两个水稻叶色突变体的生理分析与基因定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,约有一半以上的人口以其为主食,因此,提高水稻单产对维护世界粮食安全至关重要。水稻基因组较小,约430 Mb,是单子叶模式植物。实践证明,稳定的突变体是研究水稻基因功能和水稻分子育种的重要材料。其中,矮化突变体的发现与应用就是其中最典型的案例之一。育种技术的革新以及分子生物学发展的日新月异必然促进常规育种的改良,为实现水稻育种的更高目标创造条件。色素是植物从太阳光吸收光电子进行光合作用的靶物质,随着分子领域研究的发展,其在高等植物研究中引起了越来越广泛的关注。近来,通过叶绿体缺乏突变体取得了一系列研究成果,叶绿体缺乏突变体是植物体内某一种或几种光合色素缺失或缺乏,该类突变体在叶绿体发育、叶绿素代谢、光合作用等研究中具有重要的价值。在水稻育种中,该类突变体可以利用其叶色标记检测杂交组合和繁殖不育系的纯度,也具有重要的应用价值。尽管利用叶色突变体取得了一定的成果,与数量众多的叶色突变性状相比,许多研究尚需加强。我们实验室利用EMS处理自育优良恢复系缙恢10号,获得了2个遗传稳定的叶色突变体。本论文针对这两个突变体,系统研究了其遗传特性、色素含量、细胞学结构、分子定位等,为从分子水平进一步深入了解水稻色素合成机制创造了条件。主要研究结果如下:
     1.新型叶色突变体wyv1的鉴定与基因定位
     wyv1苗期叶片表现为黄白化,分蘖期转为黄绿,抽穗期至成熟期表现为淡绿,因此命名为白黄绿转换突变体(white-yellow-virescent leaf mutant, wyv1)。突变体的叶绿素含量显著下降,下降趋势与叶色表现成正相关。在苗期,表型最为典型,叶绿素含量最低,此时,测量叶绿素荧光动力学参数,结果发现:在叶色变化严重部位,光化学猝灭系数(qP)、PSII的实际量子效率(ΦPSⅡ)、电子传递速率(ETR)、初始荧光(Fo)、精光合速率(Pn)和PSII最大光化学量子产量(Fv/Fm)等均显著降低;然而,令人感兴趣的是,在新抽出叶,叶色淡绿部位,Pn和Fv/Fm与野生型相比无显著差异。遗传分析表明,该性状受核单隐性基因控制,为分子定位WYV1基因,利用籼型不育系西农1A与wyv1杂交,总共获得了1698株F2隐性定位群体。利用SSR等标记,最终把该基因定位在第3染色体上,位于SSR标记Y7和Y6之间,遗传距离分别为0.06 cM和0.03 cM。利用9311序列进行比对分析,发现物理距离仅为84 kb,这为WYV1基因的克隆和功能研究奠定了基础,也为该基因在育种的应用创造了条件。2.新型叶色突变体ygl5的鉴定与基因定位ygl5整个生育期均表现稳定的黄绿叶表型,总叶绿素含量值为1.09 mgg~(-1)到3.11mgg~(-1)不等,其中,叶绿素α和叶绿素b仅为野生型的66.1%和61.2%,为典型的叶绿素缺乏突变体。抽穗期进行细胞结构观察,结果发现,除了叶绿体基粒片层略有减少外,其它结构无明显变化。与野生型相比,有效穗、株高、千粒重等农艺性状均显著下降。遗传分析表明,该突变表型受一对单隐性核基因控制。配制西农1A和ygl5杂交组合,利用F2群体进行定位,初步把YGL5基因定位在第3染色体短臂,位于SSR标记RM12338和RM1332/RM3766之间,遗传距离分别为0.9 cM和5.5 cM/30 cM,最终把YGL5基因定位在SSR标记SWU3-1和RM14367之间,遗传距离分别为0.2 cM和1.9 cM。这为该基因的图位克隆和功能分析奠定了基础。
As the key food crop for more than half of humanity, it is significant to increase paddy rice yield per unit area. Rice genome is small and only about 430 Mb, and this provides insight as model for improving monocots. Inherited mutations have proven to be a valuable system both for gene functional studies and for plant breeder. Of which, "Dwarf breeding" is one of the most famous examples. Innovative breeding methods and the emerging tools of molecular and genome biology as the "Biotechnological tools" must modify the conventional breeding methods and enhance the achievement of rice breeding goals. Pigments are special target in obtaining the electronic energy from the sun and photosynthesis is then conducted. Pigment synthesis is so important that it was paid more and more attention with the development of molecular biotechnology in higher plants. Recently, much interesting results have been obtained by studying chlorophyll-deficient mutants, which lacks one or over certain photosynthetic pigments. Besides its significance in basic studies in chloroplast development, chlorophyll metabolism and photosynthesis, such mutants are also important in breeding, for example, they can be used as a simple marker for genetic purity testing both in hybrid seed production and in CMS line multiplication. In despite of its essentiality and partially productions, compared with abundant mutations in leaf-color characters, much of work was still needed to gain further useful conclusion. Two leaf color mutant were obtained from the progeny of EMS treated seeds of Jinhui10, an excellent restorer line bred in rice institute, southwest university. This thesis reviewed their genetic characters, pigments contents, cell structure, molecular mapping, and etc. The results were as following:
     1. Identification and molecular mapping of novel leaf color mutant wyv1
     The wyv1 colored white-yellow leaves at seedling stage and then showed yellow-green at tillering stage, following virescent until to maturity. This mutant decreased chlorophyll contents significantly and the trendline was consistent with chlorotic level. At the seedling stage of showing typical phenotype, chlorophyll fluorescence kinetic parameters were measured and the results showed that coefficient of photochemical quenching (qP), actual efficiency of PSⅡ(ΦPSⅡ), electron transport rate (ETR) and initial chlorophyll fluorescence level (Fo), net photosynthetic rate (Pn) and maximum photochemical efficiency of photosystemⅡ(Fv/Fm) were significantly lower in the severe chlorotic leaf. However, no significant differences were observed for Pn and Fv/Fm between mutational virescent leaf and normal green leaf. To molecular mapping WYV1 gene, XinonglA was crossed with wyv1, the F1/F2 populations were used for genetic analysis and the F2 population was used for mapping. Finally, the wyv1 phenotype was confirmed to be controlled by one single nuclear-encoded recessive gene, and the WYV1 gene was finally mapped between SSR marker Y7 and Y6 on rice chromosome 3. The genetic distance was 0.06 cM and 0.03 cM, respectively, and the physical distance was 84 kb according to indica rice 9311. These results must fascinate the gene cloning as well as its application in breeding.
     2. Identification and molecular mapping of novel leaf color mutant ygl5
     The ygl5 displayed stable yellow green leaf during the development, and its total chlorophyll ranged from 1.09 mg g~(-1) to 3.11 mg g~(-1). As a chlorophyll-deficient mutant, chlorophyll a occupied 66.1% and chlorophyll b occupied 61.2% of that of wild type, respectively. Compared with the wild type, chloroplast structure changed less except of granal stacks. The poor agronomic characters were identified, including effective panicle, plant height, 1,000-grain weight and seed setting rates. Genetic analysis showed that the mutational character was controlled by one major recessive nuclear gene according to F_1 and F_2 population of Xinong1A/ygl5. Four hundreds SSR markers were used for gene mapping and the YGL5 gene was primarily mapped between RM12338 and RM1332, RM3766 on the short arm of the chromosome 3, the genetic distance were 0.9 cM and 5.5 cM,30 cM respectively from the locus. The YGL5 gene was finally mapped between SSR marker SWU3-1 and RM14367 with genetic distances 0.2 cM and 1.9 cM respectively. These provide the basic information for gene cloning and function analysis of YGL5.
引文
[1]Abe, TT., Matsuyama, S., Sekido, I., Yamaguchi SY., and Kameya T.,2002. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J Radiat. Res.43:157-161.
    [2]Abedinia, M., Henry, RJ., Blakeney, AB., and Lewin, LG.,2000. Accessing genes in the tertiary gene pool of rice by direct introduction of total DNA from Zizania palustris (wild rice). Plant Molecular Biology Reporter.18:133-138.
    [3]Adamu, AK., and Aliyu, H.,2007. Morphological effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci. World J.2 (4):9-12.
    [4]Ahloowalia, BS., and Maluszynski, M.,2001. Induced Mutation. A new paradigm in plant breeding. Eupliytica.118 (2):167-173.
    [5]Arnon, DI.,1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.24:1-15.
    [6]Arumugnathan, K., and Earle, ED.,1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep.3:208-218.
    [7]Ashikari, M., and Matsuoka, M.,2002 Application of rice genomics to plant biology and breeding. Bot. Bull. Acad. Sin.43:1-11.
    [8]Ayumi T. and Ryouichi T.,2006. Chlorophyll metabolism. Current Opinion in Plant Biology.9:248-255.
    [9]Bat, IIA, Khan, AH., and Parveen, S.,2005. Comparative analysis of meiotic abnormalities induced by gamma rays, EMS and J\.1J\.1S in Vicia faba L. J. Indian Botanical Soc.84:45-58.
    [10]Beale, SI.,1999. Enzymes of chlorophyll biosynthesis. Photosynth Res.6(1):43-73.
    [11]Beale, SI.,2005. Green genes gleaned. Trends Plant Sci.10:309-312.
    [12]Berenice, BS., Fouilloux, G., and Chupeau, Yves.,1996. Induced albino mutations as a tool for genetic analysis and cell biology inI flax(Linum usitatssimum). J. Experimental Botany.47:189-194.
    [13]Bevins, MA., Madhavan, S., and Markwell, J.,1993. Two Sweet clover (Melilotus alba Desr.) Mutants Temperature Sensitive for Chlorophyll Expression. Plant Physiol. 103(4):1123-1231.
    [14]Bollivar, DW, Suzuki, JY, Beatty, JT, Dobrowolski, JM and Bauer, CE.,1994. Directed mutational analysis of Bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus, J Mol Biol 237:622-640.
    [15]Bossmann, B, Grimme, LH., and Knoetzel, J.,1999. Proteas-stable integration of Lhcbl into thylakoid membranes is dependent on chlorophyll b in allelic chlorina-f2 mutants of barley (Hordeum vulgare L.). Planta.85:241-242.
    [16]Botstein, B., White, RL., Skolnick, M. and Davis, RW.,1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet.32:314-331.
    [17]Cha, KW., Lee, YJ., Koh, HJ., Lee, BM., and Paek, NC,2002. Isolation, characterization and mapping of the stay green mutant in rice. Theor. Appl. Genet.104: 526-532.
    [18]Chang, HB., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., and Yoshida, S.,2001. Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann. Bot. 88:545-553.
    [19]Chen, M., et al.,2002. An integrated physical and genetic map of the rice genome. Plant Cell.14:537-545.
    [20]Chen, SF., Shu, QY.,1999. Causal factors of sterility incompleteness of male sterile lines in hybrid rice seed production and exploration of ways to overcome the impurity of hybrid seeds. Chin. Bull. Agric.15:41-44 (in Chinese, with English abstract).
    [21]Chen, T., Zhang, YD., Zhao, L., Zhu, Z., Lin, J., Zhang, SB., and Wang, CL. 2009. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J. Genet. Genomics.36 (2):117-123.
    [22]Chen, T., Zhang, YD., Zhao, L., Zhu, Z., Lin, J., Zhang, SB., and Wang, CL.,2007. Physiological Character and Gene Mapping in a New Green revertible Albino Mutant in Rice Journal of Genetics and Genomics.34 (4):331-338.
    [23]Chen, X., Liu, X., Wu, D. and Shu, QY.,2006. Recent Progress of Rice Mutation Breeding and Germplasm Enhancement in China. Plant Mutation Reports.1 (1) 4-6.
    [24]Collard, BCY., and Mackill, DJ.,2007. Marker-assisted selection:An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci.17:1-16.
    [25]Dai, XS., Cao, X., Xu, W., Lu, R., Zhang, C., Xu, Y., and Kuang, T.,2000. Study on a mutant with low content chlorophyll b in a high yielding rice and its photosynthesis properties. Acta. Botanica Sin.42:1289-1294.
    [26]Davis, MS., Forman, A., and Fajer, J.,1979. Ligated chlorophyll cation radicals: their function in photosystem Ⅱ of plant photosynthesis. Proc. Natl. Acad. Sci.76: 4170-4174.
    [27]Delseny, M., Salses, J., Cooke, R., Sallaud, C., Regad, F., Lagoda, P., Guiderdoni, E., Ventelon, M., Brugidou, C., and Ghesquiere, A.,2001. Rice genomics:Present and future. Plant Physiol. Biochem.39:323-334.
    [28]Du, P., Lin, YH., Sang, XC., Zhao, FM., Xie, R., Yang, ZL., and He, GH.,2009. Gene Mapping Related to Yellow Green Leaf in a Mutant Line in Rice. Gene & Genomics.31 (2):165-171.
    [29]Dunford, R., and Walden, RM.,1991. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Curr. Genet.20: 339-347.
    [30]Eckhardt, U., Grimm, B., and Hortensteiner, S.,2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol.56 (1):1-14.
    [31]Fahad AQ., and Khan, S.,2009. Mutagenic Effects of Sodium Azide and its Application in Crop Improvement. World Applied Sciences Journal.16 (12): 1589-1601.
    [32]Falbel, TG., Meehl, JB., and Staehelin, LA.,1996. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol.110 (12):821-832.
    [33]Fang, PX., Yu, M., Zhu, RQ., and Wu, P.,2004. QTLs for rice leaf chlorophyll content under low N stress. Pedosphere.14:145-150.
    [34]Fang, XJ., Liu, SH., and Jiang S., Y.2000. Progress on identification of seed purity and authenticity using DNA molecular markers. J Agric Biotech.8 (2):106-110.
    [35]Feng, Q., et al.,2002. Sequence and analysis of rice chromosome 4. Nature.420: 316-320.
    [36]Figdore, SS., Kennard, WC., Song, KM., Slocum, MK. and Osborn, TC.,1988, Assessment of the degree of restriction fragment length polymorphism in Brassica. Theor. Appl. Genet.75:833-840.
    [37]Gerdes, L., Bals, T., Klostermann, E., Karl, M., Philippar, K., Hiinken, M., Soll, J., and Schunemann, D.,2006. A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J. Biol. Chem.281:16632-16642.
    [38]Goff, SA., et al.,2002. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp.japonica). Science.296:92-100.
    [39]Gomez, KA.,2001. Rice, The grain of culture. (Lecture Series) The Siam Society, Bangkok, Thailand.10 p.
    [40]Gowda, MRC., Venu, K., Roopalakshmi, MV., and Kulkarni, RS.,2003. Advances in rice breeding, genetics and genomics. Molecular Breeding.11 (4):337-352.
    [41]Greene, BA., Allred, DR., Morishige DT., and Staehelin, LA.,1998. Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutant of maize. Plant Physiol.87:357-364.
    [42]Guevara-Garcia, A., San Roman, C., Arroyo, A., Cortes, ME., Gutierrez-Nava, ML., and Leon, P.,2005. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell.17:628-643.
    [43]Guo, AG, Feng, XZ., Zhao, LL., and Wang, PH.,1996. Studies on the activity of translation and transcription in the leaves of wheat albescent line. Acta Agricultural Boreali-Occidentalis Sinica.24:1-4.
    [44]Han, B., and Zhang, QF.,2008. Rice Genome Research:Current Status and Future Perspectives. The Plant Genome.1 (2):71-76.
    [45]He, B., Liu, LL., Zhang, WW., and Wan, JM.,2006. Plant Leaf Color Mutants. Plant physiology communications.42 (1):1-9.
    [46]Hirochika, H.,2005. Tissue culture-induced mutations and a new type of activation tagging as tools for functional analysis of rice genes. In:Proceedings of "Rice is life: scientific perspectives for the twenty-first century". Philippines, IRRI. pp 78-80.
    [47]Hirochika, H., Guiderdoni, E., An, G., Hsing, Y.., Eun, M., Han, C.,Upadhyaya, N., Ramachandran, S., Zhang, Q., Pereira, A., Sundaresan, V., and Leung, H., 2004. Rice mutant resources for gene discovery. Plant Mol Biol.54:325-334.
    [48]Hoeberichts, FA., Vaeck, E., Kiddle, G., Coppens, E., van de Cotte, B., Adamantidis, A., Ormenese, S., Foyer, CH., Zabeau, M., Inze, D., Perilleux, C., Van Breusegem, F., and Vuylsteke, M.,2008. A Temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death. J Biol Chem.283 (9):5708-5718.
    [49]Hortensteiner, S.,2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci.14 (3):155-162.
    [50]Hsieh, MH., and Goodman, HM.,2005. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol.138: 641-653.
    [51]Http://www.gramene.org/.
    [52]Hu, SP., and Yan, YM.,2004. Genetic analysis of chlorophyll content in rice (Oryza sativa L.) by molecular markers. Agric. Sci. Technol.5:8-11.
    [53]Huang, XQ., Wang, PR., Zhao, HX., and Deng, XJ.,2008. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice. Rice Science.15(1):7-12.
    [54]Huang, XQ., Zhao, HX., Dong, CL., Sun, YY, Wang, PY., Deng, XJ.,2005. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreal-Occident Sin.25(8):1685-1691 (in Chinese with English abstract).
    [55]Iara, JL., and Dnyansager, VR.,1980. Comparison of ethyhnethane sulphonate and radiation induced meiotic abnormalities in Turnera ulmifolia L. var. angustifolia wild. CytoL.45:221-231.
    [56]International Rice Genome Sequencing Project (IRGSP).,2005. The map-based sequence of the rice genome. Nature.346:793-800.
    [57]Inukai, T., Sako, A., Hirano, HY., and Sano, Y.,2000. Analysis of intragenic recombination at wx in rice:correlation between the molecular and genetic maps within the locus. Genome.43:589-596.
    [58]Ishikawa, A., Okamoto, H., Iwasaki, Y., and Asahi, T.,2001. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J.27 (2): 89-99.
    [59]Ishimaru, K., Yano, M., Aoki, N., Ono, K., Hirose, T., Lin, SY., Monna, L., Sasaki, T., and Ohsugi, R.,2001. Toward the mapping of physiological and agronomic characters on a rice function map:QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet.102:793-800.
    [60]Isshiki, M., Yamamoto, Y., Satoh, H., and Shimamoto, K.,2001. Non sense mediated decay of mutant waxy mRNA in rice. Plant Physiol.125:1388-1395.
    [61]Iwata, N., and Omura, T.,1978. Linkage studies in rice (Oryza sativa L.) some albino genes and their linkage relation with marker genes. Sci Bull. Fac. Agr. Kyushu Univ.33:11-18.
    [62]Iwata, N., Satoh, H., and Omura, T.,1981. Linkage analysis by use of trisomics in rice (Oryza sativa L.). Ⅳ. Linkage groups locating on chromosomes 2 and 10. Japan J. Breed.31 (Suppl.1):66-67.
    [63]Jacobsen, SE., and Olszewski, NE.,1995. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell.5:887-896.
    [64]Jeffrey, AJ., Wilson, V., and Thein, SL.,1985. Hypervariable'minisatellite'regions in human DNA. Nature.314:67-73.
    [65]Jena, KK., and Mackill. DJ.,2008. Molecular Markers and Their Use in Marker-Assisted Selection in Rice. Crop Science.48:1266-1276.
    [66]Jung, KH., Hur, CH., Ryu, Y., Choi, YY., and Miyao, A.,2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol.44:463-472.
    [67]Jung, KH., Hur, JH., Ryu, CH., Choi, YJ., Chung, YY., Miyao, A., Hirochika, H., and An, GH.,2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol.44 (5):463-472.
    [68]Khan, S., Wani, MR., Bhat, MUD., and Parveen, K.,2005. Induced chlorophyll mutations in chickpea. Int. J. Agri. Biol.7 (5):764-767.
    [69]Kharkwal, MC.,1998. Induced mutations in chickpea (Cicer arietinum L.) II. Frequency and spectrum of chlorophyll mutations. Indian J. Genet.58:465-474.
    [70]Khush, GS.,1987. Rice breeding-present and future. J. Genet.66:195-216.
    [71]Khush, GS.,1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35:25-34.
    [72]Kinoshita, T., and Takamure, I.,1984. Inheritance and linkage relationship on zebra chlorosis and zebra necrosis in rice-Genetical studies on rice plant LXXXVIII. J. Fac. Agr. Hokkaido Univ.61 (4):445-455.
    [73]Kleinliofs, A., Owais, WM., and Nilan, RA.,1978. Azide; Mutation Research.55: 165-195.
    [74]Komari, T., Hiei, Y., Ishida, Y., Kumashiro, T. and Kubo, T.,1998. Advances in cereal gene transfer. Curr. Op. Plant Biol.1:161-165.
    [75]Kong, MM., Yu, QB., Zhang, HQ., Sheng, C., Zhou, GY., and Yang, ZN.,1996. Genetic mapping of rice gene OsALB23 regulating chloroplast development. J. Plant Physiol.Mol.Biol.32:433-437.
    [76]Korzun, V.,2003. Molecular markers and their applications in cereals breeding. In An international workshop on Marker assisted selection:A fast track to increase genetic gain in plant and animal breeding, Session I:MAS in plants Organized by the Fondazione per le Biotechnologie, the University of Turin and FAO. Tulin Italy.5 p.
    [77]Krishnan, A., Guiderdoni, E., and An, G.,2009. Mutant resources in rice for functional genomics of the grasses. Plant Physiology.149:165-170.
    [78]Kumar, AM.,2000. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol.122 (1) 49-55.
    [79]Kumer, LS.,1999. DNA markers in plant improvement:An overview. Biotech Adv.17 (23):143-182.
    [80]Kurata, N., Miyoshi, K., Nonomura, KI., Yamazaki, Y., and Ito, Y.,2005. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol.46:48-62.
    [81]Kushnir, S., Babiychuk, E., Storozhenko, S., Davey, MW., Papenbrock, J., Rycke, RD., Engler, G., Stephan, UW., Lange, H.,KispaI, G., Lill, G., and Montagu, MV., 2001. A mutation of the mitochondrial ABC transporter STAI leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell.13:89-100.
    [82]Kusumi K., Komori, H., Satoh, H., and Iba, K.,2000. Characterization of a zebra Mutant of Rice with Increased Susceptibility to Light Stress. Plant and Cell Physiology. 41 (2):158-164.
    [83]Lander, ES., Green, P., and Abrahamson, J.,1987. MAPMAKER:an interactive computer for constructing primary genetics linkage maps of experimental and natural populations. Genetics.1:174-182.
    [84]Landry, BS., and Michelmore, RW.,1987. An Agricultural Perspective (Eds Bruening, G., Harada, J. and Hollaender, A.), Plenum, New York.134-157.
    [85]Larkin, RM., Jose, MA., Joseph, RE., Joanne C.,2003. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science.299:902-906.
    [86]Lee, S., Kim, JH., Yoo, E., Lee, CH., Hirochika, H., and An G.,2005. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol. Biol.57:805-818.
    [87]Li, Q., and Wan, JM.,2005. SSRHunter:development of a local searching software for SSR sites. Yi Chuan.27 (5):808-810 (in Chinese with an English abstract).
    [88]Li, ZB., Wei, YN., Zhang, RH., and Zhang, XJ.,2005. Primary studies on chlorophyll fluorescence characteristics of cotton leaves at different leaf position. Cotton Sci.17 (3):189-190 (in Chinese with an English abstract).
    [89]Lichtenthaler, HK.,1987. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Method. Enzymol.48:350-382.
    [90]Lin, W., Anuratha, CS., Datta, K., Potrykus, I., Muthukrishnan, S., and Datta, S.K.,1995. Genetic engineering of rice for resistance to sheath blight. Bio/Technology. 13:686-691.
    [91]Litt, M., and Luty, A.,1989. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. J. A., Am. J. Hum. Genet.44:397-401.
    [92]Liu, MM., Sang, XC., Ling, YH., Du, P., Zhao, FM., Yang, ZL., and He, GH.,2009. Genetic analysis and molecular mapping of a yellow green leaf gene (YGL4) in rice (Oryza sativa L.) Acta Agronomica Sinica.35:1405-1409.
    [93]Liu, WZ., Fu, YP., Hu, GC., Si, HM., Zhu, L., Wu, C., and Sun, ZX.,2007. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice(Oryza sativa L.). Planta.226:785-795.
    [94]Liu, ZL., Yuan, S., Liu, WJ., Du, JB., Tian, WJ., Luo, MH., and Lin, HH.,2008. Mutation mechanism of chlorophyll-less barley mutant NYB. Photosynthetica.46 (1): 73-78.
    [95]Lo'pez-Juez, E.,2007. Plastid biogenesis, between light and shadows. J Exp Bot.58 (1):11-26.
    [96]Long, D., Martin, M., Sundberg, E., Swinburne, J., Puangsomlee, P., and Coupl G.,1993. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. Proc. Natl. Acad. Sci. USA 90:10370-10374.
    [97]Luo, ZK., Yang, ZL., Zhong, BQ., Li, YF., Xie, R., Zhao, FM., Ling, YH., and He, GH.,2007. Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice(Oryza sativa L.). Genome.50:811-817.
    [98]Mackill, DJ.,2007. Molecular markers and marker-assisted selection in rice. p. 147-168. In R.K. Varshney and R. Tuberosa (ed.) Genomics assisted crop improvement. Vol.2. Genomics applications in crops. Springer, New York.
    [99]Maekawa, K., Rikiishi, K., Matsuura, T., and Noda, K.,1996. Revertants originated from chlorophyll mutants from the distantly related rice varieties. Japan J. Breed. Sci.46 (Suppl.2):107.
    [100]Maliandjiev, A., Kosturkova, G., and Miliov, M.,2001. Enrichment of Pisum sativum gene resources through combined use of physical and chemical mutagens. Israel J. Plant Sci.49 (4):279-284.
    [101]Mandel, MA., Feldmann, KA., Herrera-Estrella, L., Rocha-Sosa, M., and Leon, P.,1996. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J.9:649-658.
    [102]Martin, GB.,1998. Gene discovery for crop improvement. Current Opinion in Biotechnology.9:220-226.
    [103]Mazur, B., and Tingey, SV.,1995. Genetic mapping and introgression of genes with agronomic importance. Current Opinion in Biotechnology.6:175-182.
    [104]McCouch, S., et al,.2002. Development, of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res.9:199-207.
    [105]McCouch, SR., Chen, XL., Panaud, O., Temnykh, S., Xu, YB., Cho, YG., Huang, N., Ishii, T., and Blair, M.,1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology.35:89-99.
    [106]Michelmore, RW., Paran, I., and Kesseli, RV.,1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA.88:9828-9832.
    [107]Miller, JC., and Tanksley, SD.,1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet 80:437-448.
    [108]Muchugi, A., Kadu, C., Kindt, R., Kipruto, H., Lemurt, S., Olale, K., Nyadoi, P., Dawson, L, and Jamnadass, R.,2008. Molecular Markers for Tropical Trees, A Practical Guide to Principles and Procedures. ICRAF Technical Manual no.9. Dawson I and Jamnadass R. eds. Nairobi:World Agroforestry Centre.100 pp.
    [109]Mullis, KB., and Faloona, F.,1987. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Meth. Enzymol.155:335-350.
    [110]Mullis, KB., Faloona, F., Scharf, SJ., Saiki, RK., Horn, GT., and Eriich, HA., 1986. Specific enzymatic amplification of DNA in vitro:The polymerase chain reaction.Cold Spring Harbor Symp. Quant. Biol.51:263-273.
    [111]Murray, MG., and Thompson, WF.,1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res.8:4321-4325.
    [112]Nagata, N., Tanaka, R., and Satoh, S.,2005. Identification of vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus Species. Plant Cell.17:233-240.
    [113]Nakamura, Y., Julier, C., Wolff, R., Holm, T., O'Connell, P., Leppert, M., and White, R.,1987. Characterization of a human "minisatellite" sequence. Nucleic Acids Res.15:2537-2547.
    [114]Nakayashiki, T., Nishimura, K., and Inokuchi, H.,1995. Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene.153:67-70.
    [115]Nobuyoshi, M., Judy, A., Brusslan, RL., Akira, N., and Joanne, C.,2001. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. PNAS.98 (4): 2053-2058.
    [116]Ou, LJ., Chen, Z., Dai, XJ., Deng, LX., Qiu, YL., Li, H., Liu, P., Liang, MZ., Luan, S., and Chen, LB.,2008. Photosynthetic characteristics of a new yellow-green mutant with high photosynthetic rate in rice (Oryza sativa L.).Photosynthetica.46 (3): 395-399.
    [117]Paglia, GP., Olivieri, AM., and Morgante, M.,1998. Towards second-generation STS (sequence tagged sites) linkage maps in conifers:a genetic map of Norway spruce (Picea abies K.) Mol. Gen. Genet.258:466-478.
    [118]Panaud, OCX.,1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genetic.259:297-607.
    [119]Pasini, L., Bruschini, S., Bertoli, A., Mazza, R., Fracheboud, Y., and Marocco, A., 2005. Photosynthetic performance of cold-sensitive mutants of maize at low temperature. Physiol Plant.124:362-370.
    [120]Pontoppidan, B., and Kannangara, G.,1994. Purification and partial characterization of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem.225:529-537.
    [121]Qi, YW., Zhang, DL., Zhang, HL., Wang, MX., Sun, JL., Wei, XH., Qiu, ZG., Tang, SX., Cao, YS., Wang, XK., and Li, ZC.,2006.Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chinese Science Bulletin.51 (6):681-688.
    [122]Robert, M. Larkin, J., Joseph, MA., Ecker, R., and Joanne, C.,2003. GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling. Science.299 (5608): 902-906.
    [123]Rodiger, W.,1997. Chlorophyll metabolism:from outer space down to the molecular level. Phytochemistry.46:1151-1167.
    [124]Rudd, S., Mewes, HW., and Mayer, KFX.,2003. Sputnik:a database platform for comparative plant genomics. Nucleic Acid Research.31:128-132.
    [125]Ryder, EJ., Kim, ZH., and Waycott, W.,1999. Inheritance and epistasis studies of chlorophyll deficiency in lettuce. J Am Soc Hort Sci.124 (6):636-640.
    [126]Sang, XC., Yang, ZL., Zhong, BQ., Lin, YF., Hou, L., Pei, Y., Li, GY., and He, GH.,2006. Assessment of purity of rice CMS lines using cpDNA marker. Euphytica 152:177-183.
    [127]Sasaki, T., et al.,2002. The genome sequence and structure of rice chromosome 1. Nature.420:312-316.
    [128]Sato, Y., and Nishio, T.,2003. Mutation detection in rice waxy mutants by PCR-RF-SSCP. Theor Appl Genet.107:560-567.
    [129]Sato, Y., Ryouhei, M., Minoru, N., Hiroyasu, Y., and Makoto, K.,2007. Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci.104:14169-14174.
    [130]Schmidt, R.,2002 Plant genome evolution:lessons from comparative genomics at the DNA level. Plant Mol. Biol.48:21-37.
    [131]Shen, B., Zhuang, JY., and Zhang, KQ.,2007. QTL mapping of chlorophyll content in rice. Agric. Sci. Sinica.6:17-24.
    [132]Shen, SQ., Shu, QY., Bao, JS., Wu, DX., Cui, HR., Xia, YW.,2004a. Development of a greenable leaf color mutant Baifeng A and its application in hybrid rice production. Chinese Journal of Rice Science.18 (1):34-38 (in Chinese with an English abstract).
    [133]Shen, SQ., Shu, QY., Bao, JS., Wu, DX., Cui, HR.,and Xia, YW.,2004b. Studies on a green-revertible albino leaf CMS line Baifeng A. Chin. J. Rice Sci.18:34-38 (in Chinese, with English abstract).
    [134]Shimamoto, K., and Kyozuka, J.,2002. Rice as a model for comparative genomics of plants. Ann. Rev. Plant Biol.53:399-419.
    [135]Shu, QY.,2009. Induced Plant Mutations in the Genomics Era. Food and Agriculture Organization of the United Nations, Rome.425-427.
    [136]Shu, QY., Chen, SF., Wu, DX., Shen, SQ., Cui, HR., Xia, YW.,2001. Studies on breeding of a new type of cytoplasmic male sterile rice line Quanlong A. Scientica Agricultura Sinica.34 (4):349-354 (in Chinese with an English abstract).
    [137]Shu, QY., Shen, SQ., Wu, DX., and Xia, YW.,2001. Development of a novel CMS line, Quanlong A. Scientia Agricultura Sinica.34:349-354 (in Chinese with English abstract).
    [138]Southern, EM.,1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol.98:503-517.
    [139]State Administration of Technology.,1997. Quality Standards for Agricultural Seed-GB4404.1-1996 Seeds of Food Crops-Cereals. Standards Press of China, Beijing.1-4.
    [140]Stuber, CW., Polacco, MP., and Senior Lynn, M.,1999. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci.39:571-1583.
    [141]Sugimoto, H., Kusumi, K., Noguchi, K., Yano, M., Yoshimura, A., and Iba, K., 2007. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J.52:512-527.
    [142]Sugimoto, H., Kusumi, K., Tozawa, Y., Yazaki, J., Kishimoto, N., Kikuchi, S., and Iba, K.,2004. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol.45:985-996.
    [143]Sundberg, E., Slagter, JG. Fridborg, Cleary, SP., Robinson, C., and Coupland, G.,1997. Albino3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell.9 (5):717-730.
    [144]Takeshi, I., and Ko, S.,1996. Becoming a model plant:The importance of rice to plant science. Trends in Plant Science.1 (3):95-99.
    [145]Tanaka, A., and Tanaka, R.,2006. Chlorophyll metabolism. Curr Opin Plant Biol.9: 248-255.
    [146]Tanaka, A., Ito, H., Tanaka, R., Tanaka, NK., Yoshida, K., and Okada, K.,1998. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci. USA 95:12719-12723.
    [147]Tanaka, A., Yamamoto, Y., and Tsuji, H.,1991. Formation of chlorophyll-protein complexes during greening.2. Redistribution of chlorophyll among apoproteins. Plant Cell Physiol.32:195-204.
    [148]Terry, MJ., and Kendrick, RE.,1999. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-Deficient aurea and yellow-green-2 Mutants of Tomato. Plant Physiol.119(1):143-152.
    [149]The Rice Chromosome 10 Sequencing Consortium.2003.
    [150]Thilagavathi, C., and Mullainathan, L.,2009. Isolation of Macro Mutants and Mutagenic Effectiveness, Efficiency in Black Gram (Vigna mungo (L.) Hepper). Global Journal of Molecular Sciences.4 (2):76-79.
    [151]Thomas, JA., Cruz, A., Atsuko, K., and David, MK.,2005. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci.102:9709-9713.
    [152]Tingey, SV., Rafalski, JA., and Williams, JGK.,1993. Application of RAPD Technology to Plant Breeding (ed. Neff, M.), ASHS Publishers, Minnesota, USA. pp. 3-8.
    [153]Tomoki, M., Shigeko, S., Isamu, Y., Shigeo Y., and Toshlaki, K.,2002. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J Radiat Res.43:157-161.
    [154]Tyagi, AK., Khurana, JP., Khurana, P., Raghuvanshi, S., Gaur, A., Kapur, A., Gupta, V., Kumar, D., Ravi, V., Vij, S., Khurana, P., and Sharma, S.,2004 Structural and functional analysis of rice genome. J. Genet.83:79-99.
    [155]Vermaas, W.,1998. An Introduction to Photosynthesis and Its Applications. The World & I.158-165.
    [156]Virmani, SS., and Kumar, I.,2004. Development and use of hybrid rice technology to increase rice productivity in the tropics. IRRN.29:10-19.
    [157]Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van, de, Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, T., Kuiper, M., and Zabeau, M.,1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res.23:4407-4414.
    [158]Wagmare, VN., and Mehra, RB.,2001. Induced chlorophyll mutations, mutagenic effectiveness and efficiency in Lathyrus sativas L. Indian J. Genet.61:53-56.
    [159]Wang J., Wang, BH., Zhou, LH., Xu, JF., Gu, MH., Liang, GH.,2006. Genetic Analysis and Molecular Mapping of a New Yellow-Green Leaf Gene ygl-2 in Rice.中國水稻科学.20 (5):455-459 (in Chinese with an English abstract).
    [160]Wang, B., Lan, T., Wu, WR., and Li, WM.,2003. Mapping of QTLs controlling chlorophyll content in rice (Oryza sativa L.). Acta Genet. Sinica.30:1127-1132.
    [161]Wang, F., Wang, G., Li, XY., Huang, J., and Zheng, J.,2008. Heredity, physiology and mapping of a chlorophyll content gene of rice(Oryza sativa L.). Journal of Plant Physiology.165:324-330.
    [162]Wang, J., Wang, BH., Zhou, LH., Xu, JF., Gu, MH., and Liang, GH.,2006. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin. J. Rice Sci.20:455-459.
    [163]Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J., Luo, D., Long, Y., Zhong,Y., and Liu, YG.,2006. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell.18 (3):676-687.
    [164]Wellburn, AR.,1994. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol.144:307-313.
    [165]Welsh, J., and McClelland, M.,1991. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res.18:7213-7218.
    [166]Wettstein, DV., Gough, S., and Kannangara, CG.,1995. Chlorophyll Biosynthesis. Plant Cell.7 (7):1039-1057.
    [167]Williams, JGK., Hanafey, MK., Rafalski, JA., and Tingey, SV.,1993. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol. 218:704-740.
    [168]Winter, P., and Kahl, G.,1995. Molecular technologies for plant improvement. World J. Microbiol. Biotechnol.11:438-448.
    [169]Wongkasem, O., Nuankaew, C., Kenlhuem, P., and Ponwattana, A.,2007. Mutation in glutinous rice. Proceedings of rice and temperate cereal crops annual conference 2007 Bangkok, Thailand.75-81.
    [170]Wu, DX., Shen, SQ., Cui, HR., Xia, YW., and Shu, QY.,2003. A novel thermo/ photoperiod-sensitive genic male-sterile (T/PGMS) rice mutant with green-revertible albino leaf color marker induced by gamma irradiation. Field Crops Res.81:141-147.
    [171]Wu, J., et al.,2002. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell.14:525-535.
    [172]Wu, ZM., Zhang, X., He, B., Diao, LP., Sheng, SL., Wang, JL., and Wan, JM., 2007. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol.45:29-40.
    [173]Xia, JC., Wang, YP., Ma, BT., Yin, ZQ., Hao, M., Kong, DW., and Li, SG.,2006. Ultrastructure and gene mapping of the albino mutant al12 in rice(Oryza sativa L.). Acta Genet. Sin.33:1112-1119.
    [174]Xie, XB., Cui, HR., Shen, SQ., Wu, DX., Xia, YW., and Shu, QY.,2002. Studies on the distorted segregation of foreign genes in transgenic rice progenies. Acta Genet Sin. 2911:1005-1011.
    [175]Xu, PZ., Li, Y., Yuan, S., Zhang, HY., Wang, XD., Lin, HH., and Wu, XJ.,2006. Analysis of Chloroplast Ultra structure, Photosystem Ⅱ Light Harvesting Complexes and Chlorophyll Synthesis in a Chlorophyll Less Rice Mutant W2555. Rice Science.13 (4):265-270.
    [176]Yadav, OP., Mitchell, SE., Fulton, TM., and Kresovich, S.,2008. Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. SAT eJournal.6:1-4.
    [177]Yang, CM., Chang, KW., Yin, MH., and Huang, HM.,1998. Methods for the Determination of the Chlorophylls and their Derivatives. Taiwania.43 (2):116-122.
    [178]Yang, G., Li, S., Feng, L., Kong, J., Li, H., and Li, Y.,2006. Analysis of QTLs for chlorophyll content in wheat QTL underlying the traits relative to the chlorophyll content of the flag leaf in rice. J. Wuhan Univ.52:751-756.
    [179]Yang, QH., Lu, W., Hu, ML., Wang, CM., Zhang, RX., and Yana, M.,2003. QTL and epistatic interaction underlying leaf chlorophyll and H_2O_2 content variation in rice (Oryza sativa L.). Acta Genet Sin.30:245-250.
    [180]Yong, G., Glenn, R., Buss, GR., and Saghai, MA.,1996. Isolation of a super family of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA.93:11751-11756.
    [181]Yoo, SC., Cho, SH., Sugimoto, H., Li, JJ., Kusumi, K., Koh, HJ., Iba, K., and Paek, NC.,2009. Rice Virescent3 and Stripel Encoding the Large and Small Subunits of Ribonucleotide Reductase Are Required for Chloroplast Biogenesis during Early Leaf Development. Plant Physiol.150:388-401.
    [182]Yu, J., et al.,2002. A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science.296 (5565):79-92.
    [183]Yu, QB., Jiang, H., Mi, HL., Zhou, JY., and Yang, ZN.,2005. The physiological character and molecular mapping in rice albino21 mutant. J Shanghai Normal Univ: Nat Sci.34 (1):70-75 (in Chinese with English abstract).
    [184]Yuan, HY., and Zhang, ZL.,1993. Effect of free radicals and temperature on sister chromatid exchanges in Hordeum vulgare L. Acta Botanica Sinica.35:20-26.
    [185]Yuan, LP.,1994. Purification and production of foundation seeds of rice PGMS and TGMS lines. Hybrid Rice.6:1-5 (in Chinese, with English abstract).
    [186]Yuan, LP.,2004. Hybrid rice for food security in the world. In:FAO Rice Conference, Rome, Italy.12-13.
    [187]Yue, B., Cai, XW., Vick, B., and Hu, JG.,2009. Genetic characterization and molecular mapping of a chlorophyll deficiency gene in sunflower (Helianthus annuus L.). J Plant Physiol.166 (6):644-651.
    [188]Zabeau, M.,1993. Selective restriction fragment amplification:a general method for DNA finger printing. European Patent Application. Publication No.0534858A1.
    [189]Zhang, DY., Gong, ZY., Ye, JW., Wu, YX., Mi, HL., and Chen, GY.,2006. Effects of zebra leaf 1-a new variegation mutation on chloroplast development in rice. J. Mol. Cell. Biol.41 (5):417-422.
    [190]Zhang, HT., Li, JJ., Yoo, JH., Yoo, SC., Cho, SH., Koh, HJ., Seo, HS., and Peak, NC.,2006. Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol. Biol.62:325-33.
    [191]Zhang, KP., Fang, ZJ., Liang, Y., and Tian, JH.,2009. Genetic dissection of chlorophyll content at different growth stages in common wheat. Journal of Genetics. 88(2):183-189.
    [192]Zhao, HJ., Wu, DX., Shu, QY., Shen, SQ., and Ma, CX.,2004. Breeding and characteristics of photo-thermo sensitive genic male sterile rice Yutu S labeled with green-revertible albino leaf marker. Chinese Journal of Rice Science.18 (6):515-521 (in Chinese with an English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700