含硫配体有机钌化合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富电子硫配位环境下的金属钌配合物因为与生物和工业催化过程有关而引起了广泛的研究兴趣,因此本论文设计与制备了一系列不同构型和特征的双齿或多齿硫配体,对结构新型且具有潜在催化性能的有机钌化合物进行合成与表征,并研究了它们的反应特性、晶体结构以及光电化学性能。
     采用溶液法合成了11种新型的二硫代羧酸配位环境下的单核有机钌化合物(1-11)并归纳总结了合成历程和机理。用单晶X射线衍射仪测定了部分化合物的晶体结构,结果表明,这些化合物中钌原子都采取准八面体构型,而且二硫代羧酸配体均以小咬角与中心钌原子配位。为了进一步探讨二价钌金属中心的反应活性,采用动力学电子吸收光谱研究了强氧化剂(NH_3)_4Ce(NO_3)_6氧化化合物(4)的反应过程。不同化合物的电化学性质研究表明三价态的钌中心原子与σ给体的磷配体以及富电子的含硫配体结合得较紧密。
     设计合成了五种含多(巯基咪唑)硼配体的具有潜在生物活性和催化性能的有机钌化合物(12-16),并通过红外光谱、核磁共振氢谱以及元素分析等手段对它们进行了表征。分析化合物(12、13和15)的晶体结构表明,配体与钌配位时有两种配位模式,而采取双齿或三齿配位方式主要决定于钌化合物原料中其它共配体的特征。化合物(12、13和15)中都形成了含悬挂氢的B-H…Ru键,并且总体上为扭曲的八面体构型,表明多(巯基咪唑)硼配体具有较高的反应活性。最后用密度泛函B3LYP方法研究了其中两个化合物(12和13)的优化几何构型、原子电荷分布以及振动频率,并与相应的实验结果进行了比对。
     采用二茂铁基Lawesson试剂([FcP(S)(μ-S)]_2)与不同的钌化合物原料在THF溶剂中反应获得三种新型的化合物(17·CH_2Cl_2,18和19·CH_2Cl_2·~3/_4C_6H_(14))并进行了系统的表征。荧光测试结果表明这些化合物具有较弱的荧光性质,而电化学性质的实验则验证了这些化合物的循环伏安曲线与其它含二茂铁基二硫代膦酸根配体的化合物相似。此外还首次报道了一种二异丙基二硫代膦酸钌化合物(20)的晶体结构特征。MoO_2(S_2CNMe_2)_2与RuCl_3·xH_2O在丙酮溶液中加热回流生成一种含二硫代氨基羧酸基团和多钼酸根阴离子的双核钌化合物(21·2CH_3COCH_3),其中阳离子部分[Ru_2(S_2CNMe_2)_3(μ_3-S_2CNMe_2)_2]~+基团可以看作是[Ru(S_2CNMe_2)_3]与cis-[Ru(S_2CNMe_2)_2]~+结合而成,而Lindqvist型阴离[Mo_6O_(19)]~(2-)恰好位于两个阳离子的倒转中心处。结合红外光谱、磁矩实验和元素分析对化合物(21)加以表征,并研究了其电化学性质。另外还报道了一个新型的含芳香环的单核钌化合物(22)的合成与结构。由[Cp*Ir{N(Ph_2PS)_2}C1]与NaN3在丙酮溶液中反应很容易将活性氯原子取代而得到化合物(23),采用单晶X-射线衍射仪分析了该化合物的晶体结构并进行了必要的表征。
In recent years there has been an increased interest in ruthenium complexes with sulfur donor ligands for their importance in the field of biological and industrial catalysis process. So we synthesized a series of novel and potential catalytic activity ruthenium complexes containing bidentate or tridentate thiolate ligands and detected their crystal structures. Moreover, reactivity along with spectroscopic and electrochemical properties has also been investigated in detail.
     Eleven mononuclear ruthenium compounds (1-11) sulfur-donor coordinate environment have been synthesized in this thesis. Then we have summarized the synthesis course and the mechanism for every reaction. The crystal structures of complexes have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry and the 1,1'-dithiolate ligands bind to ruthenium with bite S-Ru-S angles. With the aim of identifying reduction properties of low valence Ru(Ⅱ) center, the kinetic electronic absorption spectrum of reaction between complex 4 with strong oxidant (NH_3)_2Ce(NO_3)_6 was investigated. Electrochemical properties suggest that the ruthenium (Ⅲ) state in these complexes is well stabilized by the combination of of-donor phosphine and electron-rich sulfur ligands
     Five novel and potential catalytic activity ruthenium compounds (12-16) containing poly(mercaptoimidazolyl)borate ligands were synthesized and characterized with elemental analysis, IR, NMR and X-ray crystallography. Crystal structure analysis of (12,13 and 15) confirmed that poly(mercaptoimidazolyl)borate ligand can provide a bidentate or tridentate facial coordination mode to form an overall distorted octahedral geometry. Coordination behavior of ligand depends on the properties of coligands. We have shown that poly(mercaptoimidazolyl)borate ligand is a very powerful ligand for ruthenium moieties through remarkably robust B-H…Ru agnostic interaction. Density Functional Theory (DFT) method calculations of the optimized structure, atomic charge distributions and vibrational frequencies for two compounds (12 and 13) were studied and compared with their corresponding experimental results.
     Treatment of [FcP(S)(u-S)]2 (Ferrocenyl Lawesson's Reagent) with different ruthenium materials in THF afforded three new complexes (17·CH_2Cl_2,18 and 19·CH_2Cl_2·~3/_4C_6H_(14)). These compounds have been characterized by the infrared, UV-Vis, NMR spectroscopies and X-ray crystallography. Three compounds in CH_2Cl_2 solution can emit weak fluorescent due to poor quantum yields. Cyclic voltammogram of three heterobimetallic trinuclear compounds were semblable with other compounds containing ferrocenyldithiophosphonic ligand. Moreover, a novel ruthenium phosphorodithioate complex (20) containing M-S-S bond was synthesized and characterized firstly by X ray diffraction.
     Reaction of MoO_2(S_2CNMe_2)_2 with RuCl_3·xH2_O in acetone at reflux afforded a dinuclear ruthenium compound (21·2CH_3COCH_3) which was characterized by X-ray diffraction to show ruthenium-dithiocarbamate species as cation and hexamolybdate as counter anion. The [Ru_2(S_2CNMe_2)_3(μ_3-S_2CNMe_2)_2]~+ cation may be considered as a combination of [Ru(S_2CNMe_2)_3] with a cis-[Ru(S_2CNMe_2)_2]~+ species, and the Lindqvist anion [Mo_6O_(19)]~(2-) is located on an inversion center of two cations. Spectroscopic properties along with the electrochemistry of compound 21-2CH3COCH3 are reported. Furthermore, a mononuclear ruthenium complex (22) with arene ligands has been synthesized and structurally characterized.
     At the end of thesis, we report the synthesis and crystal structure of a Cp*Ir halfsandwich complex (23) containing azido and bis(diphenylthiophosphoryl)amide ligands.
引文
[1]陆熙炎.金属有机化学-无机化学和有机化学的交界学科.有机化学.1983,4:93.
    [2]张 弘,何国梅,夏海平.含线性碳桥金属有机“分子导线”的研究进展,有机化学,2004,24(4):355-365.
    [3]Halder G. J., Kepert C. J., Moubaraki B., Keith S. M. and John D. C. Guest-dependent spin crossover in a nanoporous molecular framework material. Science,2002, 298:762-1765.
    [4]Zou R. Q., Sakurai H., Xu Q. Preparation, adsorption properties, and catalytic activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions. Angew. Chem. Int. Ed,2006,45:2542~2546.
    [5]Wong K. L., Law G. L., Yang Y. Y., et al. A Highly Porous Luminescent Terbium-Organic Framework for Reversible Anion Sensing. Adv. Mater.,2006, 18(8):1051~1054.
    [6]Dai L. X., Tu T., You S. L., Deng W. P., Hou X. L. Asymmetric Catalysis with Chiral Ferrocene Ligands. Acc. Chem. Res.,2003,36:659-667.
    [7]McGarrity J., Spindler F., Fuchs R., Eyer M., (Lonza AG) EP 624 587,1994; Chem. Abstr.,1995,122:81369.
    [8]Dobbs D. A., Vanhessche K. P. M., Brazi E., Rautenstrauch V., Lenoir J.-Y., Genet J.-P., Wiles J., Bergens S. H. Industrial Synthesis of (+)-cis-Methyl Dihydrojasmo-nate by Enantioselective Catalytic Hydrogenation; Identification of the Precatalyst [Ru((-)-Me-DuPHOS)(H)(η~6-1,3,5-cyclooctatriene)](BF_4). Angew. Chem., Int. Ed.,2000, 39(11):1992-1995.
    [9]Bolm C., Xiao L., Hintermann L., Focken T., and Raabe G. Synthesis of Chiral Cyrhetrenes and Their Application in Asymmetric Catalysis Organometallics,2004, 23:2362-2369.
    [10]Viciu M. S., Germaneau R. F., Navarro-Fermandez O., Stevens E. D. and Nolan S. P. Activation and Reactivity of (NHC)Pd(allyl)Cl(NHC) N-heterocyclic carbene complexes in cross-coupling reactions. Organometallics,.2002,21:5470-5472.
    [11]Inamoto K., Kuroda J., Hiroya K., Noda Y, Watanabe M. and Sakamoto T. Synthesis and Catalytic Activity of a Pincer-Type Bis(imidazolin-2-ylidene) Nickel(Ⅱ) Complex. Organometallics,2006,25:3095-3098
    [12]Corberan R., Marrot S., Dellus N., Merceron-Saffon N., Kato T., Peris E. and Baceiredo A. First cyclic carbodiphosphoranes of copper (Ⅰ) and gold (Ⅰ) and their application in the catalytic cleavage of X-H bonds (X=N and O). Organometallics,2009,28:326-330.
    [13]Ananikov V. P., Orlov N. V., and Beletskaya I. P. Highlyefficient nickel-based heterogeneous catalytic system with nanosized structural organization for selective Se-H bond addition to terminal and internal alkynes. Organometallics,2007,26:740-750.
    [14]Yosef I., Abu-Reziq R. and Avnir D. Entrapment of an organometallic complex within a metal:a concept for heterogeneous catalysis. J. Am. Chem. Soc.,2008,130:11880-11882.
    [15]Dickson R. S. Organometallic Chemistry of Rhodium and Iridium. Academic Press:New York,1983.
    [16]Kovacs J., Todd T. D., Reibenspies J. H., Jo F., and Darensbourg D. J. Water-soluble organometallic compounds.9.1 catalytic hydrogenation and selective isomerization of olefins by water-soluble analogues of vaska's complex. Organometallics,2000, 19:3963-3969.
    [17]Vaska L., Rhodes R. E. Homogeneous Catalytic Hydrogenation of Ethylene and Acetylene with Four-Coordinated Iridium and Rhodium Complexes. Reversible Catalyst-Substrate Adducts. J. Am. Chem. Soc.,1965,87:4970.-4971.
    [18]Vaska L., Tadros M. E. Catalytic hydrogenolysis of molecular oxygen by transition metal complexes in nonaqueous solution. J. Am. Chem. Soc.,1971,93:7099.-7101
    [19]Zahalka H. A., Alper H., Sasson Y. Homogeneous decarbonylation of formate esters catalyzed by Vaska's compound. Organometallics,1986,5:2497-2499.
    [20]Baldo M. A., O'Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., Forrest S. R. Highly efficient phosphorescent emission from organic electrolu-minescent devices. Nature,1998,395:151-154.
    [21]Adachi C., Baldo M. A., Forrest S. R., Lamansky S., Thompson M. E., Kwong R. C. High-efficiency red electrophosphorescence devices. Appl. Phys. Lett,2001,78 (11):1622-1624.
    [22]Castillo E., Granados M., Cortina J. L. Chemically facilitated chromium(Ⅵ) transport throughout an anion-exchange membrane:Application to an optical sensor for chromium(VI) monitoring. J. Chromatogr. A.,2002,963:205-211.
    [23]Karipcin F., Ilican S., Caglar Y, Caglar M., Dede B.,Sahin Y Synthesis, structural and optical properties of novel borylated Cu(Ⅱ) and Co(Ⅱ) metal complexes of 4-benzylaminobiphenylglyoxime. J. Organomet. Chem.,2007,692:2473-2481.
    [24]Okamoto J. K. Y. Organo lanthanide metal comp lexes for electroluminescent materials. Chem. Rev.,2002,102:2357-2368.
    [25]Kwon T. H., Cho H. S., Kim M. K., Kim J. W., Kim J. J., Lee K. H., Park S. J., Shin I. S., Kim H., Shin D. M., Chung Y. K., Hong J. I. Color tuning of cyclometalated iridium complexes through modification of phenylpyrazole derivatives and ancillary ligand based on abinitio calculations. Organometallics,2005,24:1578-1585.
    [26]Velusamy M., Thomas K. R. J., Chen C. H., Lin J. T., Wen Y. S., Hsieh W. T., Lai C. H., Chou P. T. Synthesis, structure and electroluminescent properties of cyclometalated iridium complexes possessing sterically hindered ligands. Dalton Trans.,2007,28:3025.
    [27]Huang C., Zhen C. G., Su S. P., Chen Z. K., Liu X., Zou D. C., Shi Y. R., Loh K. P. High-efficiency solution processable electrophosphorescent iridium complexes bearing polyphenylphenyl dendron ligands. J. Organomet. Chem.,2009,694:1317-1324.
    [28]Green M. L. H., Marder S. R., Thompson M. E., Bandy J. A., Bloor D., Kolinsky P. V., Jones R. J. Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl) ethylene], an organotransition metal compound with a large second-order optical nonlinearity. Nature,1987,330:360-362.
    [29]Garcia M. H., Robalo M.P., Dias A. R., Duarte M. T., Wenseleers W., Aerts G., Goovaerts E., Cifuentes M. P., Hurst S., Humphrey M. G., Samoc M., Luther-Davies B. Synthesis and Nonlinear Optical Properties of η~5-Monocyclopentadienyliron(Ⅱ) Acetylide Derivatives. X-ray Crystal Structures of [Fe(η~5-C_5H_5)(DPPE)(p-CCC_6H_4NO_2)] and [Fe(η~5-C_5H_5)(DPPE)((E)-p-C=CC_6H_4C(H)C(H)C_6H_4NO_2)]. Organometallics,2002, 21:2107-2118.
    [30]Wenseleers W., Goovaerts E., Hepp P., Garcia M. H., Robalo M. P., Dias A.R., Piedade M. F. M., Duarte M. T. High first hyperpolarizability and perfectly aligned crystal packing for an organometallic compound [Fe(η~5-C_5H_5)((R)-PROPHOS(p-NCC_6H_4NO_2))[PF_6]-CH_2Cl_2. Chemical Physics Letters, 2003,367:390-397.
    [31]Batema G. D., Lutz M., Spek A. L., Walree C. A., DonegaC. M., Meijerink A., Havenith R. W. A., Moreno J. P., Clays K., Buchel M., Dijken A., Bryce D. L., Klink G.P. M. and Koten G. Substituted 4,4'-Stilbenoid NCN-Pincer Platinum(Ⅱ) Complexes. Luminescence and Tuning of the Electronic and NLO Properties and the Application in an OLED. Organometallics,2008,27:1690-1701.
    [32](a) Zheng Y. Z., Tong M. L., Zhang W. X., Chen X. M. Assembling Magnetic Nanowires into Networks:A Layered Co~Ⅱ Carboxylate Coordination Polymer Exhibiting Single-Chain-Magnet Behavior. Angew.Chem., Int. Ed,2006,45:310-6314. (b) Chakov N. E., Lee S. C., Harter A. G., Kuhns P. L., Reyes A. P., Hill S. O., Dalai N. S., Wernsdorfer W., Abboud K. A., Christou G. The Properties of the [Mn_(12)O_(12)(O_2CR)_(16)(H_2O)_4] Single-Molecule Magnets in Truly Axial Symmetry:[Mn_(12)O_(12)(O_2CCH_2Br)_(16)(H_2O)_4]·4CH_2Cl_2. The Properties of the [Mn_(12)O_(12)(O)2CR)_(16)(H_2O)_4] Single-Molecule Magnets in Truly Axial Symmetry:[Mn_(12)O_(12)(O_2CCH_2Br)_(16)(H_2O)_4]·4CH_2Cl_2. J. Am. Chem. Soc.,2006, 128:6975-6989;
    [33]Manriquez J. M., Yee G. T., McLean R. S., Epstein A. J., Miller J. S. A. Room-temperature molecular/organic-based magnet. Science,1991,252:1415-1417.
    [34]Choukroun R., Lorber C., Caro D. and Vendier L. B(C_6F_5)3 Adducts of TCNE- and TCNQ-Vanadium Complexes as New Building Blocks for Molecule-Based Magnets. Organometallics,2006,25:4243-4246.
    [35](a) Goh L. Y., Khoo S. K., Lim Y. Y. Equilibrium studies on metal—metal bond dissociation in the [(C_4Me_5)Cr(CO)_3]_2 dimer by use of NMR spectroscopy. J. Organomet. Chem.,1990,399:115-123. (b) Watkins W. C., Jaeger T., E.idd C., Baird Sortier, M. C., Kiss G., Roper G. C., Hoff C. D. An investigation of the homolytic dissociation of [η~5-C_5Me_5Cr(CO)_3]_2 and related complexes. The role of ligand substitution on the solution thermochemistry of metal-metal bond cleavage. J. Am. Chem. Soc.,1992,114:907-914.
    [36]Hutton M. A., Durham J. C., Grady R. W., Harris B. E., C Jarrell. S., Mooney J. M. and Castellani M.P. Halogen Oxidation Reactions of (C_5Ph_5)Cr(CO)_3 and Lewis Base Addition to [(C_5Ph_5)Cr(η-X)X]_2:Electrochemical, Magnetic, and Raman Spectroscopic Characterization of [(C_5Ph_5)CrX_2]_2 and (C_5Ph_5)CrX_2(THF)(X=Cl, Br, I) and X-ray Crystal Structure of [(C_5Ph_5)Cr(η-Cl)Cl]_2. Organometallics,2001,20:734-740.
    [37]Sellmann D., Sutter J. In Quest of Competitive Catalysts for Nitrogenases and Other Metal Sulfur Enzymes. Acc. Chem. Res.,1997,30:460-469.
    [38]Johnson B. F. G, Haymore B. L., Dilworth J. R. In Comprehensive Coordination Chemistry; G. Wilkinson, R, D. Gillard, J. A. McCleverty, Eds, Pergamon Press:Oxford, 1987,2:130.
    [39]Carnahan J. E., Mortenson L. E., Mower H. F., Castle J. E. Biochim. Biophys. Acta.,1960, 44:520-535.
    [40]Cramer S. P., Chen J., Christiansen J., Campobasso N., Bolin J. T., Tittsworth R. C., Hales B. J., Rehr J. J. Refinement of a Model for the Nitrogenase Mo—Fe Cluster Using Single-Crystal Mo and Fe EXAFS. Angew.Chem., Int. Ed,1993,32:1592-1594.
    [41]Biolin J. T., Ronco A. E., Morgan T. V., Mortenson L. E., Xuong N. H. Proc. Nat. Acad. Sci., USA,1993,90:1978.
    [42]Howard J. B. and Rees D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996,96:2965-2982.
    [43]Ree D. C., Howard J. B., Nitrogenase:standing at the crossroads. Current Opinion in Chemical Biology,2000,4(1):559-566.
    [44]Einsle O., Tezcan F. A., Andrade S. L. A., Schmin B., Yoashida M., Howard J. B., Rees D. C. Nitrogenase MoFe-Protein at 1.16 (?) Resolution:A Central Ligand in the FeMo-Cofactor. Science,2002,297:1696-1700.
    [45]Holmin R H. Biological Aspects of Inorganic Chemistry, A W. Addison et al., Ed., Wiley, New York,1977,77.
    [46]Schwab J. J., Wilkinson E. C., Wilson S. R., Shapley P. A. Nitridoosmium(VI) and nitridoruthenium(Ⅵ) complexes of cysteine(2-) and related ligands. J. Am. Chem. Soc., 1991,113:6124-6129.
    [47]Yoshida T., T Adachi., Kaminaka M., Ueda T. A novel molybdenum(O) dinitrogen complex containing crown thio ether as the sole auxiliary ligand: trans-Mo(N2)2Me8[16]aneS4 (Me_8[16]aneS_4= 3,3,7,7,11,11,15,15-octamethyl-1,5,9,13-tetrathiacyclohexadecane). J. Am. Chem. Soc.,1988,110:4872-4873.
    [48]MacDonnell F. M., Ruhlandt-Senge K., Ellison J. J., Holm R. H., Power P. P. Sterically Encumbered Iron(II) Thiolate Complexes:Synthesis and Structure of Trigonal Planar [Fe(SR)_3]~- (R= 2,4,6-t-Bu_3C_6H_2) and Moessbauer Spectra of Two-and Three-Coordinate Complexes. Inorg. Chem.,1995,34:1815-1822.
    [49]Sellmann D., Soglowek W., Knoch F., Moll M. Nitrogenase Model Compounds:[η-N_2H_2{Fe("NHS_4")}_2], the Prototype for the Coordination of Diazene to Iron Sulfur Centers and Its Stabilization through Strong N—H S Hydrogen Bonds. Angew. Chem. Int. Ed. Engl.,1989, 28:1271-1272.
    [50]Toulhoat H., Plumail J.C., Houpert C., Szymanski R., Bourseau P. and Muratet G. Modelling rdm catalysts deactivation by metal sulfides deposits:an original approach supported by hreminvestigations and pilot tests resume. Advances in residue upgrading, Am. Chem. Soc., Div. Petrol. Chem.1987,32:463-464.
    [51]Aray Y., Rodriguez J., Vega D., Rodriguez-Arias E. N. Correlation of the Topology of the Electron Density of Pyrite-Type Transition Metal Sulfides with Their Catalytic Activity in Hydrodesulfurization. Angew, Chem. Int. Ed. Engl.,2000,39:3810-3813.
    [52]Dickinson R. G., Pauling L. The crystal structure of molybdenite. J. Am. Chem. Soc., 1923,45:1466-1471.
    [53]Roundhill D. M. Photochemistry and Photophysics of Metal Complexes; Plenum, New York,1994,103.
    [54]Miki Y., Nakazato D., Ikuta H., Uchida T., Wakihara M. J. Amorphous MoS_2 as the cathode of lithium secondary batteries. Power Sources,1995,54:508-510.
    [55]Bino A., Johnston D. C., Goshorn D. P., Halbert T. R., Stiefel E. I. [Cr4S(O_2CCH_3)_8(H_2O)_4](BF_4)_2·H_2O:Ferromagnetically Coupled Cr4S Cluster with Spin 6 Ground State. Science,1988,241:479-1481.
    [56]Garber S. B., Kingsbury J. S., Gray B. L., Hoveyda A. H. Hoveyda A H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc., 2000,122(34):8168-8179.
    [57]Grela K., Bieniek M. Highly selective cross-metathesis with phenyl vinyl sulphone using the'second generation' Grubbs'catalyst. Tetrahedron Lett,2001,42:6425-6428.
    [58]Grela K., Kim M. Air-Stable Ruthenium Metathesis Catalyst Derived from α-Asarone. Eur. J. Org. Chem.,2003,6:963-966.
    [59]Sellmann D., Hautsch B., Rosler A., Heinemann F. W. [Ru(N_2)(P~l Pr_3)(N_2Me_2S_2')]: Coordination of Molecular N2 to Metal Thiolate Cores under Mild Conditions. Angew. Chem., Int. Ed. Engl.,2001,40(18):1505-1507.
    [60]Sellmann D., Hille A. Binding N_2, N_2H_2, N_2H_4, and NH_3 to Transition-Metal Sulfur Sites: Modeling Potential Intermediates of Biological N_2 Fixation. Chem. Eur. J.,2004, 10:819-830.
    [61]Zhang Q. F., Lai T. Y., Wong W. Y., Leung W. H. σ-Acetylide Complexes of Ruthenium(Ⅳ) and Osmium(Ⅳ) Thiolates. Organometallics,2002,21(19):4017-4020.
    [62]Zhang Q. F., Zheng H. G., Wong W. Y., Wong W. T., Leung W. H. Ruthenium(Ⅱ) Ammine and Hydrazine Complexes with [N(Ph_2PQ)_2]~- (Q= S, Se) Ligands. Inorg. Chem.,2000,39(23):5255-5264.
    [63]Lamansky S., Djurovich P., Murphy D. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc.,2001,123:4304-4312.
    [64]Tsuzuki N., Shirasowa T., Suzuki, et al. Color tunable organic light-emitting diodes using pentafluorophenyl-substituted iridium complexes. Adv. Mater.,2003, 15(17):1455-1458.
    [65]Ostrowski J. C., Robinson M. R., Heeger A. J., and Bazan G. C. Amorphous iridium complexes for electrophosphorescent light emitting devices. Chem. Commun.,2002,784.
    [66]Lamansky S., Djurovich P. I., Razzaq F. A., Garon S., Murphy D. L. and Thompson M.
    E. Cyclometalated Ir complexes in polymer organic light-emitting devices. J. App. Phys., 2002,92:1570-1575.
    [67]Lo K. K. W., Chung C. K., Zhu N. Synthesis, Photophysical and Electrochemical Properties, and Biological Labeling Studies of Cyclometalated Iridium(Ⅲ) Bis(pyridylbenzaldehyde) Complexes: Novel Luminescent Cross-Linkers for Biomolecules. J. Chem. Eur.,2003,9:475-483.
    [68]Gao R., Xiao L., Hao X., Sun W. H. and Wang F. Synthesis of benzoxazolylpyridine nickel complexes and their efficient dimerization of ethylene to (?)-butene. Dalton Trans. 2008,41:5645~5651.
    [69](a) Chen P., Meyer T. J. Medium Effects on Charge Transfer in Metal Complexes. Chem. Rev.,1998,98:1439-1478. (b) Kalyanasudaram K., Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev.,1998, 177:347-414.
    [70]Pamies O., Dieguez M., Net G., Ruiz A., Claver C. Synthesis and Coordination Chemistry of Novel Chiral P,S-Ligands with a Xylofuranose Backbone:Use in Asymmetric Hydroformylation and Hydrogenation. Organometallics,2000, 19:1488-1496.
    [71]Masdeu-Bulto A. M., Dieguez M., Martin E., Gomez M. Chiral thioether ligands: coordination chemistry and asymmetric catalysis. Coord. Chem. Rev.,2003, 242:159-201.
    [72]Gao R., Ho D. G., Hernandez B., Selke M., Murphy D., Djurovich P. I., Thompson M. E. Bis-cyclometalated Ir(Ⅲ) Complexes as Efficient Singlet Oxygen Sensitizers. J. Am. Chem. Soc.,2002,124:14828-14829.
    [73]Browning J., Bushnell G. W., Dixon K. R., Hilts R. W. Coordination chemistry of [CH{P(S)Ph_2}_2]-:X-ray diffraction studies of S,S-chelate complexes of iridium and rhodium. J. Organomet. Chem.,1992,434 (2):241-252.
    [74]Dieguez M., Ruiz A., Claver C., Doro F., Sanna M. G. and Gladiali S. Cationic iridium complexes with C_2-symmetry binaphthalene-core disulfide ligands:Synthesis and catalytic activity in the hydrogenation of alkenes. Inorg. Chim. Acta.,2004, 357(10):2957-2964.
    [75]Stiefel E. I. Transition Metal Sulfur Chemistry:Biological and Industrial Significance. ACS Symp. Ser., American Chemical Society, Washington,1996,653:2.
    [76]Sellmann D., Sutter J. In Quest of Competitive Catalysts for Nitrogenases and Other Metal Sulfur Enzymes. Acc. Chem. Res.,1997,30:460-469.
    [77]Vit Z., Zdrazil M. Simultaneous hydrodenitrogenation of pyridine and hydrodesulfurization of thiophene over carbon-supported platinum metal sulfides. J. Catal,1989,119:1-7.
    [78]Bennett M. A., Bruce M. I., Matheson T. W., in G Wilkinson, F.G.A. Stone, E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol.4, Pergamon Press, Oxford,1982.
    [79]Schroder M., Stephensen T. A., in G. Wilkinson, R. D. Gillard, J. A. McCleverty (eds.), Comprehensive Coordination Chemistry, Vol.4, Pergamon Press, Oxford,1987.
    [80]Tay E. P. L., Kuan S. L., Leong W K., Goh L. Y. Synthetic and X-ray Structural and Reactivity Studies of Cp*Ru~(Ⅳ) Complexes Containing Bidentate Dithiocarbonate, Xanthate, Carbonate, and Phosphinate Ligands (Cp*=η~5-C_5Me_5). Inorg. Chem.,2007, 46:1440-1450.
    [81]O'Connor C., Gilbert J. D., Wilkinson G. Unidentate dithiocarbamate complexes of rhodium and iron:dithiocarbamate and dithiocarbonate complexes of ruthenium. J. Chem. Soc., (A),1969,84-87.
    [82]Cole-Hamilton D. J., Stephenson T. A. Metal complexes of sulphur ligands. Part Ⅴ. Dialkyl-, diaryl-phosphinodithioato-and NN-dialkyldithiocarbamato-complexes of ruthenium(Ⅱ). J. Chem. Soc., Dalton Trans.,1974,739-754.
    [83]Cole-Hamilton D. J., Stephenson T. A. Reactions of co-ordinated ligands. Part 16. The oxidative-addition of hexafluorobut-2-yne and 3,3,3-trifluoroprop-1-yne to tricarbonyl(1,3-diene)-iron and-ruthenium and tricarbonyl(diphenyl-o-styrylphosphine)-iron complexes:crystal and molecular structure of [Ru(CO)_2{P(OCH_2)_3CMe}(C_6H_8)(C_4F_6)_2]. J. Chem. Soc., Dalton Trans.,1977, 1260-1261.
    [84]M Arroyo., Bernes S., Ceron J., Riuz J., Torrens H. Insertion Reactions of [M(SR)_3(PMe_2Ph)_2] with CS_2 (M= Ru, Os; R= C_6F4_H-4, C_6F_5). X-ray Structures of [Ru(S_2CSC_6F_4H-4)_2(PMe_2Ph)_2], trans-Thiolates [M(SR)_2(S_2CSR)(PMe_2Ph)_2] (M= Ru; R= C_6F_5 and M= Os; R= C_6F_4H-4), and trans-Thiolate-Phosphine [Os(SC_6F_5)_2(S_2CSC_6F_5)(PMe_2Ph)_2]. Inorg. Chem.,2004,43:986-992.
    [85]Bag N., Lahiri G. K., Chakravorty A. Ruthenium in isomeric S_4P_2 co-ordination:metal redox and geometrical reorganization J. Chem. Soc., Dalton Trans.,1990,1557-1561.
    [86]Pramanik A., Bag N., Ray D., Lahiri G. K., Charavorty A. Isomer preference of oxidation states. Chemistry of the bis(triphenylphosphine)bis(xanthato)osmium(z) (z= 0,+) family. Inorg. Chem.,1991,30:410-417.
    [87]Ballester L., Esteban O., Gutierrez A., Perpinan M. F., Ruiz-Valero C., Gutierrez-Puebla
    E., Gonzalez M. J. Reactivity of ruthenium complexes with uninegative (X,S)-donor ligands (X= S,P)—Ⅱ. Phosphine substitution in [Ru(S,S)2(PR3)2] derivatives. Crystal structure of trans-bis(O-ethyldithiocarbonate)bis(dimethylphenylphosphine)-ruthenium(Ⅱ). Polyhedron,1992,11:3173-3182.
    [88]Noda K., Y Ohuchi., Hashimoto A., Fujiki M., Itoh S., Iwatsuki S., Noda T., Suzuki T., Kashiwabara K., Takagi H. D. Syntheses, Structural Determinations of [Ru(ROCS2)2(PPh3)2]~(+/0) Pairs, and Kinetic Analyses of Thermal Reactions Involving Transient trans-[Ru(~lPrOCS_2)_2(PPh_3)_2] Species (ROCS_2~-= Ethyl-or Isopropyldithiocarbonate and PPh_3= Triphenylphosphine). Inorg. Chem.,2006, 45:1349-1355.
    [89]Liu X., Zhang Q. F., Leung W. H. Syntheses and molecular structures of ruthenium complexes with dithiophosphate ligands. J. Coord. Chem.,2005,58:1299-1305.
    [90]Pramanik A., Bag N., Lahiri G. L., Charavorty A. Geometrical isomer preference of Ru~Ⅱ and Ru~Ⅲ:chemistry and structure of a RuS_4P_2 family. Crystal structure of [Ru(PhCH2SCS2)2(PPh3)2]. J. Chem. Soc., Dalton Trans.,1990,3823-3828.
    [91]Cole-Hamilton D. J., Stephenson T. A. Metal complexes of sulphur ligands. Part VI. Studies of facile optical isomerism reactions in dimethylphosphinodithioato-complexes of ruthenium(II). J. Chem. Soc., Dalton Trans.,1974,754-760.
    [92]Leung W. H., Lau K. K., Zhang Q. F., Wong W. T., Tang B. Z. Ruthenium Benzylidene and Vinylidene Complexes in a Sulfur-Rich Coordination Environment. Organometallics, 2000,19:2084-2089.
    [93]Zhang Q. F., Lai T. Y, Wong W. Y, Leung W. H. σ-Acetylide Complexes of Ruthenium(Ⅳ) and Osmium(Ⅳ) Thiolates. Organometallics,2002,21:4017-4020.
    [94]Stephenson T. A., Wilkinson G New complexes of ruthenium (Ⅱ) and (Ⅲ) with triphenylphosphine, triphenylarsine, trichlorostannate, pyridine and other ligands. J. Inorg. Nucl. Chem.,1966,28:945-956.
    [95]Ahmad N., Levison J. J., Robinson S. D., Uttley M. F., Wonchoba E. R., Parshall G. W. Complexes of Ruthenium, Osmium, Rhodium, and Iridium Containing Hydride Carbonyl, or Nitrosyl Ligands. Inorg. Synth.,1974,15:45-64,.
    [96]Kubas G. J. Tetrakis(Acetonitrile)Copper(1+) Hexafluorophosphate(1-). Inorg. Synth., 1996,28:68-70.
    [97]SMART and SAINT+ for Windows NT Version 6.02a. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, (1998).
    [98]Sheldrick G.M. SADABS. University of Gottingen, Germany, (1996).
    [99]Sheldrick G.M. SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA, (1997).
    [100]Cheung W. M., Zhang Q. F., Williams I. D., Leung W H. An unsaturated half-sandwich ruthenium(II) complex containing a dithioimidodiphosphinate ligand. Inorg. Chim. Acta., 2006,359:782-788.
    [101]Bhattacharya S., Pierpont C. G. Charge distribution in the quinone complexes of osmium:synthesis and characterization of the Os(PPh_3)_2(Q)Cl_2 and Os(PPh_3)_2(Q)_2 (Q= 3,5-di-tert-butyl-1,2-quinone, tetrachloro-1,2-quinone) series. Inorg. Chem.,1991, 30:2906-2911.
    [102]Miessler G. L., Pignolet L. H. Hotochemistry of dithiocarbamato complexes.3. Photosensitized reactions of tris(N,N-dialkyldithiocarbamato)ruthenium(Ⅲ) and the x-ray and molecular structures of chlorobis(N,N-dimethyldithiocarbamato)(N, N-dimethylthiocarboxamido) ruthenium(Ⅳ). Inorg. Chem.,1979,18:210-213.
    [103]Buriez B., Cook D. J., Harlow K. J., Hill A. F., Welton T., White A. J. P., Williams D. J., Wilton-Ely J. D. E. T. Unprecedented coupling of vinylidene and allenylidene ligands with dithiocarbamates:x-ray structure of [Ru{C(:C:CPh_2)SC(NMe_2)S}(S_2CNMe_2)(CO)(PPh_3)]. J. Organomet. Chem.,1999, 578:264-267.
    [104]Cook D. J., Harlow K. J., Hill A. F., T Welton., White A. J. P., Williams D. J. Alkylidene-Dithiocarbamate coupling—crystal structure of [Ru{ K 2-CH(C_6H_4OMe-4)SC(NC_4H_8)S}{K~2-S_2CNC_4H_8}(CO)(PPh3)]. New J. Chem.,1998, 311-314.
    [105]Leung W. H., Chim J. L. C, Hou H., Hun T. S. M., Williams Ⅰ. D., Wong W. T. Oxidation Reactions of Dithiocarbamate Complexes of Ruthenium(Ⅱ). Inorg. Chem., 1997,36:4432-4437.
    [106]Kwok W. H., Lu G. L., Rickard C. E. F., Roper W. R., Wright L. J. Tethered silyl complexes from nucleophilic substitution reactions at the Si-Cl bond of the chloro(diphenyl)silyl ligand in Ru(SiClPh_2)(k~2-S_2CNMe_2)(CO)(PPh_3)_2. J. Organomet. Chem.,2004,689:2979-2987.
    [107]Das A. K., Peng S. M., Bhattacharya S. Ruthenium-mediated reduction of oximes to imines. Synthesis, characterization and redox properties of imine complexes of ruthenium. J. Chem. Soc., Dalton Trans.,2000,181-184.
    [108]Yao W. R., Liu Z. H., Zhang Q. F. Chloro(η~6-p-cymene)(diethyldithiocarbamato-k~2S,S)ruthenium(Ⅱ).Acta. Crystallogr., E,2003,59:303-305.
    [109]Ballester L., Gutierrez A., Peroinan M. F. Five-coordinate nickel(Ⅱ) xanthate derivatives with triphos. Crystal structure of tris(O-cyclohexyldithiocarbonato) nickelate(Ⅱ) of bis(2-diphenylphosphinoethyl) phenylphosphine-O-cyclohexyldithiocarbonatonickel(Ⅱ). Polyhedron,1996, 15(7):1103-1112.
    [110]Zhang R. F., Zhu D. Z., Yin H. D., Ma C. L. Synthesis and propertiesof diphenylgermanium bis-dithiocarbamat. Chines J. Inorg. Chem.,2002,18(4):387-388.
    [111]Meno M., Pramanik A., Bag N., Charavorty A. Geometrical preference of ruthenium oxidation states:metal redox and isomerisation of [Ru(S_2CNEt_2)_2(PPh_3)_2]~(0,+_. J. Chem. Soc, Dalton Trans.,1995,1543-1547.
    [112]Sellmann D., Shaban S. Y., Heinemann F. W. Substitution and redox reactions of mono-and dinuclear ruthenium complexes containing the pyN_2H_2~(2-) ligand pyN_2H_2S_2~(2-)=2,6-bis(2-mercaptophenylaminomethyl)pyridine(2-)]. Inorg. Chim. Acta., 2005,358(6):1798-1806.
    [113](a) Santini C., Lobbia G. G., Pettinari C., Pellei M., Valle G., Calogero S. Syntheses and Spectroscopic and Structural Characterization of Silver(Ⅰ) Complexes Containing Tertiary Phosphines and Hydrotris(pyrazol-1-yl)-, Hydrotris(4-bromopyrazol-1-yl)-, Hydrotris(3,5-dimethypyrazol-1-yl)-, and Hydrotris(3-methyl-2-thioxo-l-imidazolyl)borates. Inorg. Chem.,1998,37:890-900. (b) Santini C., Pettinari C., Lobbia G G., Spagna R., Pellei M., Vallorani F. New phosphino silver(Ⅰ) derivatives of hydrotris(3-methyl-2-thioxo-1-imidazolyl)borate. X-ray crystal structure of tricyclohexylphosphinesilver(Ⅰ)-hydrotris(3-methyl-2-thioxo-1-imidazolyl)borate Inorg. Chim. Acta.,1999,285:81-88. (c) Reglinski J., Spicer M. D., Garner M., Kennedy A. R. Structural Consequences of the Use of Hard and Soft Tripodal Ligands during Metathesis Reactions:Synthesis of the [Bis(hydrotris(methimazolyl)borato]bismuth(Ⅲ) [Bis(hydrotris(pyrazolyl)borato]sodiate. J. Am. Chem. Soc.,1999,121:2317-2318. (d) Kimblin C., Bridgewater B. M., Churchill D. G., Parkin G. Mononuclear tris(2-mercapto-1-arylimidazolyl)hydroborato complexes of zinc, [TmAr]ZnX: structural evidence that a sulfur rich coordination environment promotes the formation of a tetrahedral alcohol complex in a synthetic analogue of LADH. Chem. Commun.,
    1999,2301-2302. (e) Hill A. F., Owen G. R., White A. J. P., Williams D. The Sting of the Scorpion:A Metallaboratrane. Angew. Chem. Int. Ed. Engl.,1999,38:2759-2761.
    [114]Trofimenko, Scorpionates S. The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press:River Edge, NJ,1999.
    [115]Reddy K. R., Domingos A., Paulo A., Santos I. Rhenium(Ⅴ) Dioxo Complexes with Dihydrobis(pyrazolyl)borates:Synthesis and Reactivity toward Electrophilic Substrates. Inorg. Chem.,1999,38:4278-4282.
    [116]Garcia R., Paulo A., Domingos A., Santos I. Rhenium(Ⅰ) organometallic complexes with novel bis(mercaptoimidazolyl)borates and with hydrotris(mercaptoimidazolyl)borate: chemical and structural studies. J. Organometallic Chem.,2001,632:41-48.
    [117]Garcia R., Paulo A., Domingos A., Santos I., Ortner K., Alberto R. Re and Tc Complexes Containing B-H… Agostic Interactions as Building Blocks for the Design of Radiopharmaceuticals. J. Am. Chem. Soc.,2000,122:11240-11241.
    [118]Foreman M. R. St. J., Hill A. F., Tshabang N., White A. J. P., Williams D. J. Metallathiirenes.5.1 Bis- and Tris(methimazolyl)borato Thiocarbamoyl Complexes of Molybdenum(Ⅱ). Organometallics.,2003,22(26):5593-5596.
    [119]Kimblin C., Bridgewater B. M., Hascall T., Parkin G. The synthesis and structural characterization of bis(mercaptoimidazolyl)hydroborato complexes of lithium, thallium and zinc. J. Chem. Soc., Dalton Trans.,2000,891-897.
    [120]Kimblin C., Bridgewater B. M., Churchill D. G, Hascall T., Parkin G Bis(mercaptoimidazolyl)(pyrazolyl)hydroborato Complexes of Zinc, Cadmium, and Cobalt:Structural Evidence for the Enhanced Tendency of Zinc in Biological Systems to Adopt Tetrahedral M[S4]. Coordination. Inorg. Chem.,2000,39:4240-4243.
    [121]C. Kimblin, T. Hascall, G. Parkin. Modeling the Catalytic Site of Liver Alcohol Dehydrogenase:Synthesis and Structural Characterization of a [Bis(thioimidazolyl)(pyrazolyl)hydroborato]zinc Complex, [HB(tim~(Me))_2pz]ZnI. Inorg. Chem.,1997,36:5680-5681.
    [122]Garner M., Reglinski J., Cassidy I., Spicer M. D., Kennedy A. R. Hydrotris(methimazolyl)borate, a soft analogue of hydrotris(pyrazolyl)borate. Preparation and crystal structure of a novel zinc complex. Chem. Commun.,1996, 1975-1976.
    [123]Rosini C., Franizani L., Raffaelli A., Salvadori P. Synthesis and applications of binaphthylic C2-symmetry derivativs as chiral auxiliaires in enantioselective reactions. Synthesis,1992,503-517.
    [124](a) Noyori R., Kitamura M. Modern Synthetic Methods, Springer:Berlin,1989. (b) R. Noyori, T. Ohkuma. Asymmetric Catalysis by Architectural and Functional Molecular Engineering:Practical Chemo-and Stereoselective Hydrogenation of Ketones. Angew. Chem., Int. Ed.,2001,40:40-73.
    [125](a) Pu L. 1,1'-Binaphthyl Dimers, Oligomers, and Polymers:Molecular Recognition, Asymmetric Catalysis, and New Materials. Chem. Rev.,1998,98:2405-2494. (b) Shibasaki M., Sasai H., Arai T. Asymmetric Catalysis with Heterobimetallic Compounds. Angew. Chem., Int. Ed Engl,1997,36:1236-1256.
    [126]Foreman M. R. S. J., Hill A. F., Owen G. R., White A. J. P., Williams D. J. Polyazolyl Chelate Chemistry.12.1 An Unusual Mode of Coordination for the Hydrotris(methimazolyl)borato Ligand. Organometallics,2003,22:4446-4450.
    [127]Bailey P. J., Lorono-Gonzales D. J., McCormack C., Parsons S. Trismethimazolylhydroborate (Tm) complexes of ruthenium and manganese. Matthew Price. Inorganica Chimica Acta.,2003,354:61-67.
    [128]Bailey P. J., Dawson A., McCormack C., Moggach S. A., Oswald I. D. H., Parsons S., Rankin D. W. H., Turner A. Barriers to Racemization in C_3-Symmetric Complexes Containing the Hydrotris(2-mercapto-1-ethylimidazolyl)borate (TmEt) Ligand. Inorg. Chem.,2005,44 (24):8884-8898.
    [129](a) Bennett M. A., Matheson T. W. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press:Oxford, U.K,1982, 4:931. (b) Murahashi S. I. Ruthenium in Organic Synthesis. Ed, Wiley-VCH:Weinheim, Germany,2004.
    [130]Evans I. P., Spencer A., Wilkinson G Dichlorotetrakis(dimethyl sulphoxide)ruthenium(Ⅱ) and its use as a source material for some new ruthenium(Ⅱ) complexes. J. Chem. Soc., Dalton Trans.,1973,204-209.
    [131]Reglinski J., Garner M., Cassidy I. D., Slavin P. A., Spicer M. D., Armstrong D. R. Sodium hydrotris(methimazolyl)borate, a novel soft, tridentate ligand:preparation, structure and comparisons with sodium hydrotris(pyrazolyl)borate. J. Chem. Soc. Dalton Trans.,1999,2119-2126.
    [132]Alvarez H. M., Krawiec M., Donovan-Merkert B. T., Fouzi M., Rabinovich D. Modeling Nickel Hydrogenases:Synthesis and Structure of a Distorted Octahedral Complex with an Unprecedented [NiS4H2] Core. Inorg. Chem.,2001,40 (23):5736-5737.
    [133]Volbeda A., Garcin E., Piras C., de-Lacey A. L., Fernandez V. M., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Structure of the [NiFe] Hydrogenase Active Site:Evidence for Biologically Uncommon Fe Ligands. J. Am. Chem. Soc.,1996, 118:12989-12996.
    [134]Cole-Hamilton D. J., Stephenson T. A. Metal complexes of sulphur ligands. Part VI. Studies of facile optical isomerism reactions in dimethylphosphinodithioato-complexes of ruthenium(Ⅱ) J. Chem. Soc., Dalton Trans.,1974,754-760.
    [135]Gaussian 03, Revision D.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G, Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., A. Baboul G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A., Gaussian, Inc., Wallingford CT,2004.
    [136]Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,1988,38:3098-3100.
    [137]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789.
    [138]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys.,1985, 82:299.
    [139]Hariharan P. C., Pople J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim.Acta.,1973,28:213-222.
    [140]Petersson G.A., Bennett A., Tensfeldt T.G., Al-Laham M. A., Shirley W.A., Mantzaris J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys.,1988,89:2193-2218
    [141]Biswas B., Sugimoto M., Sakaki S. C-H bond activation of benzene and methane by M(η~2-O_2CH)_2 (M= Pd or Pt). A theoretical study. Organometallics,2000, 19:3895-3908.
    [142]Larson P., Mazin I.., Papaconstantopoulos D.A. Calculation of magnetic anisotropy energy in SmCo_5. Phys. Rev. B,2003,67:214405-214410
    [143]Zhu K., Achord P. D., Zhang X., Krogh-Jespersen K., Goldman A. S. Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties. J. Am. Chem. Soc.,2004, 126:13044-13053.
    [144]Sevillano P., Fuhr O., Kattannek M., Nava P., Hampe O., Lebedkin S., Ahlrichs R., Fenske D., Kappes M. M. The phosphine-stabilized gold-arsenic clusters [Au_(19)(As~nPr)_8(dppe)_6]Cl_3, [Au_(10)(As~nPr)_4(dppe)_4]Cl_2, [Au_(17)(AsnPr))6(As_2~nPr_2)(dppm)_6]Cl_3, and [Au_(10)(AsPh))4(dppe))4]Cl)2:synthesis, characterization, and DFT calculations. Angew. Chem. Int. Ed,2006,45(22):3702-3708.
    [145]Foresman J. B. and Frisch A. Exploring chemistry with electronic structure method.2nd ed. p64.,1996, Gaussian, Inc., Pittsburgh, U.S.A.
    [146]I Gray. P., Slawin A. M. Z. and Woollins J. D. Synthesis and Structure of [Fc(EtO)PS_2]~-Complexes. Z. Anorg. Allg. Chem.,2004,630:1851-1857.
    [147]Harrison P. J., Begley M. J., Kikabhai T., Killer F. Zinc(Ⅱ) bis(O,O'-dialkyl dithiophosphates):Iinteraction With Small Nitrogen Bases. The Crystal and Molecular Structure of Hexakis(μ-O,O'-diethyl dithiophosphato)-μ_4-thio-tetrazinc Zn4[S2P(OEt)2]6S. J. Chem.Soc., Dalton Trans.1986,925-928.
    [148]Mehrotra R. C., Srivastava G., Chauhan B. P. S. Dialkyldithiophosphate derivatives of non-transition elements. Coord. Chem.Rev.1984,55:207-259.
    [149]Pilkington M. J., Slawin A. M. Z., Williams D. J., Wood P. T. and Woollins J. D. The Preparation and Characterization of Binary Phosphorus-selenium Rings, Heteroatom. Chem.,1990,1:351-355.
    [150]Gray I. P., Bhattacharyya P., A. Slawin M. Z. and Woollins J. D. A New Synthesis of (PhPSe2)2 (Woollins Reagent) and Its Use in the Synthesis of Novel P-Se Heterocycles, Chem. Eur. J.,2005,11:6221-6227.
    [151]Kealy T. J., Pauson P. L. A new type of organo-iron compound. Pauson. Nature,1951, 168:1039-1041.
    [152]Mohring P. C., Coville N. J. Homogeneous group 4 metallocene ziegler-natta catalysts: The influence of cyclopentadienyl-ring substituents. J. Organomet. Chem.,1994, 479:1-29.
    [153]Brintzinger H. H., Fischer D., Mulhaupt R., Rieger B., Waymouth R. M. Stereo specific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem., Int. Ed. Engl., 1995,34:1143-1170.
    [154]Foreman M. R. St. J., Slawin A. M. Z. and Woollins J. D.2,4-Diferrocenyl-1, 3-dithiadiphosphetane 2,4-disulfide;structure and Reactions with Catechols and [PtCl_2(PR_3)_2](R=Et or ~nBu). J. Chen. Soc., Dalton Trans.,1996,3653-3658.
    [155](a) Cava M. P. and Levinson M. I. Thionation reactions of lawesson's reagents. Tetrahedron,1985,41:5061-5087; (b) Cherkasov R. A., Kutyrev G. A. and Pudovik A. N. Studies on organophosphorus compounds—ⅩⅩⅩⅤ:A new route to 4-methoxyphenylphosphonothioic diamides from 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and Amines. Tetrahedron,1981,37:1019-1025; (c) Ozturk T. An Unusual Reaction of Lawesson's Reagent with 1,8-diketones:A Synthesis of Fused 1,4-dithiins and Thiophenes. Tetrahedron Lett.,1996,37: 2821-2824.
    [156](a) Foreman M. R. St. J., Mortimer R. J., Slawin A. M. Z. and Woollins J. D. Reactions of Dithiadiphosphetane Disulfides with Organonitrogen Compounds. J. Chem. Soc., Dalton Trans.,1999,3419-3430; (b) Foreman M. R. S. J., Slawin A. M. Z. and Woollins J. D. Phosphorus-sulfur-nitrogen Heterocycles from Diferrocenyl Dithiadiphosphetane Disulfide. Chem. Commun.,1997,1269-1270.
    [157]Stefan M., Phillips J. R., Slawin A. M. Z., Williams D. J. and Woollins J. D. Structural Characterisation of Basic Zinc O,O'-dialkyl Dithiophosphosphate and Two Isomeric Examples of Zinc Monothiophosphates. Dalton Trans.,2000,3269-3273.
    [158]Fackler Jr J. P. and Thompson Jr L. D. Sulfur chelates 36. Structural Characterization of the Trans Isomers of the O-ethylphenyldithiophosphonates of Pd(Ⅱ) and Pt(Ⅱ), M[S_2P(OC_2H_5)C_6H_5]_2. Cis-Trans Isomerization of The Planar Pd(Ⅱ) Complex. Inorg. Chim. Acta,1981,48:45-52.
    [159]Karakus M., Lonnecke P., Hey-Hawkin E. Zwitterionic Ferrocenyl Dithiophosphonates: The Molecular Structure of [FcP(S)S(OCH2CH2NH2Me)] [Fc Fe(η~5-C_5H_4)(η~5-C_5H_5)]. Polyhedron,2004,23:2281-2284.
    [160]Karakus M., Lonnecke P., Yakhvarov D. and Hey-Hawkins E. Heterobimetallic Nickel(Ⅱ) Complexes of Ferrocenyldithiophosphonates, Molecular Structures of [{FcP(OR)S_2}_2Ni] [Fc=Fe(η~5-C_5H_4)(η~5-C_5H_5),R=Et,~iPr,~sBu,~iBu]. Z. Anorg. Allg. Chem.,2004,630:1444-1450.
    [161]Gray I. P., Slawin A. M. Z. and Woollins J. D. Synthesis and Characterization of Disulfides and Esters Derived form Their Sodium Organodithiophosphonate Salts. New J. Chem.,2004,28:1383-1389.
    [162]Shi W. and Rothenberger A. Synthetic Applications of Lawesson's Reagent in Reactions with Cu~I Alkoxides. Eur. J. Inorg. Chem.,2005,2935-2937.
    [163]Pineda L. W., Jancik V., Roesky H. W., Herbst-Irmer R. Germacarboxylic Acid:An Organic-Acid Analogue Based on a Heavier Group 14 Element. Angew.Chem., Int. Ed, 2004,43:5534-5536.
    [164]Arthur T., Robertson D. R., Tocher D. A., Stephenson T. A. Synthesis of binuclear hydroxo- and alkoxo-bridged arene complexes of ruthenium(Ⅱ) and osmium(Ⅱ). J. Organomet. Chem.,1981,208:389-400.
    [165]Foreman M. R. St. J., Slawin A. M. Z., Woollins J. D. 2,4-Diferrocenyl-1,3-dithiadiphosphetane 2,4-disulfide;Structure and Reactions with Catechols and [PtCl_2(PR_3)_2](R=Et or ~nBu). J. Chem. Soc., Dalton Trans.,1996, 3653-3658.
    [166]Hernandez-Galindo M. D. C., Jancik V., Moya-Cabrera M. M., Toscano R. A., Cea-Olivares R. 2D Hydrogen Bond Networks in The Crystals of [NH_4]·H_2O)_2] [(RO)(Fc)P(S)_2]_2(R= 3-(BzO)-Bz,4-(n-Bu)-Bz,Bz= benzl). J. Organomet. Chem.2007, 692:5295-5302.
    [167]Bhattacharya S., Pierpont C. G. Charge distribution in the quinone complexes of osmium:synthesis and characterization of the Os(PPh_3)_2(Q)Cl_2 and Os(PPh_3)_2(Q)_2 (Q= 3,5-di-tert-butyl-1,2-quinone, tetrachloro-1,2-quinone) series. Inorg. Chem.1991, 30(14):2906-2911.
    [168]Haiduc I, Sowerby D. B., Lu S. F. Stereochemical aspects of phosphor-1,1-dithiolato metal complexes (dithiophosphates, dithiophosphinates):Coordination patterns, molecular structures and supramolecular associations—Ⅰ. Polyhedron.1995, 14(23-24):3389-3472.
    [169]Van der Maelen Uria J. F., Garcia-Granda S., Cabeza J. A., Del Rio I. [RuCl_2(PH_2Cy)(η~6-p-cymene)]. Acta Cryst.,1994, C50:1064-1065.
    [170]Bates R. S., Begley M. J., Wright A. H. Synthesis and reactions of arene-ruthenium complexes containing nitrogen-donor ligands; Crystal structure of (p-cymene)_2Ru_2Cl_2 (N3)2. Polyhedron,1990,9:1113-1118.
    [171]E. M. Barranco, O. Crespo, M. C. Gimeno, P. G. Jones, A. Laguna, Unprecedented Formation of Novel Phosphonodithioate Ligands from Diferrocenyldithiadiphosphetane Disulfide, Inorg. Chem.,2008,47:6913-6918.
    [172]W. H. Leung, J. L. C. Chim, H. Hou, T. S. M. Hun, I. D. Williams, W. T. Wong, Oxidation Reactions of Dithiocarbamate Complexes of Ruthenium(Ⅱ), Inorg. Chem. 1997,36:4432-4437.
    [173]Wu F. H., Duan T. K., De L. L., Zhang Q. F., Leung W. H. Synthesis and reactivity of ruthenium complexes with 1,1'-dithiolate ligands. J. Organomet. Chem.,2009, 694:3844-3851.
    [174]X. Liu, Q. F. Zhang, W. H. Leung, Syntheses and molecular structures of ruthenium complexes with dithiophosphate ligands, J. Coord. Chem.2005,58:1299-1305.
    [175]P. B.Critchlow, S. D. Robinson, Complexes of the platinum metals. Part Ⅵ. Dithiocarbamato-and O-alkyl dithiocarbonato-derivatives of ruthenium, osmium, and iridium,J.Chem. Soc., Dalton Trans.,1975,1367-1372.
    [176]V.V. Tkachev, L.O. Atovmyan and S.A. Shchepinov. The first example of the formation of a perthiophosphate group and its stability in a binuclear Os(Ⅲ) complex. Izvest. Akad. Nauk SSSR, Ser. Khim.1977,2011.
    [177]W H. Kwok, G. L. Lu, C. E. F. Rickard, W. R. Roper, L. J. Wright. Tethered silyl complexes from nucleophilic substitution reactions at the Si-Cl bond of the chloro(diphenyl)silyl ligand in Ru(SiClPh_2)(k~2-S_2CNMe_2)(CO)(PPh_3)_2. J. Organomet. Chem.,2004,689:2979-2987.
    [178]Yao W. R., Liu Z. H., Zhang Q. F. Chloro(η~6-p-cymene) (diethyldithiocarbamato-k~2S, S)ruthenium(Ⅱ). Acta Cryst.,2003, E59:303-305.
    [179]Marrson B. M., Heiman J. R., Pignolet L. H. Oxidation of tris(N,N-disubstituted-dithiocarbamato) complexes of ruthenium(Ⅲ). X-ray structure determination of bis(N,N-diethyldithiocarbamato)-tris(N,N-diethyl dithiocarbamato)-diruthenium(Ⅲ) tetrafluoroborate, [Ru2(Et2dtc)_5]BF_4. Inorg. Chem., 1976,15:564-571.
    [180]Mark E. N. and Donald E. W. The SMoSSR unit. cyanide reactions and crystal structure, Inorg. Chem.1988,27:749-752.
    [181]Coucouvanis D.; Hadjikyriacou A., Draganjac M., Kanatzidis M. G., Ileperuma O. Unique reactivity characteristics of Mo-coordinated S_2~(2-) and S_4~(2-) ligands. Polyhedron.
    1986,5:349-356.
    [182]Harmer M. A., Halbert T. R., Pan W.-H., Coyle C. L., Cohen S. A., Stiefel E. I. Ligand and induced internal redox processes in Mo- and W-S systems. Polyhedron 1986, 5:341-347.
    [183]Noble M. E. Reactions at a dimolybdenum(V) sulfur bridge. Formation of disulfide (S_2~(2-)), monosubstituted organic disulfide (RSS~-) and tetrasulfide (S_4~(2-)) bridges. Inorg. Chem.1986,25:3311-3317.
    [184]Leung W. H., Chim J. L. C., Hou H.W., Hun T. S. M., Williams I. D. and Wong W. T. Oxidation Reactions of Dithiocarbamate Complexes of Ruthenium(Ⅱ). Inorg. Chem. 1997,36:4432-4437
    [185]陈洁,宋启泽.有机波谱分析[M].北京:北京理工大学出版社,1996:8292.
    [186]李治全,张颖,李萌,张国成,王涛.[环戊二烯-铁-二苯甲烷]六氟磷酸盐的光催化研究.工业催化,2008,16(10):161-164.
    [187]蒋才武,巢晖,李润华,李红,计亮年.钉多吡啶配合物的合成、表征及其三阶非线性光学性质研究.化学学报,2002,60(1):65-70.
    [188]陈国珍.荧光分析法[M].北京:科学出版社,1990:370.
    [189]Gorton J. E., Lentzner H. L., Watts W. E. Bridged ferrocenes—Ⅷ:Polarographic half-wave potentials of ferrocenophanes and related compounds. Tetrahedron.1971, 27:4353-4360.
    [190]Hall D. W., Hill E. A., Richards J. H. Solvolysis of heteroannularly substituted methylferrocenylcarbinyl acetates. J. Am. Chem. Soc.1968,90:4972-4976.
    [191]Wang X. Y, Deng Z. X.. Jin B. K.. Tian Y. P.. Lin X. Q. Electrochemical and in situ FTIR studies of biferrocene platinum (Ⅱ) complex. Electrochimica Acta.2002, 47:1537-1543.
    [192]Dong Teng-Yuan, Lin Hung-Yu, Lin Shu-Fan, Huang Chia-Chen, Wen Yuh-Sheng, and Lee Liangshiu. Micromodulating the Electronic Coupling Across Redox-Active Ferrocenyl Spacer in Binuclear Ruthenium(Ⅱ) Terpyridine Complexes:Synthesis, Electrochemistry, and Photophysical Properties. Organometallics,2008,27:555-562.
    [193]Burns R. P., McAuliffe C. A.1,2-Dithiolene Complexes of Transition Metals. Adv. Inorg. Chem.,1979,22:303-348.
    [194]Kawano M., Uemura H., Watanabe T., Matsumoto K. Syntheses, properties, and crystal structures of thiolate-bridged ruthenium complexes [Ru(.mu.-SPh)(S_2CNMe_2)(CO)(PPh_3)]_2(NO_3)_n (n=0,4) and their novel electrochemical one-step four-electron redox reactions. J. Am. Chem. Soc.,1993,115:2068-2070.
    [195]Hogarth G. Transition Metal Dithiocarbamates:1978-2003 Prog. Inorg. Chem.,2005, 53:71-561.
    [196]Pignolet L. H. Dynamic stereochemistry of tris-chelate complexes. Ⅳ. Crystal structure of tris(N,N-diethyldithiocarbamato)ruthenium(Ⅲ). Inorg. Chem.,1974,13:2051-2055.
    [197]Eisenberg R. Structural Systematics of 1,1- and 1,2-Dithiolato Chelates. Prog. Inorg. Chem., 1970,12:295-369.
    [198]Marrson B. M., Heiman J. R., Pignolet L. H. Oxidation of tris(N,N-disubstituted-dithiocarbarmato) complexes of ruthenium(Ⅲ). X-ray structure determination of bis(N,N-diethyldithiocarbamato)-tris(N,N-diethyl dithiocarbamato)-diruthenium(Ⅲ) tetrafluoroborate, [Ru2(Et2dtc)_5]BF_4. Inorg. Chem., 1976,15:564-571.
    [199]Leung W. H., Chim J. L. C., Hou H., Hun T. S. M., Williams I. D., Wong W. T. Oxidation Reactions of Dithiocarbamate Complexes of Ruthenium(Ⅱ). Inorg. Chem., 1997,36:4432-4437.
    [200]Pope M. T., Miiller A. Angew. Chem.1991,103,56; M. T. Pope, A. Muller. Polyoxometalate Chemistry:An Old Field with New Dimensions in Several Disciplines. Angew. Chem., Int. Ed. Eng.,1991,30:34-38.
    [201]Long D. L., Burkholder E., Cronin L. Polyoxometalate clusters, nanostructures and materials:From self assembly to designer materials and devices. Chem. Soc. Rev.,2007, 36:105-121.
    [202]Wei Y., Xu B., Barnes C. L., Peng Z. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates J. Am. Chem. Soc.,2001,123:4083-4084.
    [203]Bartley S. L., Bernstein S. N., Dunbar K. R. Acetonitrile and cyanide compounds containing metal-metal bonds:syntheses, structures and applications to solid-state chemistry. Inorg. Chim. Acta.,1993,213:213-231.
    [204]卢绍芳,黄建全,黄子.钼簇合物的簇解反应和两个多钼酸盐化合物的晶体结构.化学学报1992,30(4):348-356.
    [205]Nagano O., Sasaki Y. Structure of the hydrated potassium hexamolybdate complex of hexaoxacyclooctadecane (18-crown-6). Acta Crystallogr.,1979, B35:2387-2389
    [206]Riera V., Ruiz M. A., Villatane F., Jeannin Y, Bois C. Preparation of some reactions of [Mo_2(η-C_5H_5)_2(CO)_4-(η-Ph_2PCH_2PPh_2)], a useful precursor for new dimolybdenum (II) complexes. Crystal structure of [Mo_2(μ-C_5H_5)_2(CO)_4(μ-H)(μ-Ph_2PCH_2PPh_2)]_2-[Mo_6O_(19)]·4C_4H_8O. J. Organomet. Chem., 1988,345:C4-C8.
    [207]Zhang C., Ozawa Y., Hayashi Y., Isobe K. Oxidation of cyclohexene with t-butyl hydroperoxide catalyzed by transition metal oxide clusters J. Organomet. Chem.,1989, 373:C21-C25.
    [208]Shivaiah V., Das S. K. Inclusion of a Cu~(2+)Ion by a Large-Cavity Crown Ether Dibenzo-24-Crown-8 through Supramolecular Interactions. Inorg. Chem.,2005, 44:7313-7315.
    [209]Schulz-Dobrick M., Jansen M. Z. Characterization of Gold Clusters by Crystallization with Polyoxometalates:the Intercluster Compounds [Au9(dpph)_4][Mo_8O_(26)], [Au9(dpph)4][PWi204o] and [Au_(11)(PPh_3)8_Cl_2]_2[W_6O_(19)] Anorg. Allg. Chem.,2007, 633:2326-2331.
    [210]Long D. L., Xin X. Q., Chen X. M., Kang B. S. Synthesis and X-ray crystal structure of a polymetallate with a metal complex cation as counter ion, [Ag(PPh_3)_4]_2Mo_6O_(19)·3CH_2Cl_2.Polyhedron., 1997,16:1259-1261.
    [211]Wata I. R., Ogata I. Hydrogenation of olefins by π-arene ruthenium complexes:A role of π-arene ligand in catalytic activity. Tetrahedron.1973,2753-2758.
    [212]Hapiot H., Agbossou F., Mortreux A. Synthesis of new chiral arene ruthenium(Ⅱ) aminophosphinephosphinite complexes and use in asymmetric hydrogenation of an activated keto compound. Tetrahedron:Asymmetry.,1994,5:515-518.
    [213]Moore B. W., Larson M. L. Dialkyldithiocarbamate complexes of molybdenum(Ⅴ) and molybdenum(Ⅵ) Inorg. Chem.,1967,6:998-1003.
    [214]Hur N. H., Klemperer W. G., Wang R. C. Teltrabutyammonium isopolyxometalates. Inorg. Chem.,1990,27:77-85.
    [215]Raston C. L., White A. H. Structural studies in the ruthenium-dithiocarbamate system. Part Ⅱ. Crystal structures of two salts of the [Ru_2(dtc)_5]~+ cation, one containing the [Ru_2Cl_6]~(2-) anion. Chem. Soc., Dalton Trans.,1975,2410-2418.
    [216]Minelli M., Hoang M. L., Kraus M., Kucera G., Loertscher J., Reynolds M., Timm N., Chiang M. Y., Powell D. The Effect of Substituents on the Phenyl Portion of the Imido Ligand on the Structure and Properties of Molybdenum(Ⅵ) Imido Complexes Inorg. Chem.,2002,41:5954-5960.
    [217]Yao W. R., Liu Z. H., Zhang Q. F. Chloro(η-p-cymene) (diethyldithiocarbamato-k~2S, S)ruthenium(Ⅱ). Acta Cryst.,2003, E59:303-305.
    [218]Jin G. X., Herberhold M. The oligoselenide metallacycle complex Cp*Re(NBu~f) (Se4) as an organometallic ligand. Preparation of the M(CO)_5 (M=Cr, Mo, W) adducts [Cp*Re(NBut~t)(Se_4){M(CO)_5}2]. Transition Metal Chemistry,1998,23:529-530.
    [219]Chen J., Angelici R. Reactions of (η~5-C_5Me_5)Ir(2,5-dimethylthiophene) with S_8, O_2, SO_2 and CS_2. J. Inorg. Chim. Acta,1995,235:61-67.
    [220]Herberhold M., Jin G. X., Rheingold A. L. The use of half-sandwich iridium dithiolate and diselenolate complexes, Cp*Ir(L)(ER)_2 (L=CO, PMe_3, PPh_3; ER=SPh, SePh, SeMe), for the synthesis of heterodimetallic compounds. The molecular structure of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4].J. Organomet. Chem.,1998,570:241-246.
    [221]BuBois R. Catalytic applications of transition-metal complexes with sulfide ligands. Chem. Rev.,1989,89:1-9.
    [222]Nishio M., Matsuzaka H., Mizobe Y, Hidai M. Formation of a Novel μ-Nonasulfido Ligand and Its Degradation into a μ-Disulfido Ligand at a Diiridium Center. Angew. Chem., Int. Ed. Engl,1996,35:872-874.
    [223]Wang J. Q., Weng L., Jin G. X. Rational synthesis of trinuclear (WIr_2) cluster from the 16-electron half-sandwich complex Cp*Ir[Se2C2(BjoHio)].J. Organomet. Chem.,2005, 690:249-252.
    [224]Parr J., Smith M. B., Slawin A. M. Z. The synthesis and crystal structures of the first examples of six-membered inorganic iridacycles containing the [(Ph_2PE)_2N]~-ligand (E=S or Se). J. Organomet. Chem.,1999,588:99-106.
    [225]Freedman D. A., Mann K. R. Photochemical generation of reactive transition-metal intermediates from air-stable precursors. Carbon-hydrogen bond activation via near-ultraviolet photolysis of Cp*Ir(L)(oxalate) and Cp*Ir(L)(N_3)_2 complexes. Inorg. Chem.,1991,30:836-840.
    [226]Suzuki T., DiPasquale A. G, Mayer J. M. Nitrogen Atom Insertion into Ir-S and C-S Bonds Initiated by Photolysis of Iridium(Ⅲ)-Azido-Dithiocarbamato Complexes. J. Am. Chem. Soc.,2003,125:10514-10515.
    [227]SMART and SAINT+ for Windows NT Version 6.02a. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA,1998.
    [228]Kotera M., Sekioka Y., Suzuki T. Structural comparison of (pentamethylcyclopentadienyl)iridium(Ⅲ) azido complexes containing potentially N,S-bidentate N-heterocyclic thiolates:2- or 8-quinolinethiolate and benzimidazole-2-thiolate. Inorg. Chim.Acta.,2008,361:1479-1484.
    [229]Cheung W. M., Lai C. Y, Zhang Q. F., Wong W. Y, Williams I. D., Leung W. H. Iridium and rhodium complexes containing dichalcogenoimidodiphosphinato ligands. Inorg. Chim. Acta.,2006,359:2712-2720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700