使其免受外界化学环境的进攻,而且提高了其生物兼容性和官能化程度。将拟平面分子二甲酚橙(XO)作为模型分子,研究证实XO可以与石墨壳层发生π-π堆叠耦合作用。通过模型分子实验说明该材料可以应用在生物医学的药物靶向治疗方面。同时,我们也用相同的方法合成了石墨包覆合金(Fe2Co、Fe0.64Ni0.36)的核壳纳米结构材料。
Multi-functional nanostructured materials including mesoporous metal oxides and core/shell hybrid materials were deeply investigated here. As well known, mesoporous materials have high surface area, tunable pore size and periodic pore arrangement and have been widely studied. On the other hand, multi-functional core/shell magnetic particles have their own advantages because they can provide many exciting opportunities in biomedical studies for integrated diagnosis and therapeutic applications.
     In chapter three, ordered mesoporous nickel iron spinel has been synthesized by using KIT-6 as template through nanocasting technique. The nanospace in the template material plays as a nano-reactor, water is the only solvent used in this method, which is environmentally friendly. The characteristic results from X-ray diffraction (XRD) analysis, energy-dispersive X-ray spectrometry (XPS), transmission electron microscopy (TEM), high resolution scanning electron microscopy (HR-SEM), nitrogen sorption analysis and magnetization measurements demonstrated the successful synthesis of ordered mesoporous nickel iron spinel with large surface area (121 m2g-1) and superparamagnetism. Using it as a microwave absorption material, the maximum reflection loss was -22.5dB that was obtained at 12GHz with the matching thickness of 3.5mm.
     In chapter four, hermetically-sealed graphite-encapsulated cobalt core/shell nanostructures have been prepared by the CO Boudouard reaction using in situ generated cobalt as the catalyst. Only core/shell nanostructures were obtained, rather than a mixture of cobalt nanoparticles with carbon nanotubes or nanofibers. The magnetic cobalt nanoparticles are highly crystallized with a hexagonal-close packed crystal phase (average diameter of ca.25nm) and coated with an 8~9nm thick graphitic shell. The nanostructures have a high saturation magnetization of 85emu/g and can be easily separated by an external magnet. The creation of the hermetically-sealed graphitic shell not only keeps the magnetic cobalt nanoparticles from reacting with strong mineral acids, but also has biocompatibility and makes further functionization easy. A pseudo-planar aromatic molecule, xylenol orange, was used as the model molecule because it can be absorbed on the graphitic shell mainly byπ-πstacking interaction. This was confirmed by Raman and ultraviolet-visible spectroscopy. Graphite encapsulated Fe2Co and Fe0.64Ni0.36 alloy core/shell nanostructures were also fabricated by this method.
引文
[1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359(6397):710-712.
    [2]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society.1992, 114(39):10834-10843.
    [3]Yue W, Zhou W. Crystalline mesoporous metal oxide. Progress in Natural Science.2008,18: 1329-1338.
    [4]Shi J L, Hua Z L, Zhang L -X. Nanocomposites from ordered mesoporous materials. Journal of Material Chemistry.2004,14:795-806.
    [5]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials liquid-crystal templating versus intercalation of layered silicates. Chemistry of materials. 1994,6(11):2070-2077.
    [6]Yang P D, Zhao D Y, Marglese D I, et al. Generalizd synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature.1998,396(6067):152-155.
    [7]Grosso D, Cagnol F, Soler-Illia G J, et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater.2004,14(4):309-322.
    [8]Xue C F, Tu B, Zhao D Y. Evaporation-induced coating and self-Assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv Funct Mater.2008,18:3914-3921.
    [9]Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem.2005,15(12):1217-1231.
    [10]Yang C M, Smatt J H, Zibrowius B, et al. Chemical removal of organic polymers from highly porous sol-gel-derived silica monoliths. New J Chem.2004,28:1520-1525.
    [11]Yang H, Shi Q, Liu X, et al. Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Iα3d symmetry. Chem Commun.2002:2842-2843.
    [12]Sonnenburg K, Adelhelm P, Antonietti M, et al. Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques. PCCP 2006,8, 3561-3566.
    [13]Schumacher K, Grun M, Unger K K. Novel synthesis of spherical MCM-48. Microporous Mesoporous Mater.1999,27(2~3):201-206.
    [14]Dong A, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates. J Am Chem Soc.2003,125(17):4976-4978.
    [15]Schulz-Ekloff G, Rathousky J, Zukal A, et al. Mesoporous silica with controlled porous structure and regular morphology. J Inorg Mater.1999,1(1):97-102.
    [16]Smatt, J -H, Schuwer N, Jarn M, et al. Microporous Mesoporous Mater.2007, doi:10.1016/j.micromeso.2007.10.003.
    [17]Tian B, Liu X, Yu C, et al. Microwave assisted template removal of siliceous porous materials. Chem Commun.2002:1186-1187.
    [18]Yang C M, Zibrowius B, Schmidt W, et al. Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem Mater.2004,16(15):2918-2925.
    [19]Wang Y Q, Yang C M, Zibrowius B, et al. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Iα3d structure. Chem Mater.2003,15(26): 5029-5035.
    [20]Zhu K, Yue B, Zhou W, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem Commun.2003:98-99.
    [21]Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas:In situ investigation using synchrotron radiation. Chem Mater. 2004,16(9):1813-1821.
    [22]Lopes I, El Hassan N, Guerba H. Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chem Mater.2006,18(25):5826-5828.
    [23]Kang H, Jun Y W, Park J I, et al. Synthesis of porous palladium superlattice nanoballs and nanowires. Chem Mater.2000,12:3530-3532.
    [24]Parmentier J, Saadhallah S, Reda M, et al. New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. J J Phys Chem Solids.2004,65(2-3):139-146.
    [25]Parmentier J, Vix-Guterl C, Saadallah S, et al. Organised mesoporous silica synthesised by nanoscale duplication of an ordered mesoporous carbon material using a gas phase process. Chem Lett.2003,32:262-263.
    [26]Yue W, Hill A H, Harrison A, et al., Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chem Commun.2007:2518-2520.
    [27]Yang H, Shi Q, Tian B, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc. 2003,125(16):4724-4725.
    [28]Tian B, Liu X, Yang H, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica, Adv Mater.2003,15(16): 1370-1374.
    [29]Tian B, Liu X, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc.2004,126(3): 865-875.
    [30]Wang Y Q, Yang C M, Zibrowius B, et al. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Iα3d structure. Chem Mater.2003,15(26): 5029-5035.
    [31]Zhou W, Zhu K, Yue B, et al. HRTEM of negative replicas of mesoporous silica. Stud Surf Sci Catal 2004,154(part 1):924-930.
    [32]Jiao K, Zhang B, Yue B, et al. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem Commun.2005:5618-5620.
    [33]Smatt J H, Spliethoff B, Rosenholm J B, et al. Hierachically porous nanocrystalline cobalt oxide monoliths through nanocasting. Chem Commun.2004:2188-2189.
    [34]Smatt J H, Weidenthaler C, Rosen-holm J B, et al. Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem Mater.2006,18(6):1443-1450.
    [35]Shen W, Dong X, Zhu Y, et al. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Microporous Mesoporous Mater.2006,85(1~2):157-162.
    [36]Shen W H, Shi J L, Chen H R, et al. Synthesis and CO oxidation catalytic character of high surface area ruthenium dioxide replicated by cubic mesoporous silica. Chem Lett.2005, 34(3):390-391,
    [37]Wang Y G, Ren J W, Wang Y Q, et al. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. J Phys Chem C.2008,112:15293-15298.
    [38]Tiemann M. Repeated templating. Chem Mater.2007,20(3):961-971.
    [39]Peng Z, Shi Z, Liu M L. Mesoporous Sn-TiO2 composite electrodes for lithium batteries. Chemical Communications.2000:2125-2126.
    [40]Mamak M, Coombs N, Ozub G. Mesoporous yttria-zirconia and metal yttria-zirconia solid solutions for fuel cells. Advanced Materials.2000,12(3):198-202.
    [41]Wang Y Q, Chen S G, Tang X H, et al. Mesoporous titanium dioxide sonochemical synthesis and application in dye-sensitized solar cells. Journal of Materials Chemistry 2001,11(2): 521-526.
    [42]Liu P, Lee S H, Tracy E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide, Advanced Materials.2002,14(1):27-30.
    [43]Emons T T, Li J, Nazar L F. Synthesis and characterization of mesoporous indium tin oxide possessing an electronically conductive framework. Journal of the American Chemical Society.2002,124(29):8516-8517.
    [44]He X, Trudeau, Antonelli D. Electronic properties of novel mixed oxidation-state bis-arene chromium nanowires supported by a mesoporous niobium oxide host, Advanced Materials 2000,12(14):1036-1040.
    [45]Ye B, Trudeau M, Antonelli D. Synthesis and electronic properties of potassium fulleride nanowires in a mesoporous niobium oxide host. Advanced Materials.2001,13(1):29-33.
    [46]Kratschmer W, Lamb L D, Fostiropoulos, et al. Solid C-60-a new form of carbon. Nature 1990,347:354-358.
    [47]Scott J H J, Majetich S A. Morphology, structure, and growth of nanopartilces produced in a carbon-arc. Phys Rev B.1995,52:12564-12571.
    [48]Wang Z H, Choi C J, Kim B K, et al. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vap-condensation process. Carbon.2003,41:1751-1758.
    [49]Wei X W, Zhu G X, Xia C J, et al. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon. Nanotechnology.2006,17:4307-4311.
    [50]Nishijo J, Okabe C, Oishi O, et al. Synthesis structures and magnetic properties of carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide. Carbon. 2006,44:2943-2949.
    [51]Bystrzejewski M, Rummeli M H. Novel nanomaterials for prospective biomedical applications:synthesis, structure and toxicity. Pol J Chem.2007,81:1219-1255.
    [52]Nikitenko S I, Koltypin Y, Palchik O, et al. Synthesis of highly magnetic air-stable iron rion carbide nanocrystalline particles by using power ultrasound. Angew Chem Int Ed Engl.2001, 40:4447-9.
    [53]Geng J F, Jeffersin D A, Johson B F G. Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chem Commun.2004,21: 2442-2443.
    [54]Lu A H, Li W C, Matoussvitch N, et al Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun.2005,1:98-100.
    [55]Baranauskas V V, Zalich M A, Saunders M, et al, Poly(styrene-b-4-vinylphenoxyphthalonitrile)-coablt complexes and their conversion to oxidatively stable cobalt nanoparticles. Chem Mater.2005,17:5246-5254.
    [56]Dyke C A, Tour J M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano lett.2003,3:1215-1218.
    [57]Tiemann M. Repeated templating. Chem Mater.2007,20(3):961-971.
    [58]Grass R N, Athanassiou E K, Stark W J, et al. Covalently functionlized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed Engl.2007, 46:4909-4912.
    [59]Athanassiou E K, Grass R N, Stark W J, et al. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology.2006,17:1668-1673.
    [60]Stark W J, madler L, Maciejewski M, et al. Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. Chem Commun.2003,5:588-589.
    [61]Schatz A, Grass R N, Stark W J, et al. TEMPO supported on magnetic C/Co-nanoparticles:a highly active and recyclable organocatalyst. Chemistry.2008,14,8261-8266.
    [62]Tan C G, Grass R N. Suzuki cross-coupling reactions on the surface of carbon-coated cobalt: expanding the applicability of core-shell nano-magnets. Chem Commun.2008:4297-4299.
    [63]Zigeuner R E, riesenberg R, Pohla H, et al. Isolation of circulating cancers from whole blood by immunomagnetic cell enrichment and uncenriched immunocytochemistry in vito. J Urol. 2003,169:701-705.
    [64]Widder K J, Senyei A E, Scarpelli D G. Magnetic microspheres-model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med.1978,158:141-146.
    [65]Hafeli U, Schutt W, Teller J, et al. Scientfic and clinical applications of magnetic carriers. Plenum press NY USA.1997,501-506.
    [66]Xu Y, Mahmood M, Li Z R, et al. Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therpy. Nanotechnology.2008,19:9.
    [67]Weber W, Lienhart C, Daoud-EI Baba M, et al. Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles. J Biotechnol.2009,141: 118-122.
    [68]Lubbe A S, Bergemann C. Selected preclinical and first clinical experiences with magnetically targeted 4'-epidoxorubicin in patients with advanced solid tumors. Presents at: 1st International Conference on Scientific and Clinical applications of Magnetic Carriers, Rostock, Germary,5-7 September 1996.
    [69]Lubbe A S, Alexiou C, Bergermann C. Clinical applications of magnetic drug targeting. J Surg Res.2001,95:200-6.
    [70]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis protection functionalization and application. Angew Chem Int Ed Engl.2007,46:1222-1224.
    [71]Zhao H, Sun X, Mao C, et al., Preparation and microwave-absorbing properties of NiFe2O4-polystyrene composites, Physical B 2009,404(1),69-72.
    [72]Yusoff A N, Abdullah M H, Ahmad S H, et al., Electromagnetic and absorption properties of some microwave absorbers, J Appl Phys 2002,92,876.
    [73]Jauchem J R, Ryan K L, Frei M R, Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats, Bioelectromagnetics 2000,21,159.
    [74]Lai H, Singh N. P, Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells, Bioelectromagnetics 1997,18(6),446-454.
    [75]Richter E, Berman T, Ben-Michael E, et al., Cancer in radar technicians exposed to radiofrequency/microwave radiation:sentinel episodes, Int J Occup Environ Health 2000, 6(3),187-193.
    [76]Che R C, Zhi C Y, Liang C Y, et al., Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite, Appl Phys Lett 2006,88,033105.
    [77]Fu W, Liu S, Fan W, et al., Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property, Journal of Magnetism and Magnetic Materials 2007,316(1), 54-58.
    [78]Lu A H, F. Schuth, Nanocasting:A Versatile Strategy for Creating Nanostructured Porous Materials, Angew Chem Int Ed 2006,42(14),1793-1805.
    [79]Zhu J, Gao Q, Mesoporous MCo2O4 (M=Cu, Mn and Ni) spinels:Structural replication characterization and catalytic application in CO oxidation, Microporous Mesoporous Mater 2009,124(1-3),144-152.
    [80]Manova E, Tsoncheva T, Estournes C, et al., Nanosized iron and iron-cobalt spinel oxides as catalysts for methanol decomposition, Applied Catalysis A:General 2006,300(2),170-180.
    [81]Yang H, Zhao D, Synthesis of replica mesostructures by the nanocasting strategy, J Mater Chem 2005,15,1217-1231.
    [82]Tiemann M, Repeated templating, Chem Mater 2007,20(3),961-971.
    [83]Kluson P, Kacer P, Cajthaml T, et al., Preparation of titania mesoporous materials using a surfactant mediated sol-gel method, J Mater Chem 2001,11,644-651.
    [84]Ryoo R, Joo S H, Jun S, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, The Journal of Physical Chemistry B 1999, 103(37),7743-7746.
    [85]Jun S, Joo S H, Ryoo R, Synthesis of New, Nanoporous carbon with hexagonally ordered mesostructure, JACS 2000,122(43),10712-10713.
    [86]Gu M, Yue B, Bao R L, et al., Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M=Ni, Mg, Co), Mater Res Bull 2009,44(6),1422-1427.
    [87]Sun Y Y, Ji G B, Zheng M B, et al., Synthesis and magnetic properties of crystalline mesoporous CoFe204 with large specific surface area, J Mater Chem 2010,20(5),945-952.
    [88]Imperor-Clerc M, Bazin D, Appay M D, et al., Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas:In Situ Investigation Using Synchrotron Radiation, Chem Mater 2004,16(9),1813-1821.
    [89]Kleitz F, Choi S H,, Ryoo R, Cubic laid large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem Commun 2003, 2136-2137.
    [90]Li Y P, Li G S, Smith-Jr R L, et al., Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica, Chem Mater 2000,12,3705-3714.
    [91]Zhang X H, Ho M K, Wu A -H, et al., Hydrothermal microemulsion synthesis of oxidatively stable cobalt nanocrystals encapsulated in surfactant/polymer complex shells, Langmuir 2010,26(8),6009-6014.
    [92]Acher O, Adenot A L, Bounds on the dynamic properties of magnetic materials, Physical review B 2000,62(17),11324-11327.
    [93]M. Z. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. H. Ge, W.A. Hines, J. T. Budnick and G. W. Taylor, Appl. Phys. Lett.,2002,80,4404.
    [94]Naito Y, Suetake K, Application of ferrite to electromagnetic wave absorber and its characteristics, IEEE Trans Microwave Theory Tech 1971,19(1),65-72.
    [95]W. P. Halperin. Revs. Mod. Phys.,1988,58,532.
    [96]X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, B. Lv, J.P. Lei and C.J. Choi, J. Phys. D:Appl. Phys.,2007,40,5383.
    [97]de la pena O'shea VA, Campos-Martin JM, Fierro JLG. Strong enhancement of the Fischer-Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catal Comm. 2004,5(10):635-638.
    [98]Guo X, Chen F. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol.2005,39(17):6808-1688.
    [99]Liu XG, Ou ZQ, Geng DY, Han Z, Jiang JJ, Liu W, et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon.2010,48(3): 891-897.
    [100]Hayashi T, Hirono S, Tomita M, Umemura S. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature.1996,381:772-774.
    [101]Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science.2003,300(5622): 1130-1133.
    [102]Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater 2009,21(21),2133-2148.
    [103]Fortin J-P, Wilhelm C, Servais J, Menager C, Bacri J-M, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 2007, 129(9):2628-2635.
    [104]Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Delivery Rev.2010,62(3):284-304.
    [105]Leroux J-C. Injectable nanocarries for biodetoxification. Nat Nanotechnology.2007,2: 679-684.
    [106]Dobson J. Gene therapy progress and prospect:magnetic nanoparticle-based gene delivery. Gene Ther.2006,13(4):283-287.
    [107]Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc.2004, 126(11):3392-3393.
    [108]Lu A-H, Salabas EL, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew Chem Int Ed.2007,46(8):1222-1244.
    [109]Puntes VF, Krishnan MK, Alivisator AP. Colloidal nanocrystal shape and size control:The case of cobalt. Science.2001,291(5511):2115-2117.
    [110]Sounderya N, Zhang Y. Use of core/shell structured nanoparticles for biomedicine application. Recent Pat Biomed Eng.2008,1(1):34-42.
    [111]El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, et al. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon.2009,47(12):2821-2828.
    [112]Agustin M, Prieto G. The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catal Commun.2007,8(10): 1479-1486.
    [113]Behrens S, Bonnemann H, Matoussevitch N, Dinjus E, Modrow H, Palina N, et al. Air stable Co-, Fe-, and Fe/Co-nanoparticles and ferrofluids. Phys Chem (Munich).2006,220(1):3-40.
    [114]Cheng. G, Dennis CL, Shull RD, Walker ARH. Influence of the colloidal environment on the magnetic behavior of cobalt nanoparticles. Langmuir.2007,23(23):11740-11746.
    [115]Zalich MA, Vadala ML, Riffle JS, Saunders M, Pierre TGS. Structural and magnetic properties of cobalt nanoparticles encased in siliceous shells. Chem Mater.2007,19(26): 6597-6604.
    [116]Flahaut E, Agnoli F, Sloan J, O'Connor C, Green MLH. CCVD synthesis and characterization of cobalt-encapsulated nanoparticles. Chem Mater.2002; 14(6):2553-2558.
    [117]Lu A-H, Li W-C, Matoussevitch N, Spliethoff B, Bonnemann H, Schuth F. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun.2005,98-100.
    [118]Chen K, Wang C, Ma D, Huang W, Bao X. Graphitic carbon nanostructures via a facile microwave-induced solid-state process. Chem Commun.2008,2765-2767.
    [119]Geng JF, Jefferson DA, Johnson BFG. Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chem Commun.2004, 2442-2443.
    [120]Ye EY, Liu BH, Fan WF. Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in Hexane. Chem Mater.2007,19(15): 3845-3849.
    [121]Liu S-H, Gao HT, Ye EY, Low M, Lim SH, Zhang S-Y. Graphitically encapsulated cobalt nanocrystal assemblies. Chem Commun.2010,47-49.
    [122]Sharma. A, Nakagawa H, Miura K. A method to prepare a cobalt-carbon composite as a potential magnetic carrier for a drug delivery system. Carbon.2006; 44:2090-2092.
    [123]de la Pena O'Shea VA, de la Piscina PR, Horns N, Aromi G, Fierro JLG. Development of hexagonal closed-packed cobalt nanoparticles stable at high temperature. Chem Mater.2009, 21(23):5637-5643.
    [124]Borysiuk J, Grabias A, Szczytko J, Bystrzejewski M, Twardowski A, Lange H. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon.2008,46(13):1693-1701.
    [125]Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine Chemicals. Angew Chem Int Edit.2004,43(42):5645-5649.
    [126]Wang YQ, Yang C-M, Schmidt W, Spliethoff B, Bill E, Schuth F. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic laid mesoporous silica. Adv Mater.2005,17(1):53-56.
    [127]Liu S, Zhu J, Mastai Y, Felner I, Gedanken A. Preparation and characteristics of carbon nanotubes filled with cobalt. Chem Mater.2000,12(8):2205-2211.
    [128]Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon.2000,38(2): 305-328.
    [129]Host JJ, Teng MH, Elliot BR, Hwang J-H, Mason TO, Johnson DL. Graphite encapsulated nanocrystals produced using a low carbon:metal ratio. J Mater Res.1997; 12 (5):1268-1273.
    [130]Jiao J, Seraphin S, Wang XK, Withers JC. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J Appl Phys.1996,80(1):103-108.
    [131]Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun.2003,927-34.
    [132]Datsyuk V, Kalyva M, Papagelis K, Parthenions J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon.2008,46(6):833-840.
    [133]Shen K, Curran S, Xu H, Rogelj S, Jiang Y, Dewald J. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion:a combined TEM and resonant micro-raman spectroscopy study. J Phys Chem B.2005,109(10):4455-4463.
    [134]Guerret-Plecourt C, Le Bouar Y, Lolseau A, Pascard H. Relation between metal electronic-structure and morphology of metal-compounds inside carbon nanotubes. Nature. 1994,372:761-765.
    [135]Tomita S, Hikita M, Fujii M, Hayashi A, Yamamoto K. A new and simple method for thin graphitic coating of magnetic-metal nanoparticles. Chem Phys Lett.2000,316(5-6): 361-364.
    [136]Kuznetsov VL, Usol'tseva AN, Butenko YV, Mechanism of coking on metal on metal catalyst surfaces:Ⅰ. Thermodynamic analysis of nucleation. Kinetics Catal.2003,44(5): 726-734.
    [137]Orikasa H, Inokuma N, Ittisanronnachai S, Wang XH, Kitakami O, Kyotani T. Template synthesis of water-dispersible and magnetically responsive carbon nano test tubes. Chem Commun.2008,2215-2217.
    [138]Ittisanronnachai S, Orikasa H, Inokuma N, Uozu Y, Kyotani T. Small molecule delivery using carbon nano-test-tubes. Carbon.2008,46:1361-1367.
    [139]Lee JU, Huh J, Kim KH, Park C, Jo WH. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly (ethylene glycol). Carbon.2007,45(5):1051-1057.
    [140]Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc.2001,123(16):3838-3839.
    [141]Seo W S, Lee J H, Sun X M, et al. FeCo/graphitic shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature Materials 2006,5:971-976.
    [142]Ding F, Rosen A, Campbell E E B, et al. Graphitic encapsulation of catalyst particles in carbon nanotube production. J Phys Chem B.2006,110:7666-7670.
    [143]El-Gendy A A, Ibrahim E M M, Khavrus V O, et al. The synthesis of carbon coated Fe, Co, Ni nanoparticles and an examination of their magnetic properties. Carbon.2009, 47(12):2821-2828.
    [144]Jiao F, Jumas J -C, Womes M, et al. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J Am Chem Soc.2006, 128:12905-12909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700