重金属复合污染土壤原位化学稳定化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化与城市化发展,土壤重金属污染已成为全球关注的环境问题之一。化学稳定化是控制污染物扩散的修复技术,稳定试剂的选择和重金属长期稳定性问题是其研究的主题。土壤重金属污染方式可分为突发性和累积性,在突发性污染方式下,土壤重金属的优势存在形态为水溶态和可交换态,重金属移动性强,生物活性大;在累积性污染方式下,次稳定态(如碳酸盐结合态)为土壤重金属的优势存在形态,重金属对环境的危害长期而持久,目前鲜见对其进行区别并加以研究的报道。
     本文采集不同酸碱度土壤,以外源添加污染物方式制备模拟突发性污染方式的土壤重金属复合污染样品,对CaCO_3、Na_2S_2O_3、Fe(OH)_3、K_3PO_4、K_2HPO_4、Ca(H_2PO_4)2和磷矿石进行快速化学稳定化稳定试剂筛选实验研究;采集原沈阳冶炼厂累积性污染方式的土壤重金属复合污染样品,采用三种稳定试剂组合方式(即T1:H_3PO_4+CaO、T2:Na_2S+CaCO_3和T3:H_3PO_4+Na_2S+CaCO_3)进行室内长期化学稳定化试验研究,通过去离子水、TCLP(Toxicity Characteristic Leaching Procedure)和SBET(Simple Bio accessi- bility Extraction Test)浸出方法对不同稳定时间各试剂组合对各目标元素的稳定效率进行评价。采用Tessier化学形态连续提取、MINTEQ化学形态平衡模型和光谱显微镜(XRD和EMPA)分析等技术相结合的手段对稳定后各目标元素在土壤中的形态转化、可能控制矿物和新形成矿物进行分析、预测和鉴定,得到以下主要研究成果。
     对突发性污染方式的重金属复合污染土壤来说,CaCO_3能快速控制Cu、Zn、Cd、Hg、Ni和Cr的扩散和迁移,土壤粘土矿物含量越高,控制效果越好;Na_2S_2O_3能有效控制Cr的扩散和迁移,土壤pH值越高,控制效果越好;Fe(OH)_3能有效控制As的扩散和迁移,6%(w/w)Fe(OH)_3可使土壤TCLP浸出液中As离子浓度降至低于0.18 mg·L~(-1);含磷物质能有效控制Pb的扩散和迁移,Ca元素的存在对伴生污染元素Cd、Ni、Cu和Zn的控制有利;2%(w/w)Ca(H_2PO_4)_2对酸性土壤中Pb的稳定效率可达90%以上;然而CaCO_3、Na_2S_2O_3和含磷物质均能提高土壤As的活性。
     对累积性污染方式的重金属复合污染土壤来说,H_3PO_4能有效降低Pb的活性但增强了As的活性;Na_2S能有效降低Cu的活性。TCLP方法的稳定效率评价结果表明,经T1稳定后,各土壤Pb、Cd、Cu和Zn的稳定效率分别在:80.77~93.16%、64.64~73.07%、5.95~62.47%和9.67~38.17%之间;经T2稳定后,各土壤Pb、Cd、Cu和Zn的稳定效率分别在:47.33~75.44%、13.30~59.89%、54.75~83.08%和26.08~57.41%之间;经T3稳定后,各土壤Pb、Cd、Cu和Zn的稳定效率分别在:75.60~97.24%、74.75~78.77%、75.99~95.12%和25.67~42.41%之间。Tessier提取结果表明,经T1稳定后,各土壤Pb和Cd的残渣态转化率分别在:19.71~44.64%和5.89~35.32%之间;经T3稳定后,各土壤Pb和Cd的残渣态转化率分别在:23.39-45.03%和8.13-39.95%之间。SBET评价结果表明,经T1和T3稳定后,Pb和Cd的生物可给度降低但As的生物可给度升高;经T2稳定后,As、Pb和Cd的生物可给度均降低。MINTEQ模型模拟结果表明,经T1和T3稳定后,土壤Pb的可能控制矿物是PbHPO_4;经T2稳定后,土壤Pb的可能控制矿物是PbCO_3和PbSO_4。XRD和EPMA分析表明,经T1和T3稳定后,土壤中有磷氯铅矿[Pb5(PO_4)_3Cl]矿物形成,经T2和T3稳定后,土壤中有以Cu硫化物为主的多金属硫化物沉淀/矿物生成。T3试剂组合方式对各目标元素的稳定效率及长期稳定性优于T1和T2。
Heavy metals contamination in soils is increasingly under environmental concern, as a result of the rapid industrialization and urbanization. Accumulation of heavy metals in soils and subsequently in waters or in food chain is potential threat to human health. Hence, increasing awareness of the hazard makes it necessary to remediate metal contaminated soils. Heavy metal contaminants cannot be destroyed like organic contaminants but only be relocated from one place to another or transferred its environmental existing speciation. Conventional soil remediation technologies based on the excavation, transport, and landfill of metal contaminated soils are highly effective at a low risk, but the cost is high. In situ chemical immobilization technique is of particular interest because it is relatively cost-effective and less disruptive to the environment.
     The amendments selection and immobile mechanism are the two key aspects which should be taken into account on chemical immobilization study. However, heavy metals speciation distributions in soils between emergency contaminated style and accumulative contaminated style are quite different. Water soluble and exchangeable fractions are the predominant existing species in emergency contaminated soils. In order to hinder the spread of heavy metals in the environment immediately, amendments quick immobile effectiveness should be considered firstly. In accumulative contaminated soils, on the other hand, secondary stable fractions, e.g. carbonate associated fraction, are the predominant existing species, and pose a permanent threat to the environment. Thus, the immobile efficiencies and the long-term stabilities should be taken into account. Unfortunately, discriminatively chemical immobilization research on soils contaminated between these two contamination styles is limited. The purpose of this paper are to select the most effective amendments for emergency multi-heavy metals contaminated soils, to identify immobile efficiencies of different amendments combination for accumulative ones, and to predict metals long-term stability mended by chemical immobile technique.
     In the present study, four soils with various pH values have been sampled. Experimental soils, mimicking emergency multi-heavy metals contaminated soils, synthesized by adding the corresponding soluble metal salts. The quick immobile effectiveness of CaCO_3, Na_2S_2O_3, Fe (OH) 3, K_3PO_4, K_2HPO_4, Ca (H_2PO_4)2 and phosphate rock for each target metal has been examined by using TCLP (Toxicity Characteristic Leaching Procedure) method. The accumulative multi-heavy metals contaminated soils, sampled from an inoperative smelter site in Shenyang, were immobilized with three chemical immobilization treatments, i.e. T1: H_3PO_4+CaO, T2: Na_2S+CaCO_3 and T3: H_3PO_4+Na_2S+CaCO_3. The effectiveness of every treatment for the tested soils was evaluated by using water extraction, TCLP, and Tessier’s sequential extraction method. Metals bioaccessibilities were evaluated by an SBET (simple bioaccessibility extraction test) method mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using XRD (X-ray diffraction), EPMA (electron probe micro-analyzer) and chemical speciation program Visual MINTEQ. Results listed as follow:
     In emergency multi-heavy metals contaminated soils:
     1. CaCO_3 could effectively hinder the spread and translocation of Cu, Zn, Cd, Hg, Ni and Cr in the environment. With the same dosage, the higher clay contents the higher immobile effectiveness.
     2. Na_2S_2O_3 could effectively hinder the spread and translocation of Cr in the environment. Added 2% (w/w) Na_2S_2O_3 to acidic and alkaline soils, the immobile effectiveness of Cr were above 74% and 98%, respectively.
     3. Fe (OH)_3 could effectively hinder the spread and translocation of As in the environment. Added 6% (w/w) Fe (OH)_3, the concentrations of As in TCLP leachates decreased below 0.18 mg·L~(-1) in all tested soils.
     4. Phosphorus-containing materials could effectively hinder the spread and translocation of Pb in the environment. The presence of Ca element would be favor to immobilize Cd, Ni, Cu and Zn, added 2% (w/w) Ca (H_2PO_4)_2 to acidic soils, the immobile effectiveness of soil Pb achieved above 90%.
     5. CaCO_3, Na_2S_2O_3 and phosphorus-containing materials increased the concentrations of As in TCLP leachates.
     In accumulative multi-heavy metals contaminated soils:
     a. In T1-treated soils, the immobile effectiveness of Pb, Cd, Cu and Zn evaluated by TCLP are at the range of 80.77-93.16%, 64.64-73.07%, 5.95-62.47% and 9.67-38.17%, respectively.
     b. In T2-treated soils, the immobile effectiveness of Pb, Cd, Cu and Zn evaluated by TCLP are at the range of 47.33-75.44%, 13.30-59.89%, 54.75-83.08% and 26.08-57.41%, respectively.
     c. In T3-treated soils, the immobile effectiveness of Pb, Cd, Cu and Zn evaluated by TCLP are at the range of 75.60-97.24%, 74.75-78.77%, 75.99-95.12% and 25.67-42.41%, respectively.
     d. T1 and T3 treatments significantly increased the availability of soil As.
     e. Sequential extraction results indicated that the residual fraction conversion ratio of soil Pb and Cd in T1 treated soils at the range of 19.71-44.64% and 5.89-35.32%, respectively, and in T2 treated soils at the range of 23.39-45.03% and 8.13-39.95%, respectively.
     f. SBET results indicated that T1 and T3 treatments were effective in reducing soil Pb and soil Cd bioaccessibilities while significantly increasing soil As bioaccessibility, T2 treatment was effective in reducing Pb, Cd and As bioaccessibilities in all tested soils.
     g. MINTEQ model and activity-ratio diagram indicated that PbHPO_4 controlled Pb~(2+) activities in T1 and T3 treated soils. However, PbCO_3 controlled Pb~(2+) activities in T2 treated soils.
     h. XRD and EPMA elucidated that the mechanism for Pb immobilization were via formation of insoluble chloropyromorphite minerals in T1 and T3 treated soils. The mechanism for Cu, Zn and Cd immobilization were via formation of multi-metal sulfide precipitates (minerals). However, the Cu-sulfide is predominant in multi-metals sulfide precipitates (minerals).
     In conclusion, T3 treatment proved an effective approach to immobilize Pb, Cd, Cu and Zn for accumulatively multiple contaminated soils. Further research needs to be done on the sequential extraction procedure for Fe-rich industrial contaminated soils.
引文
Adriano D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals. 2nd Edn. Springer. New York, 2001.
    Alcorlo P., Otero M., Crehuet M. The Use of the Red Swamp Crayfish (Procam barus Clarkia Girard) As Indicator of the Bioavailability of Heavy Metals in Environmental Monitoring in the River Guadiamar (SW, Spain). Sci. Total Environ, 2006, 366, 380-390.
    Almas A.R., Lombnaes P., Sogn T.A., et al. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere, 2006, 62, 1647-1655.
    Alvarez-Ayuso E. & Garcia-Sanchez A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environ. Pollut, 2003a, 125 (3): 337-344.
    Alvarez-Ayuso E. & Garcia-Sanchez A. Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci. Total Environ, 2003b, 305 (1-3): 1-12.
    Arias M., Barral M.T., Mejuto J.C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48 (10): 1081-1088.
    Arnich N., Lanhers M.C., Laurensot F., et al. In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environ. Pollut, 2003, 124 (1): 139-149.
    Aslanoglou X. An aluminum pillared montmorillonite with fast up take of strontium and cesium from aqueous. Clays and Clay Miner., 1997, 45 (5): 709-717.
    Badreddine R., Humez A.A., Mingelgrin U., et al. Retention of trace metals by solidified/stabilized wastes: Assessment of long-term metal release. Environ. Sci. Technol, 2004, 38, 1383-1398.
    Balasoiu C.F., Zagury G.J., Deschênes L. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. Sci. Total Environ, 2001, 280 (1-3): 239-255.
    Basta N. & Gradwohl R. Estimation of Cd, Pb and Zn Bioavailability in Smelter-Contaminated Soils by a sequential Extraction Procedure. J. Soil Contamination, 2000, 9 (2): 149-164.
    Basta N.T. & McGowen S. L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter2contaminated soil. Environmental Pollution, 2004, 127, 73-82.
    Basta N.T., Gradwohl R., Snethen K.L., et al. Chemical immobilization of lead, zinc and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J. Environ. Qual., 2001, 30, 1222-1230.
    Benjamin D. & Fendorf S. Thermodynamic Constraints on Reductive Reactions influencing them Biogeochemistry of Arsenic in Soils and Sediments. Environ. Sci. Technol., 2009, 43, 4871-4877.
    Boisson J., Ruttens A., Mencha M., et al. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part1: Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environ. Pollut, 1999, 104, 225-233.
    Bose S. & Bhattacharyya A.K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 2008, 70 (7): 1264-1272.
    Brown S.L., Henry C.L., Chaney R.L., et al. Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas. Plant Soil, 2003, 249, 203-215.
    Brown S., Christensen B., Lombi E., et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb and Zn in situ. Environ. Pollut, 2005, 138, 34-45.
    Brown S., Chaney R., Hallfrisch J., et al. In situ soil treatments to reduce the phyto- and bioavailability oflead, zinc and cadmium. J. Environ. Qual., 2004, 33, 522-531.
    Butler B.A., Ranville J.F., Ross P.E. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn and Zn in a mining-impacted stream. Water Res., 2008, 42, 3135-3145.
    Campanella L., Dórazio D., Petronio B.M.. Proposal for a metal speciation study in sediments. Anal. Chem. Acta, 1995, 309: 387-393.
    Cao X.R., Ma L.Q., Chen M., et al. Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J. Environ. Qual., 2003, 32, 526-534.
    Cao R.X., Ma L.Q., Chen M., et al. Phosphate-induced metal immobilization in a contaminated site. Environ. Pollut, 2003, 122, 19-28.
    Cao X.D., Dermatas D., Xu X.F., et al. Immobilization of Lead in Shooting Range Soils by Means of Cement, Quicklime, and Phosphate Amendments. Environ. Sci. Pollut. Res., 2008, 15 (2): 120-127.
    Cao X., Ma L.Q., Chen M., et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ. Sci. Technol., 2002, 36, 5296-5304.
    Cao X. & Ma L.Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut, 2004,132 (3): 435-442.
    Cao R.X., Ma L.Q., Rhue D.R., et al. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ. Pollut, 2004, 131(3): 435-444.
    Cao X.D., Wahbic A., Ma L.N., et al. Immobilization of Zn, Cu and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater, 2009, 164, 555-564.
    Cao X.D. & Dermatas D. Evaluating the Applicability of Regulatory Leaching Tests for Assessing Lead Leachability in Contaminated Shooting Range Soils. Environ. Monit. Assess, 2008, 139, 1-13.
    Carlson L., Bigham J.M., Schwartzman U., et al. Scavenging of As from Acid mine drainage by Schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ. Sci. Technol., 2002, 36, 1712-1719.
    Chao L., Zhou Q., Chen S., et al. Speciation distribution of lead and zinc in soil profiles of the Shenyang smeltery in Northeast China. Environ. Contam.Toxicol. 2006, 77, 874-881.
    Chen S.B., Xu M.G., Ma Y.B., et al. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environ. Saf, 2007, 67, 278-285.
    Chen X., Wright J.V., Conca J.L., et al. Effect of pH on heavy metal sorption on mineral apatite. Environ. Sci. Technol., 1997, 31, 624-631.
    Chen M., Ma L.Q., Singh S.P., et al. Field demonstration of in situ immobilization of soil Pb using P amendments. Adv. in Environ. Res., 2003, 8 (1): 93-102.
    Cheung C.W., Porter J.F., Mckay G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res., 2001, 35, 605-612.
    Chirenje T. & Ma L.Q. Effects of acidification on metal mobility in a paper mill-ash amended soil. J. Environ. Qual., 1999, 28, 760-767.
    Chiu V.Q. & Hering J.G. Arsenic adsorption and oxidation at manganite surfaces. I: Method for simultaneous determination of adsorbed and dissolved arsenic species. Environ. Sci. Technol., 2000, 34, 2029-2034.
    Chou J-D., Wey M-Y., Chang S-H. Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. J. Hazard. Mater, 2009, 162, 1000-1006.
    Chrysochoou M., Dermatas D., Grubb D.G. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J. Hazard. Mater, 2007, 144, 1-14.
    Ciardelli M.C., Xu H., Sahai N. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater. Water Res., 2008, 42, 15-24.
    Concas A., Patteri C., Cincotti A., et al. Metal contamination from abandoned mining sites: experimental investigation on possible remediation techniques. Land Contam. Recl, 2004, 12, 9-20.
    Concas A., Montinaro S., Pisu M., et al. Mechanochemical remediation of heavy metals contaminated soils: modeling and experiments. Chem. Eng. Sci., 2007, 62, 5186-5192.
    Covelo E.F., Vega F.A., Andrade M.L. Simultaneous sorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. J. Hazard. Mater, 2007, 147, 852-861.
    Cornell R.M. & Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, second ed. 2003, Wiley-VCH, Weinheim, Germany.
    Dermatas D. & Meng X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 2003, 70 (3-4): 377-394.
    Dermatas D., Shen G., Chrysochoou M., et al. Pb speciation versus TCLP release in army firing range soils. J. Hazard. Mater., 2006, 136, 34-46.
    Devau Nicolas, Le Cadre Edith, Hinsinger Philippe, et al. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modeling approaches. Appl. Geochem, 2009, 24, 2163-2174.
    Diaz X., Johnson W., Oliver W., et al. Volatile Selenium Flux from the Great Salt Lake, Utah. Environ. Sci. Technol., 2009, 43, 53-59.
    Diels L., van der Lelie N., Bastiaens L. New developments in treatment of heavy metal contaminated soils. Environ. Sci. Biotechnol, 2002, 1, 75-82.
    Dixit S. & Hering J.G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol., 2003, 37, 2-9.
    Dudka S. & Adriano D.C. Environmental impacts of metal ore mining and processing: a review. J. Environ. Qual., 1997, 26, 590-602.
    Duker A.A., Carranza E.J.M., Hale M. Arsenic geochemistry and health. Environ. Int., 2005, 31, 631-641.
    EA (The Environment Agency), DEFRA (Department of Environment, Food and Rural Affairs). The Contaminated Land Exposure Assessment (CLEA) Model: Technical Basis and Algorithms. London, 2002.
    Ellickson K.M, Meeker R.J., Gallo M.A., et al. The Bioaccessibility of Low Level Radionuclides From Two Savannah River Site Soils. Arch. Environ. Contam. Toxicol, 2001, 40, 128-135.
    Fernández M., Ari?o C., Díaz-Cruz J.M., et al. Soft modeling approach applied to voltammetric data: study of electrochemically labile metal-glycine complexes. J. Electroanal. Chem., 2001, 505, 44-53.
    Fitz W.J. & Wenzel W.W. Arsenic transformations in the soilrhizosphere-plant system: fundamentals and potential application to phyto-remediation. J. Biotechnol., 2002, 99 (3): 259-278.
    Ford R.C. & Sparks D.L. The nature of Zn precipitates formed in the presence of propylene. Environ. Sci. Technol., 2000, 34, 2479-2483.
    Freeman G.B., Johnson J.D., Killinger J.M. Relative Bioavailability of Lead from Mining Waste Soil in Rats. Fundamental and Appl. Toxicology, 1992, 19, 388-398.
    Freeman G.B., Schoof R.A., Ruby M.V. Bioavailability of Arsenic in Soil and House Dust Impacted by Smelter Activities Following Oral Administration in Cynomolgus Monkeys. Fundamental and Appl. Toxicology, 1995, 28, 215-222.
    FRTR. Remediation Technologies Screening Matrix and Reference Guide. Version 4.0, USA, 2002.URL: http://www.frtr.gov/matrix2.
    Furnare L.J., Vailionis A.V., Strawn D.G. Polarized XANES and EXAFS spectroscopic investigation intocopper (II) complexes on vermiculite. Geochem. Cosmochim. Acta, 2005, 69, 5219-5231.
    Gao Y. & Mucci A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta, 2001, 65 (14): 2361-78.
    Garcia-Sanchez A., Alvarez-Ayuso E. Rodriguez-Martin F. Sorption of As (V) by some oxyhydroxides and clay minerals: Application to its immobilization in two polluted mining soils. Clay minerals, 2002, 37 (1): 187-194.
    Gary M., Pierzynski G.M., Vance G.F. Soils and environmental quality (2nd Edition). London: CRC Press. 2003.
    GB 15618—1995.中华人民共和国国家标准:土壤环境质量标准.
    GB 5085.3—1996.中华人民共和国国家标准:危险废物鉴别标准—浸出毒性鉴别.
    GB 5086.1—1997.中华人民共和国国家标准:固体废物浸出毒性浸出方法—翻转法.
    GB 5086.2—1997.中华人民共和国国家标准:固体废物浸出毒性浸出方法—水平振荡法.
    GB 5085.3—2007.中华人民共和国国家标准:危险废物鉴别标准—浸出毒性鉴别.
    Geebelen W., Adriano D.C., Lelie D. et al. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil, 2003, 249, 217-228.
    Gleyzes C., Tellier S., Sabrier R., et al. Arsenic characterization in industrial soils by chemical extractions. Environ. Technol, 2001, 22 (1): 27-38.
    Goldberg S. & Johnston C.T. Mechanism of arsenic adsorption on amorphous oxides: evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid. Interface Sci., 2001, 234, 204-16.
    Gr?fe M., Nachtegaal M., Sparks D.L. Formation of metal-arsenate precipitates at the goethite-water interface. Environ. Sci. Technol, 2004, 38 (24): 6561-6570.
    Gray C.W. & McClure R.G. Soil factors affecting heavy metal solubility in some New Zealand soils. Water, Air, and Soil Pollution, 2006, 175, 3-14.
    Gryschko R., Kuhnle R., Terytze K., et al. Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution. Evaluation of DIN 19730. J. Soils and Sediments, 2005, 5 (2): 101-106.
    Gronflaten L. & Steinnes E. Comparison of four different extraction methods to assess plant availability of some metals in organic forest soil. Communications in Soil Sci. and Plant Anal, 2005, 36 (19-20): 2699-2718.
    Guo G.L., Zhou Q.X., Koval P.V., et al. Speciation distribution of Cd, Pb, Cu and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Australian J. Soil Res, 2006, 44 (2): 135-142.
    Gupta A.K. & Sinha S. Role of Brassica juncea (L.) Czern. (Var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: Selection of extractant for metal bioavailability. J. Hazard. Mater, 2006a, 136 (2): 371-378.
    Gupta A.K. & Sinha S. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 2006b, 64 (1): 161-173.
    Gustafsson J.P. Visual MINTEQ (version 2.61), Department of Land and Water Resources Engineering, The Royal Institute of Technology, Stockholm, Sweden, 2005. http://www.lwr.kth.se/english/OurSoftWare/Vminteq/.
    Hamon R.E., Mclaughlin M.J., Cozens G. Mechanisms of attenuation of metal availability in In-Situ remediation treatments. Environ. Sci. Technol., 2002, 36 (18): 3991-3996.
    Han M.J., Hao J., Christodoulatos C., et al. Direct evidence of arsenic (III)-carbonate complexes obtained using electrochemical scanning tunneling microscopy. Anal. Chem, 2007, 79, 15-22.
    Hani H. & Gupta S. Chemical methods for the biological characterization of metal in sludge and soil. Commission of the European Communities, 1986, Report 10361, 157-167.
    Harmsen H. Behavior of Heavy Metals in Soils. Wageningen: Center for Agricultural Publishing and Documentation. 1977, 6-14.
    Hartley W., Edwards R., Lepp N.W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short and long term leaching tests. Environ. Pollut, 2004, 131, 495-504.
    Hashimoto Y., Smyth T.J., Hesterberg D., et al. Soybean root growth in relation to ionic composition in magnesium-amended acid subsoils: implications on root citrate ameliorating aluminum constraints. Soil Sci. Plant Nutr, 2007, 53, 753-763.
    Hashimoto Y. & Sato T. Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere, 2007, 69, 1775-1782.
    Hettiarachchi G.M., Pierzynski G.M., Ransom M.D. In situ stabilization of soil lead using phosphorus and manganese oxides. Environ. Sci. Technol., 2000, 21, 4614-4619.
    Hettiarachchi G.M., Pierzynski G.M., Ransom M.D. In situ stabilization of soil lead using phosphorus. J. Environ. Qual., 2001, 30 (4): 1214-1221.
    Hizal J. & Apak R. Modeling of copper (II) and lead (II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J. Colloid Interface Sci., 2006, 295 (1): 1-13.
    HJ/T299—2007.中华人民共和国环境保护行业标准:固体废物浸出毒性浸出方法—硫酸硝酸法.
    Hohmann C., Winkler E., Morin G., et al. Anaerobic Fe (II)-Oxidizing Bacteria Show As Resistance and Immobilize As during Fe (III) Mineral Precipitation. Environ. Sci. Technol., 2010, 44 (1): 94-101.
    Hollibaugh J., Carini S., Gurleytik H., et al. Distribution of arsenic species in alkaline hypersaline, Mono Lake, CA and response to seasonal stratification and anoxia. Geochim. Cosmochim. Acta, 2005, 69 (8): 25-37.
    Hoods P.S. & Alloway B.J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge applied soils. J. Agric. Sci., 1996, 127, 289-294.
    Houba V.J.G., Lexmond T.M., Novozamsky I., et al. State of the art and future developments in soil analysis for bioavailability assessment. Sci. Total Environ, 1996, 178 (1-3): 21-28.
    Hsu J.H. & Lo S.L. Characterization and extractability of copper, manganese, and zinc in swine manure composts. J. Environ. Qual., 2000, 29 (2): 447-453.
    Huang P.M. Future prospects for soil chemistry. Madison: Soil Science Society of America, Inc., 1998, 103-138.
    Impellitteri C.A. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site. Sci. Total Environ, 2005, 345 (1-3): 175-190.
    Jacobson A.R., Dousset S., Andreux F., et al. Electron Microprobe and Synchrotron X-ray Fluorescence Mapping of the Heterogeneous Distribution of Copper in High-Copper Vineyard Soils. Environ. Sci. Technol., 2007, 41 (18): 6343-6349.
    Jackson B.P. & Miller W.P. Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge- amended soil. J. Environ. Qual., 2000, 29 (2): 430-436.
    Jain A., Raven K.P., Loeppert R.H. Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol., 1999, 33, 1179-1184.
    Jain A. & Loeppert R.H. Effect of competing anions on arsenate and arsenite adsorption by ferrihydrite. J. Environ. Qual., 2000, 29, 22-30.
    Jasenka Vuceta & James J. Morgan. Chemical modeling of trace metals in fresh waters: role of complexation and adsorption. Environ. Sci. Technol., 1978, 12 (12): 1302-1309.
    Ji-Tao S., Bao-guo T., Hong-tao W., et al. Assessing availability, phytotoxicity and bioaccumulation of lead to ryegrass and millet based on 0.1 M Ca (NO3)2 extraction. J. Environ. Sci, 2006, 18 (5): 958-963.
    Juhasz A.L., Smith E., Weber J. Comparison of In Vivo and In Vitro Methodologies for the Assessment of Arsenic Bioavailability in Contaminated Soils. Chemosphere, 2007, 69, 961-966.
    Juhasz A.L., Weber J., Smith E., et al. Assessment of Four Commonly Employed in Vitro Arsenic Bioaccessibility Assays for Predicting in Vivo Relative Arsenic Bioavailability in Contaminated Soils. Environ. Sci. Technol., 2009, 43, 9487-9494.
    Karamalidis A.K. & Voudrias E.A. Anion Leaching from Refinery Oily Sludge and Ash from Incineration of Oily Sludge Stabilized/Solidified with Cement. Part II: Modeling. Environ. Sci. Technol., 2008, 42, 6124-6130.
    Keizer P. Adsorption of heavy metals by clay aluminum hydroxide complexes. Environ. Progress, 1991, 190 (6): 177-203.
    Khan S., Cao Q., Zheng Y.M., et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China Environ. Pollut, 2008, 152 (3):686-692.
    Kinraide T.B. Reconsidering the rhizotoxicity of hydroxyl, sulphate and fluoride complexes of aluminum. J. Exp. Bot, 1997, 48, 1115-1124.
    Kim J.Y., Kim K.W., Lee J.U. Assessment of As and Heavy Metal Contamination in the Vicinity of Ducku Au-Ag Mine, Korea. Environ. Geochem. Health, 2002, 24, 215-227.
    Kim J.Y., Davis A.P., Kim K.W. Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol., 2003, 37, 189-195.
    Kim C., Lee Y., Ong S.K. Factors affecting EDTA extraction of lead from lead contaminated soils. Chemosphere, 2003a, 51, 845-853.
    Kim I.S., Kang K.H., Johnson-Green P., Lee, E.J. Investigation of heavy metal accumulation in polygonum thunbergii for phytoextraction. Environ. Pollut, 2003b, 126, 235-243.
    Kizilkaya R. Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecol. Eng., 2004, 22 (2): 141-151.
    Kumpiene J., Lagerkvist A., Maurice C., Stabilization of As, Cr, Cu Pb and Zn in soil using amendments-a review, Waste Manag. 2008, 28, 215-225.
    Lattuada R.M., Menezes C.T.B., Pavei P.T., et al. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. J. Hazard. Mater, 2009, 163, 531-537.
    Lee C.G., Chon H.T., Jung M.C. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Appl. Geochem., 2001, 16, 1377-1386.
    Lenoble V., Bouras O., Deluchat V., et al. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid. Interface Sci., 2002, 255, 52-8.
    Leupin O.X. & Hug S.J. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res., 2005, 39 (9): 1729-1740.
    Li Y.H. Ultimate removal mechanisms of elements from the ocean. Geochim. Cosmochim. Acta, 1981, 45, 1659-1664.
    Li Y., Shahrivari Z., Liu P.K.T., et al. Removal of Trace Levels of Arsenic and Selenium from Aqueous Solutions by Calcined and Uncalcined Layered Double Hydroxides (LDH). Ind. Eng. Chem. Res., 2005, 44, 6804-6815.
    Liao V.H.C., Chie M.T., Tseng Y.Y. Assessment of Heavy Metal Bioavailability in Contaminated Sediments and Soils Using Green Fluorescent Protein-Based Bacterial Biosensors. Environ. Pollut, 2006, 142, 17-23.
    Liang Y.Q., Pan W., Liu T.T., et al. Speciation of heavy metals in soil from Zhangshi soil of Shenyang contaminated by industrial wastewater. Environ. Sci. Manag, 2006, 31, 43-45.
    Lide D.R. CRC Handbook of Chemistry and Physics, 89th Edition (Internet Version 2009), CRC Press/Taylor and Francis, Boca Raton, FL.
    Lin M.C. & Liao C.M. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern. Taiwan. Food Chem. Toxicol, 2008, 46, 701-709.
    Lindsay W.L. Chemical Equilibria in Soils, John Wiley & Sons Inc., New York, 1979, 1-449.
    Liu L.N., Chen H.S., Cai P., et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater, 2009, 163, 563-567.
    Lombi E., Hamon R.E., Mcgrath S.P. Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fractions of metals using isotopic techniques. Environ. Sci. Technol., 2003, 37 (5): 979-984.
    Lower S. K., Maurice P. A., Traina S. J. Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: Direct evidence of homogeneous nucleation. Geochimica Et Cosmochimica Acta, 1998, 62 (10): 1773-1780.
    Lu X.W., Wang L.J., Li L.Y., et al. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater, 2010, 173 (1-3): 744-749.
    Ma Q.Y., Traina S.J., Logan T.J. In situ lead immobilization by apatite. Environ. Sci. Technol., 1993, 27, 1803-1810.
    Ma L.Q. & Rao G.N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. J. Environ. Qual., 1997, 26, 88-794.
    Madrid F., Romero A.S., Madrid L., et al. Reduction of availability of trace metals in urban soils using inorganic amendments. Environ. Geochem. Health, 2006, 28, 365-373.
    Magalhaes M.C.F. Arsenic: An environmental problem limited by solubility. Pure and Appl. Chem., 2002, 74 (10): 1843-1850.
    Mahler R.J., Bingham F.T., Sposito G., et al. Cadmium-enriched sewage sludge application to acid and calcareous soils: Relation between treatment, cadmium in saturation extracts, and cadmium uptake. J. Environ. Qual., 1980, 9 (3): 359-364.
    Maier M.A., McLaughlin M.J., Heap M. Effect of current season application of calcitic lime on soil pH, yield and Cd concentration in potato (Solanum tuber, rum l) tubers. Nutr. Cycling Agroecosyst, 1997, 47, 29-40.
    Manceau A., Marcus M.A., Tamura N., et al. Natural speciation of Zn at the micrometer in a clayey soil using X-ray fluorescence, adsorption, and diffraction. Geochem. Cosmochim. Acta, 2004, 68 (11): 2467-2483.
    Martley E. & Gulson B.L. Heavy metal partitioning in soil profiles in the vicinity of an industrial complex and potential health implications, in International conference on heavy metals in the environment NO12, Grenoble, France, vol. 107, 2003, pp. 831-834.
    Martinez C.E. & Motto H.L., Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut, 2000, 107, 153-158.
    McGowen S.L. In situ chemical treatments for reducing heavy metal solubility and transport in smelter contaminated soil, Ph.D. Dissertation, Oklahoma State University, Stillwater, 2000.
    McGowen S.L., Basta N.T., Brown G.O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J. Environ. Qual, 2001, 30, 493-500.
    McGrath S.P. & Cegarra J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J. Soil Sci., 1992, 43, 313-321.
    Melamed R., Cao X., Chen M., et al. Field assessment of lead immobilization in a contaminated soil after phosphate application. Sci. Total Environ, 2003, 305 (1-3): 117-127.
    Mench M., Vangronsveld J., Clijsters H., et al. In situ metal immobilization and phytostabilization of contaminated soils. In: Terry N., Banuelos G. (Eds.), Phyto-remediation of contaminated soil and water. 2000, Lewis Publishers, Boca Raton, Florida, USA.
    Mench M., Bussiere S., Boisson J., et al. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatment. Plant and Soil, 2003, 249, 187-202.
    Menzies N.W., Donn M.J., Kopittke P.M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut, 2007, 145 (1): 121-130.
    Miretzky P. & Fernandez-Cirelli A. Phosphates for Pb immobilization in soils: a review. Environ. Chem. Lett., 2008, 6, 121-133.
    Montinaro S., Concas A., Pisu M., et al. Remediation of heavy metals contaminated soils by ball milling. Chemosphere, 2007, 67, 631-639.
    Montinaro S., Concas A., Pisu M., et al. Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chem. Eng. J., 2008, 142, 271-284.
    Moore T.J., Rightmire C.M., Vempati R.K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution. Soil & Sediment Contamination, 2000, 9 (4): 375-405.
    Moulin I., Stone W.E.E., Sanz J., et al. Lead and zinc retention during hydration of tri-calcium silicate: A study by sorption isotherms and 29Si nuclear magnetic resonance spectroscopy. Langmuir, 1999, 15, 2829-2835.
    Naidu R., Bolan N.S., Kookana R.S. Ionic strength and pH effects on surface charge and Cd sorption characteristics of soils. J. Soil Sci., 1994, 45, 419-429.
    Nordstrom D.K. & Archer D.G. Arsenic thermodynamic data and environmental geochemistry. Boston, Kluwer Academic Publ., 2003: 1-25.
    Nriagu J.O. A silent epidemic of environmental metal poisoning. Environ. Pollut, 1988, 50, 139-161.
    Ondrasek G., Romic D., Rengel Z., et al. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil. Sci. Total Environ, 2009, 407, 2175-2182.
    Oomen A.G., Hack A., Minekus M., et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ. Sci. Technol., 2002, 36, 3326-3334.
    Ownby D.R., Galvan K.A., Lydy M.J. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Environ. Pollut, 2005, 136 (2): 315-321.
    Paff S.W. & Bosilovich B.E., Use of lead reclamation in secondary lead smelters for the remediation of lead contaminated sites. J. Hazard. Mater, 1995, 40, 139-164.
    Palomo A. & Palacios M. Alkali-activated cementitious materials: Alternative matrices for the immobilization of hazardous waste. Part II: Stabilization of chromium and lead. Cem. Con. & Res, 2003, 33, 289-298.
    Peng J.F., Song Y.H., Yuan P., et al. The remediation of heavy metals contaminated sediment. J. Hazard. Mater, 2009, 161, 633-640.
    Peryea F.J. Phosphate-induced release of arsenic from soils contaminated with lead and arsenic. Soil Sci. Soc. Am. J., 1991, 55, 1301-1305.
    Pierce M.L. & Moore C.B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982, 16, 1247-53.
    Planer-Friedrich B., London J., McCleskey R.B., et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical role. Environ. Sci. Technol., 2007, 41 (15): 5245-51.
    Porter S.K., Scheckel K.G., Impellitteri C.A., et al. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit. Rev. Env. Sci. Technol., 2004, 34, 495-604.
    Raven K.P., Jain A., Loeppert R.H. Arsenite and arsenate adsorption on Ferrihydrite: kinetics, equilibrium and adsorption envelopes. Environ. Sci. Technol., 1998, 32 (3): 344-349.
    Raicevic S., Kaludjerovic-Radoicic T., Zouboulis A.I. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experiment verification. J. Hazard. Mater, 2005, B117, 41-53.
    Rao C.R.M., Sahuquillo A., Lopez Sanchez J.F. A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water Air Soil Pollut, 2008, 189, 291-333.
    Rauret G., Lopez-Sanchez J.F., Sahuquillo A., et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit, 1999, 1 (1): 57-61.
    Redman A.D., Macalady D.L., Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol, 2002, 36 (13): 2889-2896.
    Rekasi M. & Filep T. Effect of microelement loads on the element fractions of soil and plant uptake. Agrokemiaes Talajtan, 2006, 55 (1): 213-222.
    Ritcey G.M. Tailing’s management in gold plants. Hydrometallurgy, 2005, 78 (1-2): 3-20.
    Rmalli S.W.A., Harrington C.F., Ayub M., Haris P.I. A biomaterial based approach for arsenic removal from water. J. Environ. Monit, 2005, 7, 279-282.
    Robins R.G. The solubility of scordodite, FeAsO4·2H2O: Discussion. 1987, 72, 842-844.
    Robinson B.H., Brooks R.R., Clothier B.E. Soil amendments affecting nickel and cobalt up take by Berkheya coddit: Potential use for phytomining and phytoremediation. Annals of Botany, 1999, 84, 689-694.
    Roger D.S. & Shi C.J. Stabilization and solidification of Hazardous, Radioactive and Mixed Wastes. Boca Raton London, New York, Washington D.C. CRC. 2005, 1-378.
    Rouff A.A., Elzinga E.J., Reeder R.J. X-ray absorption spectroscopic evidence for the formation of Pb (II) inner-sphere adsorption complexes and precipitates at the calcite-water interface. Environ. Sci. Technol., 2004, 38, 1700-1707.
    Ruby M.V., Davis A., Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead. Environ. Sci. Technol., 1994, 28, 646-654.
    Ruby M.V., Davis A., Link T.E. Development of An In Vitro Screening Test to Evaluate the In Vivo Bioaccessibility of Ingested Mine Waste Lead. Environ. Sci. Technol., 1993, 27, 2870-2877.
    Ruby M.V., Davis A., Schoof R., et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol, 1996, 422-430.
    Ruby M.V., Schoof R., Brattin W., et al. Advances in Evaluating the Oral Bioavailability of Inorganics in Soil for Use in Human Health Risk Assessment. Environ. Sci. Technol, 1999, 33 (21): 3697-3705.
    Ryan J.A., Zhang P.C., Hesterberg D., et al. Formation of chloro-pyromorphite in a lead-contaminated soilamended with hydroxyapatite. Environ. Sci. Technol., 2001, 35, 3798-3803.
    Sadiq M. Environmental behavior of arsenic in soils: Theoretical. Water, Air and Soil Pollut, 1983, 20, 369-377.
    Sanchez-Monedero M.A., Mondini C., Nobili M., et al. Land application of biosolids: Soil response to different stabilization degree of the treated organic matter. Waste Manage, 2004, 24, 325-332.
    Sastre J., Hernandez E., Rodriguez R., et al. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci. Total Environ, 2004, 329, 261-281.
    Scheckel K.G. & Ryan J.A. Spectroscopic speciation and quantification of lead in phosphate-amended soils. J. Environ. Qual., 2004, 33, 1288-1295.
    Schroder J.L., Basta N.T., Casteel S.W. Validation of the In Vitro Gastrointestinal (IVG) Method to Estimate Relative Bioavailable Lead in Contaminated Soils. J. Environ. Qual., 2004, 33, 513-521.
    Scheckel K.G. & Ryan J.A.. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid. Sci. Total Environ, 2003, 302, 253-265.
    Scheckel K.G., Ryan J.A., Allen D., et al. Determining speciation of Pb in phosphate-amended soils: Method limitations. Sci. Total Environ, 2005, 350 (1-3): 261-272.
    Seaman J.C., Arey J.S., Bertsch P.M. Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J. Environ. Qual., 2001, 30 (2): 460-469.
    Selena Montinaro, Alessandro Concas, Massimo Pisu, et al. Rationale of lead immobilization by ball milling in synthetic soils and remediation of heavy metals contaminated tailings. Chem. Eng. J., 2009, 155 (1-2): 123-131.
    Sharma V.K. & Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Intl., 2009, 35 (4): 743-759.
    Sheppard S.C., Evenden W.G., Schwartz W.J. Ingested Soil: Bioavailability of Sorbed Lead, Cadmium, Cesium, Iodine, and Mercury. J. Environ. Qual., 1995, 24, 498-505.
    Sherman D.M. & Randall S.R. Surface complexation of arsenic (V) to iron (III) (hydr) oxides: structural mechanism from abinitio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta, 2003, 67 (22): 4223-4230.
    Shiralipour A., Ma L., Cao R. Effects of compost on arsenic leachability in soils and arsenic uptake by a fern. 2002. Florida Centre for Solid Hazardous Waste Management, State University System of Florida, Gainesville, Florida. Report #02-04.
    Shi Z. & Erickson L.E. Mathematical model development and simulation of in situ stabilization in lead-contaminated soils. J. Hazard. Mater, 2001, 87 (1-3): 99-116.
    Singh B. & Rimier K. Cadmium uptake by barely from different Cd sources at two pH levels. Geoderm, 1998, 84, 185-194.
    Singh B., Alloway B.J., Bochereau F.J.M. Cadmium sorptions behave ion of natural and synthetic zeolites. Commun. Soil Sci. Plant Anal., 2000, 31, 2775-2786.
    Smi?iklas A., Onjia A., Rai?evi? S., et al. Factors influencing the removal of divalent cations by hydroxyapatite. J. Hazard. Matter, 2008, 152, 876-884.
    Sparks, D.L. Environmental soil chemistry (2nd Edition). New York: Academic Press, 2003, 1-352.
    Sparrow A. & Salardini A.A. Effects of residues of lime and phosphorus fertilizer on cadmium uptake and yield of potatoes and carrots. J. plant nutrition, 1997, 20 (1): 1333-1349.
    Stǔben D., Berner Z., Chandrasekharam D. et al. Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl. Geochem., 2003, 18 (9):1417-1434.
    Szakova J., Tlustos P., Balik J., et al. Application of sequential extraction procedure to evaluation of influence of sewage sludge amendment on Cd and Zn mobility in soil. Chemicke Listy, 2001a, 95 (10): 645-648.
    Szakova J., Tlustos P., Balik J., et al. Efficiency of extractants to release As, Cd and Zn from main soil compartments. Analusis, 2001b, 28 (9): 808-812.
    Stauder S., Raue B., Sacher F. Thioarsenates in sulfidic waters. Environ. Sci. Technol., 2005, 72 (3): 2043-2049.
    Stegmann R., Brunner G., Calmano W., et al. Treatment of Contaminated Soil-Fundamentals, Analysis, Applications, Springer, 2001, 1-660.
    Stollenwerk K.G. Geochemical processes controlling transport of arsenic in groundwater: a review-Arsenic in ground water. Boston: Kluwer Academic Publishers, 2003, 67-100.
    Straalen N.M., Donker M.H., Vijver M.G. Bioavailability of Contaminants Estimated from Uptake Rates Into Soil Invertebrates. Environ. Pollut, 2005, 136, 409-417.
    Stumm W. Chemistry of the Solid-Water Interface. New York: John Wiley & Sons, 1992.
    Sturchio N.C., Chiarello R.P., Cheng L. et al. Lead adsorption at the calcite-water interface: Synchrotron X-ray standing wave and X-ray reflectivity studies. Geochim. Cosmochim. Acta, 1997, 61, 251-263.
    Su D.C. & Wong J.W.C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ. Intl, 2004, 29 (7): 895-900.
    Tack, F.M.G. & Verloo M.G. Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. Intern. J. Anal. Chem, 1995, 59, 225-238.
    Takeda A., Tsukada H., Takaku Y., et al. Extractability of major and trace elements from agricultural soils using chemical extraction methods: application for phytoavailability assessment. Soil Sci. Plant Nutrition, 2006, 52 (4), 406-417.
    Tanga X.Y., Zhua Y.G., Chena S.B., et al. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environ. Intl., 2004, 30, 531-537.
    Terzano R., Spagnuolo M., Medici L., et al. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. Environ. Sci. Technol., 2005, 39, 6280-6287.
    Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 1979, 51 (7): 844-851.
    Thailand. Pollution Control Department. 2004. http://www.pcd.go.th/Info_serv/en_reg_std_soil01.html. Thawornchaisit U. & Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. J. Hazard. Mater, 2009,165, 1109-1113.
    Theofanis Z.U., Astrid S., Lidia G., et al. Contaminants in sediments: remobilization and demobilization. Sci. Total Environ, 2001, 266, 195-202.
    Tipping E., Rieuwerts J., Pan G. The solid solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in up land soils of England and Wales. Environ. Pollution, 2003, 125, 213-225.
    Tsadilas C.D., Dimoyiannis D., Samaras V. Effect of zeolite application and soil pH on cadmium sorption in soils. Commun. Soil Sci. Plant Anal., 1997, 28, 1591-1602.
    Ure A.M., Quevauviller P., Muntau H., et al. Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem., 1993, 51 (1-4): 135-151.
    U.S.EPA, 1982. Guide to the Disposal of Chemically Stabilized and Solidified Waste, SW-872, Office ofWater and Waste Management, Washington, DC.
    U.S.EPA, 1984. Cost and benefits of reducing lead in gasoline. Draft final report, Office of policy analysis, US EPA 230-03-84-005, Washington DC.
    U.S.EPA. Engineering Bulletin: Selection of Control Technologies for Remediation of Lead Battery Recycling Sites, U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, OH, 1992.
    U.S.EPA, Test Methods for Evaluating Soil Waste. Vol. IA: Laboratory Manual Physical chemical Methods, 20460, EPA-SW-846, Washington, DC, 1995.
    U.S.EPA, Test Methods for Evaluating Solid Waste, SW846, third ed., Office of Solid Waste and Emergency Response, Washington, DC, 1996.
    U.S.EPA, Test methods for evaluating solid waste, physical/chemical methods. http://www.epa.gov/SW-846/main.htm (Online). (SW 846 method 1311, 1312, 1320).
    U.S.EPA, 2003: http://ww.amazon.com/exec/obidos/tg/detail/-/B00006KD81/qid=1059618859/sr=8-4/ref=sr-8-4/104-4296885-5295110?v=glance&s=magazines&n=507846.
    Uta K. & Jens W. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci. Total Environ, 2006, 367, 855-871.
    Walcek C., Santis S.D., Gentile T. Preparation of mercury emissions inventory for eastern North America. Environ. Pollut, 2003, 123, 375-381.
    Wang B.L., Xie Z.M., Chen J.J., et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J. Environ. Sci., 2008, 20, 1109-1117.
    Wang G., Su M.Y., Chen Y.H., et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut, 2006, 144 (1): 127-135.
    Wang X.S., Qin Y., Chen Y.K. Leaching Characteristics of Arsenic and Heavy Metals in Urban Roadside Soils Using a Simple Bioavailability Extraction Test. Environ. Monit. Assess, 2007, 129, 221-226.
    Wang Y.M., Chen T.C., Yeh K.J., et al. Stabilization of an elevated heavy metal contaminated site. J. Hazard. Mater, 2001, B88, 63-74.
    Warren G.P. & Alloway B.J. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J. Environ. Qual., 2003, 32 (3): 767-772.
    Warren G.P., Alloway B.J., Lepp N.W., et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ, 2003, 311, 19-33.
    Wenzel W.W., Kirchbaumer N., Prohaska T., et al. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta, 2001, 436 (2): 309-323.
    Wilkin R.T., Wallschlager D., Ford R.G. Speciation of arsenic in sulfidic waters. Geochem. Trans., 2003, 4, 1-7.
    Xu H., Allard B., Grimvall A. Influence of pH and organic substance on the adsorption of arsenic (V) on geologic materials. Water Air Soil Pollut, 1988, 40 (3-4): 293-305.
    Xu Y., Schwartz F.W., Tralna S.J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol, 1994, 28, 1472-1480.
    Xu Y. & Schwartz F.W. Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol, 1994, 15, 187-206.
    Yan-Chu H. Arsenic distribution in soils. In: Arsenic in the environment, Part I: Cycling and characterization, Nriagu, O; J., (Ed.), Wiley J. & Sons, Inc., New York, pp 17-49, 1994.
    Zhang P. & Ryan J.A. Transformation of Pb (II) from cerussite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environ. Sci. Technol., 1999, 33, 625-630.
    Zheljazkov V.D. & Warman P.R. Phytoavailability and fractionation of copper, manganese and zinc in soil following application of two composts to four crops. Environ. Pollut, 2004, 131, 187-195.
    Zwonitzer J.C., Pierzynski G.M., Hettiarachchi G.M. Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal contaminated soil. Water, Air, and Soil Pollut, 2003, 143, 193-209.
    中国环境监测总站编著,土壤元素的近代分析方法.北京:中国环境科学出版社, 1992.
    中国环境监测总站编,土壤元素的近代分析方法.北京:中国环境科学出版社, 1992.
    中国科学院南京土壤研究所编,土壤理化分析.上海:上海科技出版社, 1978.
    陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社, 1996.
    陈平,陈研,白璐.日本土壤环境质量标准与污染现状.中国环境监测, 2004, 20 (3): 62-66.
    党志,刘从强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展.地球科学进展, 2001, 16 (1): 86-92.
    郭平.长春市土壤重金属污染机理与防治对策研究: [博士学位论文].吉林:吉林大学, 2005.
    胡付欣,杨性坤.改型膨润土及其在含铬废水处理中的应用研究.非金属矿, 2002, 21 (1): 46-47.
    胡留杰,白玲玉,李莲芳,等土壤中砷的形态和生物有效性研究现状与趋势.核农学报, 2008, 22(3): 383-388..
    李学垣.土壤化学.北京:高等教育出版社, 2001: 1-406.
    李瑞美,方玲,王果.重金属污染土壤的有机-中性化修复技术试验.福建农业学报, 2004, 19 (1): 50-53.
    李红阳,牛树银,王宝德.矿物材料与环境污染治理—以粘土矿物和沸石为例.北京地质, 2001, 13 (4): 8-12.
    李俊,黄韵,马晓燕.粘土及改性粘土的应用进展.矿业研究与开发, 2003, 23 (5): 36-38.
    廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究.农业环境保护, 1998, 17 (3): 101-103.
    卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布.环境化学, 2003, 22 (3): 131-136.
    雷冬梅,段昌群,王明.云南不同矿区废弃地土壤肥力与重金属污染评价.农业环境科学学报2007, 26 (2): 612-616.
    雷鸣,廖柏寒,秦普丰.土壤重金属化学形态的生物可利用性评价.生态环境, 2007, 16 (5): 1551-1556.
    梁美娜,刘芳,刘海玲,等.氢氧化铁胶体对砷吸附行为的初步研究.工业用水与废水, 2005, 36 (6): 34-38.
    刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究.环境污染与防治, 2003, 25 (4): 215-217.
    刘宗平.环境重金属污染物的生物有效性.生态学报, 2005, 25 (2): 273-278.
    梁美娜,朱义年,刘海玲,等.氢氧化铁对砷的吸附研究.水处理技术, 2007, 32 (7): 32-35.
    王国庆,骆永明,宋静,等.土壤环境质量指导值与标准研究I.国际动态及中国的修订考虑.土壤学报, 2005, 42 (4), 666-673.
    吴燕玉等. Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究.环境科学学报, 1998a, 18 (4): 407-414.
    吴燕玉等. Cd、Pb、Cu、Zn、As复合污染对水稻的影响.农业环境保护, 1998b, 17 (2): 49-54.
    吴燕玉.辽宁省土壤元素背景值研究.北京:中国环境科学出版社, 1994.
    吴留松,顾宗濂,谢思琴.添加物对土壤提取液中的铜、镉生物毒性的影响.土壤学报, 1995, 29 (4): 377-382.
    温淑瑶,张科利,方国华.从矿质组分变化看膨润土酸化改性机理.北京师范大学学报(自然科学版), 2001, 27 (3): 415-418.
    姚敏,梁成华,杜立宇,等.沈阳某冶炼厂污染土壤中砷的稳定化研究.环境科学与技术, 2008, 6 (31): 8-11.
    余松林,徐本良,陈曦,等.原沈阳冶炼厂主厂区土壤污染现状评价及污染治理措施.环境保护科学, 2005, 132 (6): 65-67.
    晓云.我国土壤重金属污染.金属世界, 2000, 2, 10.
    夏家淇主编.土壤环境质量标准详解.北京:中国环境科学出版社, 1996.
    赵其国.我国土地资源与耕地资源的现状、问题与对策.中国土壤科学的现状与展望, 2005.
    赵其国,黄国勤,钱海燕.生态农业与食品安全.土壤学报, 2007, 44 (6): 1127-1134.
    周启星,宋玉芳等.污染土壤修复原理与方法.北京:科学出版社, 2004.
    赵兴敏.典型重金属在包气带和含水层中的迁移转化特征: [博士学位论文].吉林:吉林大学, 2008.
    张国宇,王鹏.凹凸棒石粘土及在水处理中的应用.工业水处理, 2003, 23 (4): 1-5.
    朱志良,孔令刚,马红梅,等. 2种羟基氧化铁对水中Cr(Ⅵ)的吸附性能.应用化学, 2007, 24 (8): 933-936.
    周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展.生态学报, 2007, 7 (27), 3043-3050. 中国新闻网: http://www.chinanews.com.cn/
    中华环保联合会环保技术标准研究专业委员会: http://www.acefst.org/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700