尖锥八面体Fe_3O_4及六角片状Ba(Me)_xCo_(2-2x)Fe_(16)O_(27)微波吸收性能凝聚态物理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧体是一类传统的吸波材料,但存在密度大、微波吸收频带窄的问题,因此,铁氧体吸波材料的改性仍然是目前的一个研究热点。对铁氧体改性除掺杂和复合等途径外,颗粒形貌特殊化对其微波吸收特性的改善也有重要作用。本文研究了尖锥八面体形貌Fe304和六角片状W型掺杂铁氧体的微波吸收特性。
     用水热法制备了Fe304晶粉,用X射线衍射仪(XRD)和扫描电子显微镜(SEM)、红外光谱仪(FT-IR)、能谱仪(EDS)对产物结构、形貌及成分进行了表征,分析了颗粒形貌形成机制。用微波矢量网络分析仪测试了样品在2-18GHz微波频率范围内的复介电常数和复磁导率,计算了微波反射率,探讨了材料的微波损耗机制。结果表明:在两种不同水热反应条件下,分别得到颗粒形貌呈尖锥八面体和球状的尖晶石型结构的Fe304粉晶;颗粒形状各向异性有利于材料的微波吸收,尖锥微八面体Fe304是一种低反射率宽带微波吸收材料,其吸收特性优于球形。对反应12小时的尖锥形Fe304样品,厚度2.8mm,7.1GHz频率位置吸收峰值为35dB,大于10dB吸收带宽为7.9GHz;该样品在低频段(2~13GHz)微波吸收主要源于磁损耗兼具介电损耗,在高频段(13-18GHz)微波吸收主要源于介电损耗且磁损耗弱。
     用溶胶-凝胶法制备了Ba(Me)xCo2-2xFe16O27 (Me=MnCu、CuZn,x=0.0,0.1,0.2,0.3,0.4,0.5)粉体。用差示扫描量热-热重(DSC-TGA)、XRD、SEM、FT-IR对样品结构、形貌及形成过程进行了表征。用微波矢量网络分析仪测试了该样品在2-18 GHz微波频率范围的电磁参数,根据测量数据计算了电磁损耗角正切及微波反射率与频率的关系,探讨了该材料的微波吸收性能与电磁损耗机理。研究结果表明:Ba(Me)xCo2-2XFe16O27样品形成分为凝胶吸附水蒸发和熔融、热分解、晶型形成等阶段;在1235℃以上的温度下煅烧4个小时的Ba(Me)xCo2-2xFe16O27能形成较单一的W型钡铁氧体结构,粉晶均呈微米级六角片状形貌;当Ba(MnCu)xCo2-2xFe16O27样品厚度为2.3mm、x=0.3时,10GHz频率位置吸收峰为24dB,10 dB以上频带宽度达8.8GHz;当Ba(CuZn)xCo2-2xFe16O27样品厚度为2.3mm、x=0.3时,10GHz频率位置吸收峰为17dB,10 dB以上频带宽度达7.6GHz;Ba(Me)xCo2-2xFe16O27的微波吸收主要来自畴壁共振、磁化驰豫和自然共振引起的磁损耗,介电损耗较弱。
Ferrite is a kind of traditional material with shortcomings of high density and narrow band for absorbing electromagnetic wave, so that the study of modified ferrite is still an active topic. In addition to modification methods such as doping and compounding, special particle morphology has an important effect on the improvement of ferrite's microwave absorption properties. In this thesis, the microwave absorption properties of spinel ferrite Fe3O4 with sharp octahedral morphology and doped W-type ferrite with hexagonal flake morphology were researched.
     Fe3O4 powder samples were synthesized by hydrothermal method. The crystal structure, morphology and composition of these samples were characterized by X-ray diffraction(XRD), fourier transform infrared spectrometer(FT-IR), scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS), and the formation mechanism of particle morphology in the samples was discussed. Their complex permittivity and complex permeability were measured by microwave vector network analyzer in the frequency range from 2 to 18 GHz, the reflection coefficient and loss tangent were calculated according to measurements, and the microwave absorbing mechanism was discussed. The results showed that, two crystalline powders of Fe3O4 with sharp octahedral and spherical morphology were got in two different hydrothermal reaction conditions respectively, and particle shape anisotropy of the material was so helpful to its microwave absorption that sharp octahedral Fe3O4 was a broadband microwave absorbing material with low reflectivity, which is better than spherical. The microwave absorption peak of sharp octahedral Fe3O4 was 35dB at 7.1 GHz frequency and its absorption bandwidth above 10dB was 7.9GHz for the sample with 2.8 mm thickness and hydrothermal growth of 12 hours. The microwave absorption was resulted in magnetic loss mainly as well as dielectric loss secondly in the low-frequency range of 2-13 GHz, and dielectric loss mainly but magnetic loss weakly in the high-frequency range of 13-18 GHz.
     The crystalline powder samples of Ba(Me)xCo2-2xFe16O27 (Me =MnCu or CuZn, x=0.0,0.1,0.2,0.3,0.4,0.5) were prepared by sol-gel method. The crystal structure, particle morphology and formation of these samples were characterized by XRD, SEM, differential scanning calorimetry-thermal gravity analysis(DSC-TGA) and FT-IR. Their electromagnetic parameters were measured by microwave vector network analyzer in the frequency range from 2 to 18 GHz. The relationships between microwave reflectivity and frequency, between loss tangent and frequency were calculated according to the measurements. The microwave absorbing properties and electromagnetic loss mechanism of the material were studied. The results showed that the formation of Ba(Me)xCo2-2xFe16O27 samples went through several stages such as gel water evaporation and melting, thermal decomposition and crystalline growth, the samples calcined above 1235℃for 4 hours were single W phase ferrite and the particle morphology was micro-hexagonal flake shape. MnCu and CuZn doping were so helpful to improving microwave absorption of W type barium ferrite that the absorption peak of Ba(MnCu)xCo2-2xFe16O27 (x=0.3) with 2.3mm thickness was 24dB at 10GHz and its bandwidth above lOdB was 8.8 GHz, and the peak of Ba(CuZn)xCo2-2xFe16O27 (x=0.3) with 2.3mm was 17dB at 10GHz and its bandwidth was 7.6GHz. The microwave absorption of Ba(Me)xCo2-2xFe16O27 was resulted in magnetic loss mainly but dielectric loss weakly and the magnetic loss was caused by domain wall resonance, magnetization relaxation and natural resonance.
引文
[1]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004,268
    [2]周馨我.功能材料学[M].北京:北京理工大学出版社,2002,237-241
    [3]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004,194-200
    [4]Singh P, Babbar V K, Razdan A, et al. Complex permittivity, permeability, and x-band microwave absorption of CaCoTi ferrite composites[J]. J.Appl.Phys., 2000,87(9):4362-4365
    [5]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2003,10:378-417
    [6]徐文兰,沈学础.隐身技术和物理[M].物理,1995,24(5):29-295
    [7]Walser R M, Win W, Valanju P M. Shape-optimized Ferromagnetic Particles with Maximum Theoretical Microwave Susceptibility[J]. IEEE TRANSACTIONS ON MAGNETICS,1998,34, NO.4
    [8]Sharma R, Agarwala R C, Agarwala V. Development of radar absorbing nano crystals by microwave irradiation[J]. Materials Letters,2008,62:2233-2236
    [9]Mu G H, Chen N, Pan X F, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes[J]. Materials Letters,2008, 62:840-842
    [10]Wang Xian, Gong R Z, Li P G, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes[J]. Materials Science and Engineering A,2007,466:178-182
    [11]葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺,1996,5:42-49
    [12]都有为.铁氧体[M].江苏:江苏科学技术出版社,1996,98-99
    [13]Ma Fe, Huang J J, Li J G, Li Q. Microwave Properties of Sea-Urchin-Like Ni Nanoparticles[J]. J.Nanosci.Nanotech,2009,9(5):3219-3223(5)
    [14]Mu G H, Chen N, Pan X F, et al. Preparation and microwave absorption properties of barium ferrite nanorods[J]. Materials Letters,2008,62:840-842
    [15]Wei J, Liu J H, Li S M. Electromagnetic and microwave absorpyion properties of Fe3O4 magnetic film plated on hollow glass spheres[J]. Journal of Magnetism and Magnetic Matierials,2007,312:414-417
    [16]Nakamura T. Snoek's limit in high-freqency permeability of poly-crystalline Ni-Zn, Mg-Zn,and Ni-Zn-Cu spinel ferrite[J]. J.Appl. Phys.2000, 88(1):348-353
    [17]Li X A, Han X J, Tan Y J, et al. Preparation and microwave absorption properies of Ni-B alloy-coated Fe3O4 particles[J]. Jounal of Alloys and Compounds,2008,464:352-356
    [18]Wang Z Z, Bi H, Liu J, et al. Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite[J]. Journal of Magnetism and Magnetic Matierials,2008,320:2132-2139
    [19]Sharbati A, Choopani S, Azar A M, et al. Structure and electromagnetic behavior of nanocrystalline SrMgxZrxFe12-2xO19 in the 8-12GHz frequency range[J]. Solid State Communications.2010,150:2218-2222
    [20]Huang X G, Zhang J, Wang H Z, et al. Er3+-substituted W-type barium ferrite: preparation and electromagnetic properties [J]. Journal of rare earths.2010, 28(6):940-943
    [21]Meena R S, Bhattachrya S, Chatterjee R. Complex permittivity, permeability and microwave absorbing studies of (Co2-xMnx) U-type hexaferrite for X-band (8.2-12.4GHz)frequencies[J]. Materials Science and Engineering B.2010, 171:133-138
    [22]Gairola S P, Vermaa V, Singh A, Purohit L P, Kotnala R K. Modified composition of barium ferrite to act as a microwave absorber in X-band frequencies. [J]. Solid State Communication,2010,150(3),147:1-5
    [23]Bueno A R, Gregori M L, Nobrega M C S. Microwave-absorbing properties of Ni0.5-xZn0.5-xMe2XFe204(Me=Cu, Mn, Mg) ferrite-wax composite in X-band frequancies[J]. J.Magn.Magn.Mater.,2008,320:864-870
    [24]Nakamura T, Miyamoto T, Yamada Y. Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber[J]. J.Magn. Magn.Mater.,2003,256:340-347
    [25]Ghasemi A, Hossienpour A, Morisako A. Investigation of the microwave absorptive behavior of doped barium ferrites[J]. Materials & Design,2008, 29(1):112-117
    [26]Ghasemi A, Liu Xiaoxi, Morisako A. Magnetic and microwave absorption properties of BaFe12-x(Mn0.5Cu0.5Zr)x/2 O19 synthesized by sol-gel processing [J]. J. Magn.Magn.Mater.,2007,316:e105-1e108
    [27]Ghasemi A, Morisako A. Static and high frequency magnetic properties of Mn-Co-Zr substituted Ba-ferrite[J]. Journal of Alloys and Compounds,2008, 456:485-1491
    [28]Zhang H J, Liu Z C, Ma C L, et al. Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process [J]. Materials Science and Engineering,2002, B96:289-295
    [29]Narang S, Singh C, Bai Y, et al. Microstructure, hysteresis and microwave absorption analysis of Ba1-xSrxFe12O19 ferrite[J]. Materials Chemistry and Physics,2008,111 (2-3):225
    [30]Tabatabaie F, Fathi M H, Saatchi A, Ghasemi A. Microwave absorption properties of Mn- and Ti-doped strontium hexaferrite[J]. Journal of Alloys and Compounds,2009,470:332-335
    [31]Wang LX, Song J, et al. The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27 [J]. Journal of Alloys and Compounds,2009,481:863-866
    [32]Li Z W, Wu Y P, Lin G Q, et al. Static and dynamic magnetic properties of CoZn substituted Z-typebarium ferrite Ba3CoxZn2-xFe24O41 composites[J]. Journal of Magnetism and Magnetic Materials,2007,310:145-151
    [33]Bao J E, Zhou J, Yue Z X, Li LT, et al. Electrical and magnetic studies of Ba3Co2Mn12xFe23-12xO41 Z-type hexaferrites[J]. Materials Science and Engineering,2001, B84:252-257
    [34]施尔畏,陈之战,元如林,郑燕青,水热结晶学[M].北京:科学出版社,2004,20-37
    [35]Gairola S P, Verma V, Kumar L, et al. Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band[J]. Synthetic Metals.2010,160:2315-2318
    [36]Aphesteguy J C, Damiani A, DiGiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn-and NiCuZn-ferrites[J]. Physica B.2009(404):2713-2716
    [37]Li X A, Han X J, Du Y C, et al. Magnetic and electromagnetic properties of composites of iron oxide and Co-B alloy prepared by chemical reduction[J]. Journal of Magnetism and Magnetic Materials.2011,323:14-21
    [38]Ting T H, Yu R P, Jau Y N. Synthesis and microwave absorption characteristics of polyaniline/NiZn Ferrite composites in 2-40GHz[J]. Materials Chemistry and Physics.2011,126:364-368
    [39]Kim J H, Kim S S. Microwave absorbing properties of Ag-coated Ni-Zn ferrite microspheres prepared by electroless plating prepared by electroless plating[J]. Journal of Alloys and Compounds.2011,509:4399-4403
    [40]Hosseinia S H, Mohseni S H, Asadnia A, et al. Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite [J]. Journal of Alloys and Compounds.2011,509:4682-4687
    [41]Xi L, Wang Z, Zuo Y, Shi X N. The enhanced microwave absorptionProperty of CoFe2O4 nanoparticles coatedwith a Co3 Fe7-Co nanoshell by thermal reduction[J]. Nanotechnology.2011,22:045707(6pp)
    [42]Yang C C, Gung Y J, Hung W C, et al. Wu. Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites, Composites[J]. Science and Technology.2010,70:466-471
    [43]陈云.纳米晶Fe<,0.13>[Co<,x>Ni<,100-x>]<,0.87>合金微纤维的制备及磁性能研究[硕士学位论文].江苏:江苏大学,2009
    [44]Fu W Y, Liu S K, Fan W H, et al. Hollow glass microspheres with CoFe2O4 and its microwave absorption property[J]. J.Magn.Magn.Mater.,2007,316: 54-58
    [45]Che R C, Zhi C Y, Liang C Y, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite [J]. Appl.Phys.Lett,2006, 88:033105-1-3
    [46]Pan X F, Mu G H, Shen H G, et al. Preparation and microwave absorption properties of electroless Co-Ni-P coated Strontium ferrite powder[J]. Appl.Surf. Sci.,2007,253:4119-4112
    [47]张宴清,张雄.包覆钡铁氧体的多孔空心玻璃微珠吸波材料制备与性能.无机材料学报,2006,21(4):861~865
    [48]Bindra S, Singh C, Bai Y, et al. Mictostructure.hystersis and microwave absorption analysis of Ba1*xSrxFe12O19 ferrite[J]. Mater.Chem.Phys.,2008(In press)
    [49]Neher L K. Nonreflecting baekgound for testing microwave equipment. U.S. Patent 2656535.1953
    [50]Tong G X, Wu W H, Guan J G,et al. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4:Microwave electromagnetic and absorbing properties [J]. Journal of Alloys and Compounds.2011,5.9: 4320-4326
    [51]Chen Y J, Cao M S, Wang T H, Wan Q. Microwave absorption properties of the ZnO nanowire-polyester composites[J]. APPI.Phys Lett..2004, 84(17):3367-3369
    [52]龚春红,张玉,阎超等.超细镍纤维复合材料的电磁屏蔽研究[J].稀有金属材料与工程.2010,39(7):1298-1301
    [53]Chen Y J, Cao M S, Wang T H, Wan Q. Microwave absorption properties of the ZnO nanowire-polyester composites[J]. APPI.Phys.Lett.2004, 84(17):3367-3369
    [54]李发伸.不同形状的纳米磁性金属及合金颗粒的微波磁性研究[D].兰州:兰州大学,2009
    [55]卓仁富.氧化锌纳米材料的制备、表征及微波吸收性能[D].兰州:兰州大学等离子体与金属材料研究所,2009
    [56]Han M G, Tang W, Chen W B, et al. Effect of shape of Fe particles on their electromagnetic properties within 1-18 GHz range [J]. Journal of Applied Physics.2010,107(9):09A958
    [57]Chen W B, Han M G, DengL J. High frequency microwave absorbing properties of cobalt nanowires with transverse magnetocrystalline anisotropy[J]. Physica B.2010,405:1484-1488
    [58]焦华,杨合情,王庆相,李丽,谢小莉.Fe304核桃形球状颗粒和八面体微晶结构的可控合成和磁学性能.中国科学(E辑):技术科学.2008,38(9):1478-1486
    [59]于文广,张同来,乔小晶,张建国,杨利.不同形貌Fe304纳米粒子的氧化沉淀法制备与表征[J].无机化学学报.2006,22(7):1263-1268
    [60]李冠峰,刘献明,李森兰,王利亚.八面体尖晶石铁氧体的水热法制备[J].化学研究与应用.2009,21(2):220-225
    [61]Wang X Z, Zhao Z B, Qu J Y, et al. Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route[J]. Cryst. Growth Des., 2010,10 (7):2863-2869
    [62]Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. Journal of Physical Chemistry B,2000,104(6): 1153-1175
    [63]Liu X M, Fu S Y, Xiao H W. Fabrication of octahedral magnetite microcrystals[J]. Materials Letters,2006,60(24):2979-2983
    [64]黄在银,柴春芳,谭学才,等.In2O3八面体的碳还原法制备及其发光性能研究[J].无机化学学报.2007,23(3):409-503
    [65]Kai H, ChengY X, Liang Z, Wen Z S. Hydrothermal synthesis and characterization of single-crystalline FesO4 nanowires with high aspect ratio and uniformity[J]. Materials Letters,2007,61(14-15):3159-3162
    [66]孙健,李小燕,王艳香.PEG软模板水热合成纳米氧化锌粉的研究[J].陶瓷学报.2010,31(2):331-335.
    [67]Park J, Lee E H, Wang N M, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles[J]. Angew Chem Int Edit,2005,44(19):2872-2877.
    [68]Daou T J, Pourroy G, Be'gin-Colin S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles[J]. Chem Mater,2006,18(18): 4399-4404.
    [69]Yu W G, Zhang J G, et al. The synthesis of octahedral nanoparticles of magnetite[J]. Mater Lett,2006,60(24):2998-3001
    [70]Hu C Q, Gao Z H, Yang X R. Fabrication and magnetic properties of Fe3O4 octahedra[J]. Chem Phys Lett,2006,429(4-6):513-517
    [71]Liu X M, Fu S Y, Xiao H M. Fabrication of octahedral magnetite microcrystals[J]. Mater Lett,2006,60(24):2979-2983
    [72]杜斌,于薛刚,陈克正.高温分解法制备不同形貌四氧化三铁及其磁性能研究[J].功能材料.2010,328-330
    [73]Wan J X, Chen X Y, Wang Z H, et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4nanorods[J]. J Crystal Growth,2005, 276(3-4):571-576
    [74]Chen S Y, Feng J, Guo X F, et al. One-step wet chemistry for preparation of magnetite nanorods[J]. Mater. Lett.,2005,59:985-988
    [75]Wang J, Chen Q W, Zeng C, et al. Magnetic-field-induced growth of single-crystalline FesO4 nanowires[J]. Adv Mater,2004,16(2):137-140
    [76]Morber J R, Ding Y, Haluska M S, et al. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties [J]. J Phys Chem B,2006,110(43):21672-21679
    [77]Sheng X D, Ying Z L, Xu G C, et al. Synthesis, mossbauer spectra and magnetic properties of quasi-one-dimensional FesO4 nanowires[J]. Chinese Phys Lett,2004,21(4):733-736
    [78]Kai H, Cheng Y X, Liang Z, et al. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity [J]. Materials Letters.2007,61:3159-3162
    [79]Wu M Z, Xiong Y, Jia Y S, et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite[J]. Chem Phys Lett,2005,401(4-6): 374-379
    [80]Liu Z Q, Zhang D H, Han S, et al. Single crystalline magnetite nanotubes[J]. J Am Chem Soc,2005:127(1):6-7
    [81]Liu F, Cao P J, Zhang H R, et al. Novel nanopyramid arrays of magnetite [J]. Adv Mater,2005,17(15):1893-1897
    [82]Yu D B, Sun X Q, Zou J W, et al. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres[J]. J Phys Chem B, 2006,110(43):21667-21671
    [83]Zhong S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Adv Mater,2006, 18(18):2426-2431
    [84]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev.,2005,105:1025-1102
    [85]Peng D F, Beysen S, Li Q, et al. Hydrothermal growth of octahedral Fe3O4 crystals[J]. Particuology.2009,7:35-38
    [86]Yusoff A N, Abdullah M H, Ahmad S H, et al. Electromagnetic and absorption properties of some microwave absorbers[J]. J.Appl.Phys.,2002,92(2):876-882
    [87]Fu W Y, Liu S K, Fan W H, et al. Hollow glass microspheres with CoFe2O4 and its microwave absorption property[J]. J.Magn.Magn.Mater.,2007, 316:54-58
    [88]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社.2003,353-386
    [89]许乃岑,宋杰,王丽熙,沈加林,张其土.镝掺杂W型钡镍铁氧体的制备及电磁性能研究[J].稀有金属.2010,2(34):307-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700