几类重要的离子/自由基—分子反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用量子化学计算方法对几类重要的离子-分子反应以及自由基-分子反应进行详尽的理论研究。给出了反应物、中间体、过渡态以及产物的结构和能量。通过构造完整的势能面,讨论了可能的反应通道和反应机理。本文结果可以为星际空间中重要的离子/自由基-分子反应模型的建立提供理论依据并为未来的实验室合成星际空间的离子或分子提供可靠的信息。主要贡献如下:
     (1)在B3LYP和CCSD(T)理论水平下对HCN+与CH4、C2H2、C2H4和NH3反应的二重态势能面进行了详细的理论研究,讨论了可能的反应产物和反应机理。理论计算结果与实验结果基本一致,并对实验上未预测的反应通道和产物进行补充。有利于进一步理解泰坦星大气的组成和结构。
     (2)在B3LYP和G3B3理论水平下对基态碳原子C(3P)与C3H6和trans-C4H8的反应进行了研究。给出了详细的反应势能面信息。计算结果表明,该反应在星际空间发挥重要作用。
     (3)在B3LYP和G3B3理论水平下对CH自由基与C3H6和CH3CCH的反应势能面进行研究。给出了详尽的异构化和分解途径。预测了可能的反应产物和反应机理。对CH+C3H6反应,理论计算结果论证了实验上预测的反应通道,并确定了各产物的分支比;对CH+CH3CCH反应,理论计算结果与Goulay等人实验结果相一致,但却与Daugey等人以及Loison等人的实验结果存在很大差异。
Reactions of ions and radicals play an important role in various fields, such as combustion processes, interstellar medium and planetary atmospheres. In this thesis, the potential energy surfaces of the ion/radical-molecule reactions of relevance to combustion chemistry, interstellar chemistry and planetary atmosphere chemistry have been expolored using quantum chemical methods. Important information such as geometries and energies of the reactant, isomers, transition states and products are obtained. Possible reaction channels as well as reaction mechanism are also provided. The results obtained in this thesis are compared with previous experimental findings and may shed some light on future experimental investigations of these kinds of reactions. The main results are summaried as follows:
     1. The potential energy surfaces for HCN~+ reactions with CH_4, C_2H_2, C_2H4 and NH3are explored. The results are as follows:
     (1) Theoretical investigations on the doublet potential energy surface for the reaction of HCN+ with CH_4 are carried out, the main reaction channels are listed as:
     Path 1: RHCN~++CH_4→HCNH…CH_3~+l→P_1(HCNH~++CH_3)
     Path 2: R HCN~++CH_4→HCNH…CH_3~+ 1→HNCHCH_3~+ 2→P_2(CH_3CNH~++H)
     Path 3: R HCN~++CH_4→HCNH…CH_3~+ l→HCNHCH_3~+3→H_2CNCH_3~+4→CH_3NC(…H)H~+ 6→P_3(HCNCH_3~++H)→P_4(CH_3~++HCN+H)
     Path 4: R HCN~++CH_4→NC(H)…HCH_3~+ 8→NC(H)CH_4+ 9→P_5 (cNCHCH_2~++H_2)
     Path 5: R HCN~++CH_4→HCNH…CH_3~+ 1→HNCHCH_3~+ 2→HNCHCH_3~+ 7→P_6(NCCH_3~++H_2)→P_7(HCCNH~++H_2+H)
     P_1(HCNH~++CH_3) is the most feasible product. P_2(CH_3CNH~++H) and P_3 (HCNCH_3~++H) are the second and third competitive products. Moreover, P_3 (HCNCH_3~++H) and P_6(NCCH_3~++H_2) can undergo further evolutions leading to P_4 (CH_3~++HCN+H) and P7(HCCNH~++H_2+H), respectively. However, both of them are theomodynamically unfeasible.
     (2) Theoretical calculations on the potential energy of the HCN~++C_2H_2 reaction areperformed, main reaction pathways are as follows:
     Path 1: RHCN~++C_2H_2→-HCCHCHN~+ 1→NCCHCH_2~+ 4→Pi(H_2C_3N~++H)
     Path 2: R HCN~++C_2H_2→p-HCCHCHN~+ 1→NCCHCH_2~+ 4→P_2 (CN+C_2H_3~+)
     Path 3: R HCN~++C_2H_2→p-HCCHCHN~+ 1→NCCHCH_2~+ 4→NCCCH_3+ 6→P_3(HC_3N~++H_2)
     Path 4: R HCN~++C_2H_2→HCNCHCH~+ 3b→HCNCCH_2~+ 14→P_7(C_2H_2++HCN)
     P1(H_2C3N~++H) is the most favorable product, P_7(C_2H_2~++HCN) and P_3(HC_3N~++H_2) may be the second and third feasible products, followed by the least possible product P_2(CN+C_2H_3~+).
     (3) For HCN~++C_2H_4 reaction, main reaction pathways are shown as:
     Path 1: RHCN~++C_2H_4→HCNCH_2CH_2~+ 1→P_1(HCN+C_2H_4~+)
     Path 2: R HCN~++C_2H_4→HCNCH_2CH_2~+ 1→P_2(HCNCHCH_2~++H)
     Path 3: R HCN~++C_2H_4→HCNCH_2CH_2~+ 1→NCCH_2CH_3+ 5→P_3(NCCH_2+CH_3~+)
     Path 4: R HCN~++C_2H_4→N-cCHCH_2CH_2~+ 3→c-CHCH_2CH_2N+ 4→CNCH_2CH_3~+ 12→P_4(CN+C_2H_5~+)
     Path 5: R HCN~++C_2H_4→HCNCH_2CH_2~+ 1→NCCH_2CH_3~+ 5→P_5(NCCHCH_2~++H_2)
     Path 6: R HCN~++C_2H_4→N-cCHCH_2CH_2~+ 3→c-CHCH_2CH_2N~+ 4→c-NHCH_2CH_2C+ 8→HNCCH_2CH_2~+ 9→P_6(HNCCHCH_2~++H)
     P_1(HCN+C_2H_4~+) and P_2(HCNCHCH_2~++H) are the major and minor product, respectively. Other products which may compete each other, are much less competitive.
     (4) For HCN~++NH_3 reaction, main pathways are as follows:
     Path 1: RHCN~++NH_3→HCNNH_3+ 1→HCN…NH_3~+ 3→P_1(NH_3~++HCN)
     Path 2: R HCN~++NH_3→NCHNH_3+ 2→HNCHNH_2~+ 12→HNC…HNH_2+ 13→P_3(NH_3~++HNC)
     Path 3: R HCN~++NH_3→NCHNH_3+ 2→HNCHNH_2~+ 12→HNC…HNH_2+ 13→P_9(HCNH~++NH_2)
     Path 4: R HCN~++NH_3→NCHNH_3+ 2→HNCHNH_2~+ 12→P_(12)(HNCNH_~2++NH_2)
     Path 1 is the most competitive pathway. Path 2 and path 3 may compete each other.
     Path 4 may be the least possible pathway.
     3. A detailed theoretical study for the reactions of C(3P) with C_3H_6 and trans-C_4H_8 was investigated at G3B3//B3LYP/6-311G(d,p) level, the main results are as follows:
     (1) For C(~3P)+C_3H_6 reaction, possible reaction pathways are as follows:
     Path 1: R C(~3P)+C_3H_6→CH_3-cCHCCH_2 l→fra/w-CH_3CHCCH_2 2a→CH_3C(…H)CCH_2 3→P4(CH_3CCCH_2+H)
     Path 2: R C(~3P)+C_3H_6→CH_3-cCHCCH_2 1→CH_3CHCCH_2(2a,2b)→P5(CH_3CHCCH+H)
     Path 3: R C(~3P)+C_3H_6→CH_3-cCHCCH_2 l→trans-CH_3CHCCH_2 2a
     Path 4: R C(~3P)+C_3H_6→CH_3-cCHCCH_2 1→trans-CH_3CHCCH_2 2a→cis-CH_3CHCCH_22b→P7(CH_2CCH+CH_3)
     Path 1, 2 and 4 are the main pathways, they may compete each other. Path 3 is the minor pathway.
     (2)For C(3P)+ trans-C4H8 reaction, two feasible reaction pathways are obtained:
     Path 1: R C(3P)+ trans-C4H8→CH_3-cCHCCH-CH_3 l→cis-trans-CH_3CHCCHCH_3 3a→CH_3CHCC(CH_3)…H6→P6(CH_3CHCCCH_3+H)
     Path 2: R C(~3P)+trans-C4H8→CH_3-cCHCCH-CH_3 1→cis-trans-CH_3CHCCHCH_3 3a→P7(CH_3CHCCH+CH_3)
     Path 1 and path 2 may compete each other, both of which are the main channels. 3. A detailed mechanistic study was reported for the reactions of CH with C3H6 and CH_3CCH, the results are as follows:
     (1) For CH+C_3H_6 reaction, main reaction pathways are listed as:
     Path 1: R CH+C_3H_6→CH_3-cCHCHCH_21 (a, b)→P_1(CH_3-cCHCHCH+H)
     Path 2: R CH+C_3H_6→CH_3-cCHCHCH_21 (a, b)→P_2(CH_3-cCCHCH_2+H)
     Path 3: R CH+C_3H_6→CH_3-cCHCHCH_21 (a, b)→P_3(cCHCHCH_2+CH_3)
     Path 4: R CH+C_3H_6→CH-CH_3CHCH_2 2→CH_2CH_2CHCH_2 4(a,b)→P4(cis-CH_2CHCHCH_2+H)
     Path 5: R CH+C_3H_6→CH…CH_3CHCH_2 2→CH_2CH_2CHCH_2 4 (a, b)→P_5(trans-CH_2CHCHCH_2+H)
     Path 4 and 5 may compete each other, they are the most possible pathways. Paths 1, 2 and 3 may have comparable contributions to the title reaction.
     (2) For CH+CH_3CCH reaction, main reaction pathways are as follows:
     Path 1: R CH+CH_3CCH→CH_3CCHCH 1a→CH_3-cCCHCH 2→P3(CH_3-cCCCH+H)
     Path 2: R CH+CH_3CCH→CH_3CCHCH 1a→CH_3CHCCH 3→P_5(CH_2CHCCH+H)
     Path 3: R CH+CH_3CCH→CH_3CCHCH la→CH_3CCCH_2 4→P_6(CH_2CCCH_2+H)
     Path 4: R CH+CH_3CCH→CH_3CCHCH 1a→CH_2CHCHCH 5 (a, b, c, d)→P7(C_2H_2+C_2H_3)
     Path 1, 2 and 3 are the major reaction channels, they may compete each other. Path 4 is the minor reaction channel.
引文
[1] SMITH D, SPANEL P, Selected ion flow tube mass spectrometry (SIFT-MS) foron-line trace gas analysis [J]. Mass Spectrom. Rev., 2005, 24: 661-700
    [2] CLARY D C, BUONOMO E, SIMS IR, et al. C+C2H2: A key reaction ininterstellar chemistry [J]. J. Phys. Chem. A., 2002, 106:5541-5552.
    [3] SMITH I W M. The Liversidge Lecture 2001-02. Chemistry amongst the stars:reaction kinetics at a new frontier [J]. Chem. Soc. Rev., 2002, 31:137-146.
    [4] CLARY D C, HAIDER N, HUSAIN D, et al. Interstellar carbon chemistry:Reaction rates of neutral atomic carbon with organic molecules [J]. Astrophys. J.,1994, 422:416-422.
    [5] TURNER B E, HERBST E, TERZIEVA R. The physics and chemistry of smalltranslucent molecular clouds. XIII. The basic hydrocarbon chemistry [J]. Astrophys. J.Suppl. Sen, 2000, 126:427-460.
    [6] KAISER R I, LE T N, NGUYEN T L, et al. A combined crossed molecular beamand ab initio investigation of C2 and C3 elementary reactions with unsaturatedhydrocarbons-pathways to hydrogen deficient hydrocarbon radicals in combustionflames [J]. Faraday Discuss, 2001, 119:51-66.
    [7] CASAVECCHIAP, BALUCANIN, CARTECHINIL, et al. Crossed beam studiesof elementary reactions of N and C atoms and CN radicals of importance incombustion [J]. Faraday Discuss, 2001, 119:27-49.
    [8] KAISER R I, MEBEL A M. The reactivity of ground-state carbon atoms withunsaturated hydrocarbons in combustion flames and in the interstellar medium [J]. Int.Rev. Phys. Chem, 2002, 21:307-356.
    [9] MILLER J A, BOWMAN C T, Mechanism and modeling of nitrogen chemistry incombustion [J]. Prog.Energy Combust. Sci, 1989, 15:287-338.
    [10] MILLER J A, KEE R J, WESTBROOK C, Chemical Kinetics and CombustionModeling [J]. Annu. Rev. Phys. Chem, 1990, 41:345-387.
    [11] BROWNSWORD R A, SIM IR, SMITH IW M. The radiative association of CHwith H2: a mechanism for formation of CH3 in interstellar clouds [J]. Astrophys. J.,1997,485:195-202.
    [12] CANOSA A, SIMS I R, TRAVERS D, et al. Reactions of the methylidine radicalwith CH4, C2H2, C2H4, C2H6 and but-1-ene studied between 23 and 295 K with aCRESU apparatus [J]. Astron. Astrophys., 1997, 323:644-651.
    [13] BAUER S J. Titan's ionosphere and atmospheric evolution [J]. Astron. Astrophys.Adv Space Res., 1987, 7:65-69.
    [14] FULCHIGNONI M, FERRI F, ANGRILLI F, et al. In situ measurements of thephysical characteristics of Titan's environment. [J]. Nature, 2006, 438:785-791.
    [15] VUITTON V, YELLE R V, MCEWAN M J. Ion Chemistry and N-containingMolecules in Titan's Upper Atmosphere [J]. Icarus, 2007, 191:722-742.
    [16] BROADFOOT A L, SANDEL B R, SHEMANSKY D E,et al. ExtremeUltraviolet Observations from Voyager 1 Encounter with Saturn. [J]. Science, 1981,212:206-221.
    [17] HANEL R, CONRATH B, FLASAR F M, et al. Infrared observations of theSaturnian system from Voyager 1. [J]. Science, 1981, 212:192-200.
    [18] SAMUELSON R, NATH N, BORYSOW A. The dynamics behind Titan'smethane clouds [J]. Planet. Space Sci.,1997, 45:959-980.
    [19] YUNG Y L, ALLEN M, PINTO J P. Photochemistry of the atmosphere of Titan:Comparison between model and observations. [J]. Appl. J. Suppl.,1984, 55: 465-506.
    [20] TOUBLANC D, PARISOT J P, BRILLET J, et al. Photochemical modelling ofTitan's atmosphere [J]. Icarus, 1995, 113:2-26.
    [21] BRID M K, DUTTA-ROY R, ASMAR S W, et al. Detection of Titan'sionosphere from Voyager 1 radio occulatation observations [J]. Icarus, 1997, 130:426-436.
    [22] WAHLUND J E, BOSTROM R, GUSTAFSSON G, et al. Measurements of ColdPlasma in the Ionosphere of Titan [J]. Science, 2005, 308:986-989.
    [23] KELLER C N, CRAVENS T E, GAN L, A model of the ionosphere of Titan [J].J. Geophys. Res., 1992, 97:12117-12135.
    [24] GAN L, KELLER C N. CRAVENS T E. Electrons in the ionosphere of Titan [J].J. Geophys. Re, 1992, 97:12136-12151.
    [25] GALAND M, LILENSTEN J, TOUBLANC D, et al. The ionosphere of Titan:ideal diurnal and nocturnal cases, [J]. Icarus, 1999, 140:92-105.
    [26] BANASZKIEWICZ M, LARA L M, RODRIGO R, et al. A coupled model ofTitan's atmosphere and ionosphere, [J]. Icarus, 2000, 147:386-404.
    [27] LILENSTEN J, SIMON C, WITASSE O, et al. A fast computation of the diurnalsecondary ion production in the ionosphere of Titan [J]. Icarus, 2005, 174:285-288.
    [28] OSAMURA Y, PETRIE S. NCCN and NCCCCN Formation in Titan'sAtmosphere: 1. Competing Reactions of Precursor HCCN (3A") with H (2S) andCH3 (2A') [J]. J. Phys. Chem. A., 2004, 108:3615-3622.
    [29] ANICICH V G, WILSON P F, MCEWAN M J, et al. A SIFT Ion-MoleculeStudy of some reactions in Titan's Atmosphere. Reactions of N+, N2+ and HCN+ withCH4 , C2H2 and C2H4 . [J]. J. Am. Soc. Mass Spectrom., 2004, 15:1148-1155.
    [30] ANICICH V G, MILLIGAN D B, FAIRLEY D A, et al. Termolecularion-molecular reactions in Titan's atmosphere: principal ions with principal neutrals.[J]. Icarus, 2000, 146:118-124.
    [31] ANICICH V G, WILSON P F, MCEWAN M J, Termolecular Ion-MoleculeReactions in Titan's Atmosphere. IV. A search made at up to 1 micron in purehydrocarbons. [J]. J. Amer. Soc. Mass Spectrom., 2003, 14:900-915.
    [32] ANICICH V G, MCEWAN M J, An ICR study of ion-molecule reactions inTitan's atmosphere: an investigation of binary hydrocarbon mixtures up to 1 micron.[J]. J. Amer. Soc. Mass Spectrom., 2006, 17:544-561.
    [33] ADAMES N, SMITH D. The selected ion flow tube (SIFT); a technique forstudying ion-neutral reactions. [J]. J. Am. Soc. Mass Spectrom., 1976, 21:349-359.
    [34] ADAMES N, SMITH D. An experimental survey of the reactions of NHn+ ions(n=0 to 4) with several diatomic and polyatomic molecules at 300 K [J]. J. Chem.Phys., 1980, 72:288-297.
    [35] DOBRIJEVIC M, OLLIVIER J L, BILLEBAUD F, et al. Effect of chemicalkinetic uncertainties on photochemical modeling results: application to Saturn'satmosphere [J]. J. Acta Astronaut., 2003, 398:335-344.
    [36] SMITH D, ADAMES N, MILLER T A. laboratory study of the reactions of N+,N2+, N3+, N4+, O+, O2+, and NO+ ions with several molecules at 300 K [J]. J. Chem.Phys., 1978,69:308-318.
    [37] TOUBLANC D, PARISOT J, BRILLER J, et al. Photochemical modeling ofTitan's atmosphere. [J]. Icarus, 1995, 113:2-26.
    [38] ALCARAZ C, NICOLAS C, THIS SEN R, et al. state-selected ion-moleculereactions relevant to the chemistry of planetary ionospheres [J]. J. Phys. Chem. A,2004, 108:9998-10009.
    [39] SEKINE Y, IMANAKA H, MATSUI T, et al. The role of organic haze in Titan'satmospheric chemistry I. Laboratory investigation on heterogeneous reaction ofatomic hydrogen with Titan tholin. [J]. Icarus, 2008, 194:186-200.
    [40] REDONDO P, PAUZAT F, ELLINGER Y. Theoretical survey of the NH+CH3potential energy surface in relation to Titan atmospheric chemistry [J]. Planet. SpaceSci., 2006, 54:181-187.
    [41] MARCO D S, MARZIO R, ANTONIO S. Reactions of N+ ions with ethylene: atheoretical study on the addition mechanism into the olefin double bond [J]. Chem.Phys., 2004, 297:121-131.
    [42] ALVES T V, DE OLIVERIA A G S, ORNELLAS F S. The Reaction of MethylRadical with Nitrogen Atom on the Triplet Potential Energy Surface: ACCSD(T)/CBS Characterization. [J]. Chem. Phys. Lett, 2008, 457:36-41.
    [43] MILLIGAN D B, FREEMAN C G, MACLAGAN R G A, et al. ion-moleculereactions in Titan's atmosphere II: The structure of the association adducts of HCNH+with C2H2 and C2H4 [J]. J. Am. Soc. Mass Spectrom., 2001, 12:557-564.
    [44] ANIICICH V G, MCEWAN M J. Ion-molecule chemistry in Titan's ionosphere.[J]. Planet. Space Sci., 1997, 45:897-923.
    [45] MCEWAN M J, ANICICH V G, HUNTRESS M T. An ICR investigation ofion-molecule reactions of HCN [J]. Int. J. Mass Spectrom. Ion Phys., 1980,37:273-281.
    [46] KOCHI J K. Free Radicals, in 2 Vols, New York: John Wiley, 1973.
    [47] HUANG R L, GOH S H, ONG S H, The Chemistry of Free Radicals, London:Edward Arnold, 1974.
    [48] HAY K H, WATERS W A. Waters, Some Organic Reactions Involv- ing theOccurrence of Free Radicals in Solution, [J]. Chem. Rev., 1937, 21:169-208.
    [49] KHARASCH M S, MANSFIELD J V, MAYO F R. CIS-TRANSISOMERIZATION BY BROMINE ATOMS [J]. J. Am. Chem. Soc, 1937,59:1155-1161.
    [50]WALDEN P, AUDRIETH L F. Free Inorganic Radicals. [J]. Chem. Rev., 1928,5:339-359.
    [51] Uri N. Inorganic free radicals in solution. [J]. Chem. Rev., 1952, 50:375-454.
    [52] GARCIA H, ROTH H D. Generation and reactions of organic radical cations inzeolites. [J]. Chem. Rev., 2002, 103:3947-4008.
    [53] JOHNSTON L J. Photochemistry of radicals and biradicals [J].Chem. Rev., 1993,93:251-266.
    [54] MONROE B M, WEED G C. Photoinitiators for Free-Radical-InitiatedPhotoimaging Systems [J]. Chem. Rev., 1993, 93:435-488.
    [55] SABLIER M, FUJII T. Mass Spectrometry of Free Radicals Chem. Rev., 2002,102:2855-2924.
    [56] ATKINSON R. Kinetics and mechanisms of the gas-phase reactions of thehydroxyl radical with organic compounds under atmospheric conditions Chem. Rev.,1986,86:69-201.
    [57] BEDJANIAN Y, POULET G. Kinetics of halogen oxide radicals in thestratosphere [J]. Chem. Rev., 2003, 103:4639-4656.
    [58] ORLANDO J J, TYNDALL G S, WALLINGTON T J, et al. The atmosphericchemistry of alkoxy radicals [J]. Chem. Rev., 2003, 103:4657-4689.
    [59]KURYLO M J, ORKIN V L. Determination of Atmo- spheric Lifetimes via theMeasurement of OH Radical. Kinetics Chem. Rev., 2003, 103:5049-5076.
    [60] WILSON S. Theoretical studies of interstellar radicals and ions [J]. Chem. Rev.,1980, 80:263-267.
    [61] HAIDER N, HUSAIN D. Absolute rate data for the reactions of ground-stateatomic carbon, C[2p2(3PJ)], with alkenes investigated by time-resolved atomicresonance absorption spectroscopy in the vacuum ultraviolet [J]. J. Chem. Soc.Faraday Trans., 1993, 89:7-14.
    [62] KAISER R I, LEE Y T, SUITS A G Crossed-beam reaction of C(3Pj) with C2H2(1∑+g) Observation of tricarbon-hydride C3H [J]. J. Chem. Phys., 1995,103:10395-10398.
    [63] TAKAYANAGI T. Quantum Dynamics Study on the Product Branching for theC(3P)+C2H2 Reaction:cyclic-C3H versus linear-C3H [J]. J. Phys Chem. A., 2006,110:361-366.
    [64] MEBEL A M, KISLOV V V, HAYASI M. Prediction of product branching ratiosin the C(3Pj)+C2H2^l-C3H+H/c-C3H+H/C3+H2 reaction using ab initio coupledclusters calculations extrapolated to the complete basis set combined withRice-Ramsperger-Kassel-Marcus and radiationless transition theories [J]. J. Chem.Phys., 2007, 126:204310(1)- 204310(10).
    [65] LEONORI F, PETRUCCI R, SEGOLONI E, et al. Unraveling the Dynamics ofthe C(3P, 1D)+C2H2 Reactions by the Crossed Molecular Beam Scattering Technique[J]. J. Phys Chem. A, 2008, 112:1363-1379.
    [66] LAISER R L, LEE Y T, SUIT A G Crossed-beam reaction of carbon atoms withhydrocarbon molecules. I. Chemical dynamics of the propargyl radical formation,C3H3 (X2B2), from reaction of C(3Pj) with ethylene, C2H4(X1Ag) [J]. J. Chem. Phys.,1996, 105:8705-8720.
    [67] KAISER R I, STRANGES D, BEVSEK H M, et al. Crossed-beam reaction ofcarbon atoms with hydrocarbon molecules. IV. Chemical dynamics ofmethylpropargyl radical formation, C4H5 ,from reaction of C(3Pj) with propylene,C3H6 (X1A') J. Chem. Phys., 1997, 106:4945-4953.
    [68] KAISER R I, STRANGES D, LEE Y T, et al. Neutral-neutral reactions in theinterstellar medium. 1. Formation of carbon hydride radicals via reaction of carbonatoms with unsaturated hydrocarbons [J]. The Astrophysical Journal, 1997,477:982-989.
    [69] CHASTAING D, JAMES P L, SIMS J I, et al. Neutral-neutral reactions at thetemperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon,C(3P), with O2, C2H2, C2H4 and C3H6 down to 15 K [J]. Phys, Chem. Chem. Phys.,1999, 1:2247-2256.
    [70] LOISON J C, BERGEAT A. Reaction of carbon atoms, C (2p2, 3P) with C3H4(allene and methylacetylene), C3H6 (propylene) and C4H8 (trans-butene): Overall rateconstants and atomic hydrogen branching ratios [J]. Phys, Chem. Chem. Phys, 2004,6:5396-5410.
    [71] KAISER R I, MEBEL AM, CHANG A H H, et al. Crossed-beam reaction ofcarbon atoms with hydrocarbon molecules.V. Chemical dynamics of n-C4H3formation from reaction of C 3Pj with allene, H2CCCH2 X1A1 [J]. J. Chem. Phys.,1999, 110:10330-10344.
    [72] HAROLD W, SCHRANZ S C, SMITH A M, et al. Prediction of absolute ratecoefficients and product branching ratios for the C 3P + allene reaction system [J]. J.Chem. Phys., 2002, 117:7055-7067.
    [73] JOO H, SHEVLIN P B, MCKEE M L, Computational Study of Carbon Atom (3Pand lD) Reaction with CH2O. Theoretical Evaluation of 1B1 Methylene Production byC (1D) [J]. J. Am. Chem. Soc, 2006, 128:6220-6230.
    [74] KAISER R I, STRANGES D, LEE Y T, et al. Crossed-beam reaction of carbonatoms with hydrocarbon molecules. II. Chemical dynamics of n-C4H3 formation fromreaction of C( 3Pj) with methylacetylene, CH3CCH (X1A1) [J]. J. Chem. Phys., 1996,105:8721-8733.
    [75] SUN B J, HUANG C Y, KUO H H, et al. Formation of interstellar2,4-pentadiynylidyne, HCCCCC(X2II), via the neutral-neutral reaction of ground statecarbon atom, C(3P),with diacetylene, HCCCCH,(X1∑g±) [J]. J. Chem. Phys., 2008,128:244303(1)-244303(16).
    [76] HAHNDOORF I, LEE H Y, MEBEL AM, et al. A combined crossed beam and abinitio investigation on the reaction of carbon species with C4H6 isomers. I. The1,3-butadiene molecule, H2CCHCHCH2 X1A1 [J]. J. Chem. Phys., 2000,113:9622-9636.
    [77] BALUCANIN, LEE H Y, MEBEL A M, et al. A combined crossed beam and abinitio investigation on the reaction of carbon species with C4H6 isomers. III.1,2-butadiene, H2CCCHCH3 X1A'-a non-Rice-CRamsperger-CKassel-CMarcussystem? [J]. J. Chem. Phys., 2001, 115:5107-5116.
    [78] SWINGS P, ROSENFELS L. Considerations regarding interstellar molecules. [J].Astrophys. J., 1937, 86:483-486.
    [79] ZACHWIEJA M. New investigations of the A2△-X2n Band System of the CHRadical and a New Reduction of the Vibtation-Rotation Spectrum of CH from theATOMS Spectra [J]. J. Mol. Spectrosc, 1995, 170:285-309.
    [80] HERZBERG Q JONES J W C. New spectra of the CH molecule. [J]. Astrophys.J., 1969, 158:399-418.
    [81] BERNATH P F, BRAZIER C R, OLSEN T, et al. Spectroscopy of the CH freeradical [J]. J. Mol. Spectrosc, 1991, 147:16-26.
    [82] BERNATH P F. The Vibration-Rotation Emission Spectrum of CH(X2P) [J]. J.Chem. Phys., 1987, 86:4838-4842.
    [83] LUQUE P A, BERG J B, JEFFRIES G P, et al. Simultaneous laser-inducedfluorescence and sub-Doppler polarization spectroscopy of the CH radical [J]. Appl.Phys. B., 204, 78:93-102.
    [84] KIEFER Z, LI J, ZETTERBERG M, et al. Simultaneous laser-inducedflourescence and sub-Doppler polarization spectroscopy of the CH- radical [J]. OpticsCommunications., 2007, 270:347-352.
    [85] RUSCIC B, BOGGS J E, BURCAT A, et al. IUPAC Critical Evaluation ofThermochemical Properties of Selected Radicals: Part I [J]. J Phys Chem Ref Data,2005, 34:573-656.
    [86] IKEJIRI K, OHOYAMA H, NAGAMACHI Y, et al. A highly intensestate-selected CH radical beam and its application to the CH + O2 reaction [J]. Chem.Phys. Lett, 2005, 401:465-469.
    [87] MANAA M R, YARKONY D R. On the mechanism of the reactionCH(X 2II)+N2(X l∑+g)→HCN(lX∑+)+N(4S). A theoretical treatment of the electronicstructure aspects of the intersystem crossing [J]. J. Chem. Phys., 1991, 95:1808-1816.
    [88] SEIDEMAN T, WALCH S P. Two-dimensional potential energy surfacesfor CH(X2II)+N2(X1∑+g)→HCN(X 1∑+)+N(4S)J. Chem. Phys., 1994, 101:3656-3661.
    [89] SEIDEMAN T. Resonances in the CH+N2→HCN+N(4S) reaction: Thedynamics of a spin-forbidden process [J]. J. Chem. Phys., 1994, 101:3662-3670.
    [90] BERMAN M R, TSUCHIYA T, GREGUSOVA A, et al. HNNC radical and itsrole in the CH+N2 reaction [J]. J. Phys. Chem. A., 2007, 111:6894-6899.
    [91] BERGEAT A, CALVO T, DORTHE G, et al. Fast-Flow Study of the CH+CHReaction Products [J]. J. Phys. Chem. A., 1999, 103:6360-6365.
    [92] JURSIC B S. Complete Basis Set ab Initio Study of the CH Insertion Reactionwith Water, Ammonia, and Hydrogen Fluoride [J]. J. Phys. Chem. A., 1998,102:9255-9260.
    [93] FLERUAT-LESSARD P, RAYEZ J C, BERGEAT A, et al. Reaction ofmethylidyne CH(X2II) radical with CH4 and H2S:overall rate constant and absoluteatomic hydrogen production [J]. Chem. Phys., 2007, 279:87-99.
    [94] DAUGEY N, CAUBET P, RETAIL B, et al. Kinetic measurements onmethylidyne radical reactions with several hydrocarbons at low temperatures [J]. Phys.Chem. Chem. Phys., 2005, 7:2921-2927.
    [95] LOISON J C, BERGEAT A, CARALP F, et al. Rate Constants and H AtomBranching Ratios of the Gas-Phase Reactions of Methylidyne CH(X2II) Radical witha Series of Alkanes [J]. J. Phys. Chem. A., 2006, 110:13500-13506.
    [96] MCKEE M K, BLITE K M A, HUGHES K J, et al. H atom branching ratiosfrom the reactions of CH with C2H2, C2H4, C2H6 and neo-CsH12 at room temperatureand 25 torr [J]. J. Phys. Chem. A., 2003, 107:5710-5716.
    [97] GALL AND N, CARALP F, HANNACHI Y, et al. Experimental and TheoreticalStudies of the Methylidyne CH(X2II) Radical Reaction with Ethane (C2H6): OverallRate Constant and Product Channels [J]. J. Phys. Chem. A., 2003, 107:5419-5426.
    [98] GOULAY F, TREVITT A J, MELONI Q et al. Cyclic Versus Linear IsomersProduced by Reaction of the Methylidyne Radical (CH) with Small UnsaturatedHydrocarbons [J]. J. Am. Chem. Soc, 2009, 131:993-1005.
    [99] LOISON J C, BERGEAT A. Rate constants and the H atom branching ratio ofthe reactions of the methylidyne CH(X2II) radical with C2H2, C2H4, C3H4(methylacetylene and allene), C3H6 (propene) and C4H8 (trans-butene) [J]. Phys. Chem. Chem. Phys., 2009, 11:655-664.
    [1] BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln Ann Phsik [J].1927, 389:457-484.
    [2] (a)唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.(b)徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.(c)王志中,现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    [3] HEHRE W J, RADOM L, SCHLEYER P R, et al. Ab Initio molecular orbitaltheory [M]. John Wiley &Sons Inc, 1986. (b) MCQUARRIE D A. QuantumChemistry University Science [M]. Mill Vally CA, 1983.
    [4] LOWDIN P O. A classic review on electron correlation [J]. Advances in ChemicalPhysics, 1959, 2:207-322.
    [5] POPLE J A, SEEGER R, KRISHNAN R.Variational configuration interactionmethods and comparison with perturbation theory [J]. International journal ofquantum chemistry. Sympos, 1977, 11:149-163.
    [6] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematicmolecular orbital theory for excited states [J]. Journal of Physical Chemistry, 1992,96:135-149.
    [7] KRISHNAN R, SCFILEGEL H B, POPLE J A. Derivative studies inconfiguration-interaction theory [J]. Journal of Chemical Physics, 1980,72:4654-4655.
    [8] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlatedwave functions via the two-particle density matrix and the unitary group approach [J],Journal of Chemical Physics, 1980, 72:4652-4653.
    [9] SALTER E A, TRUCKS G W, BARTLETT R J, Analytic energy derivatives inmany-body methods. I. First derivatives [J]. Journal of Chemical Physics, 1989,90:1752-1756.
    [10] RAGHAVACHARI K, POPLE J A, Specificity and molecular mechanism ofabortificient action of prostaglandins [J]. International Journal of Quantum Chemistry,1981,20:167-178.
    [11] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Quadraticconfiguration interaction. A general technique for determining electron correlationenergies [J]. Journal of Chemical Physics, 1987, 87:5968-5975.
    [12] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fullyautomated determination of attractor interaction lines in molecules [J]. Chem Phys.Lett, 1994,219:151-154.
    [13] SCHLEGEL H B, ROBB M A. MCSCF gradient optimization of the H2CO H2+ CO transition structure. [J]. Chem. Phys. Lett., 1982, 93:43-46.
    [14] EADE R H E, ROBB M A, Direct minimization in mc scf theory, the quasi-newtonmethod [J], Chemical Physics Letters, 1981, 83:362-368.
    [15] HEGARTY D, ROBB M A. Application of unitary group methods toconfiguration interaction calculations [J], Molecular Physics, 1979, 38:1795-1812.
    [16] PEPLE J A, KRISHNAN R, SCHLEGEL H B, et al. Electron correlation theoriesand their application to the study of simple reaction potential surfaces [J]. Int. J.Quant. Chem. XIV, 1978, 14:545-560.
    [17] BARTLETT R J, PURVIS G D. Many-body perturbation theory, coupled-pairmany-electron theory, and the importance of quadrupole excitations for the correlationproblem [J]. Int. J. Quant. Chem., 1978, 14:516-518.
    [18] SCUSERIA G E, SCHAEFER III H F. Is coupled cluster singles and doubles(CCSD) more computationally intensive than quadratic configuration interaction(QCISD)? [J], Journal of Chemical Physics, 1989, 90:3700-3703.
    [19] PURVIS G D, BARTLETT R J.A full coupled-cluster singles and doubles model:The inclusion of disconnected triples [J], Journal of Chemical Physics, 1982,76:1910-1918.
    [20] SCUSERIA G E, JANS SEN C L, Schaefer III H F. An efficient reformulation ofthe closed-shell coupled cluster single and double excitation (CCSD) equations [J].Journal of Chemical Physics, 1988, 89:7382-7387.
    [21] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review,1964, 136:B864-B871.
    [22] KOHN W, SHAM L J, Self-consistent equations including exchange andcorrelation effects [J]. Physical Review, 1965, 140:A1133-A1138.
    [23] SLATER J C. Quantum Theory of Molecular and Solids. Vol. 4: TheSelf-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    [24] SALAHUB D R, ZERNER M C, eds., The Challenge of d and f Electrons ACS:Washington, D.C. 1989.
    [25] PARR R G, YANG W. Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [26] POPLE J A, GILL P M W, JOHNSON B G Kohn-Sham density-functional theory within a finite basis set [J], Chemical Physics Letters, 1992, 199:557-560. [27] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. Journal of Chemical Physics, 1994, 100:7429-7442.
    [28] LABANOWSKI J K, ANDZELM J W, eds., Density Functional Methods in Chemistry [M], Springer-Verlag: New York, 1991.
    [29] POPLE J A, HEAD-GORDON M, FOX D J, et al, Gaussian-1 theory: A general procedure for prediction of molecular energies [J]. Journal of Chemical Physics, 1989, 90:5622-5629; CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al, Gaussian-2 theory for molecular energies of first- and second-row compounds [J]. Journal of Chemical Physics, 1991, 94:7221-7230; CURTISS L A, RAGHAVACHARI K, POPLE J A, Gaussian-2 theory using reduced Mφller-Plesset orders [J], Journal of Chemical Physics, 1993, 98:1293-1298; SMITH B J, RADOML, Calculation of Proton Affinities Using the G2(MP2,SVP) Procedure [J], The Journal of Physical Chemistry, 1995, 99:6468-6471; MEBEL AM, MOROKUMAK, LIN M C, Modification of the gaussian-2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies [J], Journal of Chemical Physics, 1995, 103:7414-7421; CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J], Journal of Chemical Physics, 1998, 109:7764-7776; the G31arge basis set is downloaded from the website http://chemistry.anl.gov/compmat/ g3theory.htm; CURTISS L A, REDFERM P C, RAGHAVACHARI K, et al, Gaussian-3 theory using reduced M0ller-Plesset order [J], Journal of Chemical Physics, 1999, 110:4703-4709; BAUSCHLICHER C W, PARTRIDGE H, A modification of the Gaussian-2 approach using density functional theory [J], Journal of Chemical Physics, 1995, 103:1788-1791; HAHN D K, KLIPPENSTEIN S J, MILLER J A, A theoretical analysis of the reaction between propargyl and molecular oxygen [J], Faraday Discuss, 2001, 119:79-100.
    [30] BABOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3 theory using density functional geometries and zero-point energies [J], Journal of Chemical Physics, 1999, 110:7650-7657.
    
    [31] MELIUS C F, BINKLEY J S. The 20th Symposium (International) onCombustion, The Combustion Institute. Pittsburgh, 1984, p.575.
    [32] SIEGBAHN P E M, BLOMBERG M R A, SVENSSON M, PCI-X, a parametrizedcorrelation method containing a single adjustable parameter X [J], Chemical Physics Letters,1994,223:35-45.
    [33] FUKUI K. Variational principles in a chemical reaction Int. J. Quantum. Chem.,1981, 15:663-642.
    [34] FUKUI K, TACHIBANA A, YAMASHITA K. Toward Chemodynamics [J]. J.Quantum. Chem., 1981, 15:621-632.
    [1] BAUER S J. Titan's ionosphere and atmospheric evolution [J]. Astron. Astrophys.Adv Space Res., 1987, 7:65-69.
    [2] FULCHIGNONI M, FERRI F, ANGRILLI F, et al. In situ measurements of thephysical characteristics of Titan's environment. [J]. Nature, 2006, 438:785-791.
    [3] VUITTON V, YELLE R V, MCEWAN M J. Ion Chemistry and N-containingMolecules in Titan's Upper Atmosphere [J]. Icarus, 2007, 191:722-742.
    [4] BROADFOOT A L, SANDEL B R, SHEMANSKY D E,et al. Extreme UltravioletObservations from Voyager 1 Encounter with Saturn. [J]. Science, 1981, 212:206-221.
    [5] HANEL R, CONRATH B, FLASAR F M, et al. Infrared observations of theSaturnian system from Voyager 1. [J]. Science, 1981, 212:192-200.
    [6] SAMUELSON R, NATH N, BORYSOW A. The dynamics behind Titan'smethane clouds [J]. Planet. Space Sci., 1997, 45:959-980.
    [7] YUNG Y L, ALLEN M, PINTO J P. Photochemistry of the atmosphere of Titan:Comparison between model and observations. [J]. Appl. J. Suppl., 1984, 55:465-506.
    [8] TOUBLANC D, PARISOT J P, BRILLET J, et al. Photochemical modelling ofTitan's atmosphere [J]. Icarus, 1995, 113:2-26.
    [9] BRID M K, DUTTA-ROY R, ASMAR S W, et al. Detection of Titan's ionospherefrom Voyager 1 radio occulatation observations [J]. Icarus, 1997, 130: 426-436.
    [10] WAHLUND J E, BOSTROM R, GUSTAFSSON G, et al. Measurements of ColdPlasma in the Ionosphere of Titan [J]. Science, 2005, 308:986-989.
    [11] KELLER C N, CRAVENS T E, GAN L, A model of the ionosphere of Titan [J].J. Geophys. Res. 1992, 97:12117-12135.
    [12] GAN L, KELLE C N, CRAVEN T E. Electrons in the ionosphere of Titan [J]. J.Geophys. Re, 1992, 97:12136-12151.
    [13] GALAND M, LILENSTEN J, TOUBLANC D, et al. The ionosphere of Titan:ideal diurnal and nocturnal cases, [J]. Icarus, 1999, 140:92-105.
    [14] BANASZKIEWICZ M, LARA L M, RODRIGO R, et al. A coupled model ofTitan's atmosphere and ionosphere, [J]. Icarus, 2000, 147:386-404.
    [15] LILENSTEN J, SIMON C, WITASSE O, et al. A fast computation of the diurnalsecondary ion production in the ionosphere of Titan [J]. Icarus, 2005, 174:285-288.
    [16] ANICICH V G, MILLIGAN D B, FAIRLEY D A, et al. Termolecularion-molecular reactions in Titan's atmosphere: 1 principal ions with principal neutrals.[J]. Icarus, 2000, 146:118-124.
    [17] ANICICH V G, WILSON P F, MCEWAN M J, Termolecular Ion-MoleculeReactions in Titan's Atmosphere. IV. A search made at up to 1 micron in purehydrocarbons. [J]. J. Amer. Soc. Mass Spectrom., 2003, 14:900-915.
    [18] ANICICH V G, WILSON P F, MCEWAN M J, et al. A SIFT Ion-MoleculeStudy of some reactions in Titan's Atmosphere. Reactions of N+ , N2+ and HCN+ withCH4 , C2H2 and C2H4 . [J]. J. Am. Soc. Mass Spectrom., 2004, 15:1148-1155.
    [19] ANICICH V G, MCEWAN M J, An ICR study of ion-molecule reactions inTitan's atmosphere: an investigation of binary hydrocarbon mixtures up to 1 micron.[J]. J. Amer. Soc. Mass Spectrom., 2006, 17:544-561.
    [20] REDONDO P, PAUZAT F, ELLINGER Y. Theoretical survey of the NH+CH3potential energy surface in relation to Titan atmospheric chemistry [J]. Planet. SpaceSci., 2006, 54:181-187.
    [21] MARCO D S, MARZIO R, ANTONIO S. Reactions of N+ ions with ethylene: atheoretical study on the addition mechanism into the olefin double bond [J]. Chem.Phys., 2004, 297:121-131.
    [22] MCEWAN M J, ANICICH V G, HUNTRESS M T. An ICR investigation ofion-molecule reactions of HCN [J]. Int. J. Mass Spectrom. Ion Phys., 1980, 37:273-281.
    [23] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 98, RevisionA.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
    [1] CLARY D C, BUONOMO E, SIMS IR, et al. C+C2H2: A key reaction in interstellarchemistry [J]. J. Phys. Chem. A., 2002, 106:5541-5552.
    [2] SMITH I W M. The Liversidge Lecture 2001-02. Chemistry amongst the stars: reactionkinetics at a new frontier [J]. Chem. Soc. Rev., 2002, 31:137-146.
    [3] TURNER B E, HERBST E, TERZIEVA R. The physics and chemistry of smalltranslucent molecular clouds. XIII. The basic hydrocarbon chemistry [J]. Astrophys. J. Suppl.Ser, 2000, 126:427-460.
    [4] KAISER R I, LE T N, NGUYEN T L, et al. A combined crossed molecular beam and abinitio investigation of C2 and C3 elementary reactions with unsaturated hydrocarbons-pathways tohydrogen deficient hydrocarbon radicals in combustion flames [J]. Faraday Discuss, 2001,119:51-66.
    [5] CASAVECCHIA P, BALUCANI N, CARTECHINI L, et al. Crossed beam studies ofelementary reactions of N and C atoms and CN radicals of importance in combustion [J].Faraday Discuss, 2001, 119:27-49.
    [6] KAISER R I, MEBEL A M. The reactivity of ground-state carbon atoms with unsaturatedhydrocarbons in combustion flames and in the interstellar medium [J]. Int. Rev. Phys. Chem,2002,21:307-356.
    [7] HAIDER N, HUSAIN D. Absolute rate data for the reactions of ground-state atomiccarbon, C[2p2(3PJ)], with alkenes investigated by time-resolved atomic resonance absorptionspectroscopy in the vacuum ultraviolet [J]. J. Chem. Soc, Faraday Trans., 1993, 89:7-14.
    [8] KAISER R I, LEE Y T, SUITS A G. Crossed-beam reaction of C(3Pj) withC2H2(1∑+g) Observation of tricarbon-hydride C3H [J]. J. Chem. Phys., 1995,103:10395-10398.
    [9] TAKAYANAGI T Quantum Dynamics Study on the Product Branching for theC(3P)+C2H2 Reaction:cyclic-C3H versus linear-C3H [J]. J. Phys Chem. A., 2006,110:361-366.
    [10] MEBEL A M, KISLOV V V, HAYASI M. Prediction of product branching ratiosin the C(3Pj)+C2H2→l-C3H+H/c-C3H+H/C3+H2 reaction using ab initio coupledclusters calculations extrapolated to the complete basis set combined withRice-Ramsperger-Kassel-Marcus and radiationless transition theories [J]. J. Chem.Phys., 2007, 126:204310(1)- 204310(10).
    [11] LEONORI F, PETRUCCI R, SEGOLONI E, et al. Unraveling the Dynamics ofthe C(3P, 1D)+C2H2 Reactions by the Crossed Molecular Beam Scattering Technique[J]. J. Phys Chem. A, 2008, 112:1363-1379.
    [12] LAISER R L, LEE Y T, SUIT A G. Crossed-beam reaction of carbon atoms withhydrocarbon molecules. I. Chemical dynamics of the propargyl radical formation,C3H3 (X2B2), from reaction of C(3Pj) with ethylene, C2H4(X1Ag) [J]. J. Chem. Phys.,1996, 105:8705-8720.
    [13] KAISER R I, STRANGES D, BEVSEK H M, et al. Crossed-beam reaction ofcarbon atoms with hydrocarbon molecules. IV. Chemical dynamics ofmethylpropargyl radical formation, C4H5 ,from reaction of C(3Pj) with propylene,C3H6(x1A') J. Chem. Phys., 1997, 106:4945-4953.
    [14] KAISER R I, STRANGES D, LEE Y T, et al. Neutral-neutral reactions in theinterstellar medium. 1. Formation of carbon hydride radicals via reaction of carbonatoms with unsaturated hydrocarbons [J]. The Astrophysical Journal, 1997,477:982-989.
    [15] CHASTAING D, JAMES P L, SIMS J I, et al. Neutral-neutral reactions at thetemperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon,C(3P), with O2, C2H2, C2H4 and C3H6 down to 15 K [J]. Phys, Chem. Chem. Phys.,1999, 1:2247-2256.
    [16] LOISON J C, BERGEAT A. Reaction of carbon atoms, C (2p2,3P) with C3H4(allene and methylacetylene), C3H6 (propylene) and C4H8 (trans-butene): Overall rateconstants and atomic hydrogen branching ratios [J]. Phys, Chem. Chem. Phys., 2004,6:5396-5410.
    [17] KAISER R I, MEBEL AM, CHANG A H H, et al. Crossed-beam reaction ofcarbon atoms with hydrocarbon molecules.V. Chemical dynamics of n-C4H3formation from reaction of C 3Pj with allene, H2CCCH2 X1A1 [J]. J. Chem. Phys.,1999, 110:10330-10344.
    [18] HAROLD W, SCHRANZ S C, SMITH A M, et al. Prediction of absolute ratecoefficients and product branching ratios for the C 3P + allene reaction system [J]. J.Chem. Phys, 2002, 117:7055-7067.
    [19] MEBEL A M, KAISER R I, LEE Y T. Ab Initio MO Study of the GlobalPotential Energy Surface of C4H4 in Triplet Electronic State and the Reactions ofC(3Pj) with C3H4 (Allene and Propyne) and C2(A3πu) with C2H4(X1A1g+) [J]. J. Am.Chem. Soc, 2000, 122:1776-1788.
    [20] KAISER R I, STRANGES D, LEE Y T, et al. Crossed-beam reaction of carbonatoms with hydrocarbon molecules. II. Chemical dynamics of n-C4H3 formation fromreaction of C(3Pj) with methylacetylene, CH3CCH (X1A1) [J]. J. Chem. Phys., 1996,105:8721-8733.
    [21] SUN B J, HUANG C Y, KUO H H, et al. Formation of interstellar2,4-pentadiynylidyne, HCCCCC(X2II), via the neutral-neutral reaction of ground statecarbon atom, C(3P),with diacetylene, HCCCCH,(X1∑g±) [J]. J. Chem. Phys., 2008,128:244303(1)-244303(16).
    [22] HAHNDOORF I, LEE H Y, MEBEL AM, et al. A combined crossed beam and abinitio investigation on the reaction of carbon species with C4H6 isomers. I. The1,3-butadiene molecule, H2CCHCHCH2 X1A1 [J]. J. Chem. Phys., 2000,113:9622-9636.
    [23] BALUCANIN, LEE H Y, MEBEL A M, et al. A combined crossed beam and abinitio investigation on the reaction of carbon species with C4H6 isomers. III.1,2-butadiene, H2CCCHCH3 X1A'-a non-Rice-CRamsperger-CKassel-CMarcussystem? [J]. J. Chem. Phys., 2001, 115:5107-5116.
    [24] NGUYEN T T, KING K D. Kinetics of decomposition and interconversion of3-methylbut-l-yne and 3-methylbuta-l,2-diene. Resonance stabilization energies ofpropargylic radicals [J]. J. Phys. Chem., 1981, 85:3130-3138.
    [25] PARKER C L, COOKSY A L. Ab Initio Study of the Most Stable C4H5 Isomers[J]. J. Phys. Chem. A., 1999, 103:2160-2169.
    [26] MARINOV N M, PITZ W J, WEATBROOK C K. Modeling of aromatic andpolycyclic aromatic hydrocarbon formation in premixed methane and ethane flames[J]. Combust. Soc. Technol., 1996, 117:211-287.
    [27] HANSEN N, KLIPPENSTEIN S J, TAAJES C A, et al. Identification andChemistry of C4H3 and C4H5 Isomers in Fuel-Rich Flames [J]. J. Phys. Chem. A.,2006, 110:3670-3678.
    [28] HANSEN N, MILLER J A, TAATJES C A, et al. Photoionization massspectrometric studies and modeling of fuel-rich allene and propyne flames [J].Proceeding of the Combustion Institute, 2007, 31:1157-1164.
    [29] YANG B, LI Y, WEI L, et al. An experimental study of the premixedbenzene/oxygen/argon flame with tunable synchrotron photoionization [J].Proceeding of the Combustion Institute, 2007, 31:555-563.
    [30] HANSEN N, COOL T A, WESTNORELAND P R, et al. Recent Contributions ofFlame-Sampling Molecular-Beam Mass Spectrometry to a Fundamental [J].Understanding of Combustion Chemistry Progress in Energy and Combustion Science,2009,35:168-191.
    [31] KUPPER J, MERRITT J M, MILLER R E. Free radicals in superfluid liquidhelium nanodroplets: Apyrolysis source for the production of propargyl radical [J]. J.Chem. Phys., 2002, 117:647-652.
    [32] KERN R D, XIE K, CHEN H. A Shock Tube Study of Chlorobenzene Pyrolysis[J]. Combust. Sci. Technol., 1992, 85:77-86.
    [33]ROTZELL G J. MOLECULAR-BEAM SAMPLING MASS-SPECTROMETRICSTUDY OF HIGH-TEMPERATURE BENZENE OXIDATION [J]. Chem. Kinet,1985, 17:637-653.
    [34] COLLIN G J, DESLAURIERS G R, DE MARE G R, et al. A. Research ArticleThe 213.8-nm photochemistry of gaseous 1,3-butadiene and the structure of someC3H3 radicals [J]. J. Phys. Chem., 1990, 94:134-141.
    [35] TOUBLANC D, PARISOT J P, BRILLET J, et al. Photochemical modeling ofTitan's atmosphere. [J]. Icarus, 1995, 113:2-26.
    [36] KNYAZEV V D, SLAGLE I R, VADIM D, et al. Kinetics of the ReactionBetween Propargyl Radical and Acetylene. [J]. J. Phys. Chem. A., 2002,106:5613-5617.
    [37] LEE H, JOO S K, KWON L K, et al. Radical-radical reaction dynamics: The OHformation in the reaction of O(3P) with propargyl radical, C3H3 [J]. J. Chem. Phys.,2003, 119:9337-9340.
    [38]GEPPERT W D, ESKOLA A J, TIMONEN R S, et al. Kinetics of the Reactionsof Vinyl (C2H3) and Propargyl (C3H3) Radicals with NO2 in the Temperature Range220-340 K [J]. J. Phys. Chem. A., 2004, 108:4232-4238.
    [39] LEE H, NAM M J, CHIO J H. Ab initio investigations of the radical-radicalreaction of O(3P) +C3H3 [J]. J. Chem. Phys., 2004, 124:0443ll(l)-044311(11).
    [40] SCHUPLER T, ROTH W, GERVER T, et al. The VUV photochemistry ofradicals: C3H3 and C2H5 [J]. Phys. Chem. Chem. Phys., 2005, 7:819-825.
    [41] WHEELER S E, ROBERTSON K A, ALLEN W D, et al. Thermochemistry ofKey Soot Formation Intermediates: C3H3 Isomers [J]. J. Phys. Chem. A., 2007,111:3819-3830.
    [42] GEORGIEVSKII Y, MILLER J A, KLIPPENSTEIN S J. Association rateconstants for reactions between resonance-stabilized radicals: C3H3+C3H3,C3H3+C3H5, and C3H5+C3H5 [J]. Phys. Chem. Chem. Phys., 2007, 9:4259-4268.
    [43] MILLER J A, MELIUS C F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels [J]. Combust. Flame, 1992, 91:21-39.
    [1] MILLER J A, BOWMAN C T, Mechanism and modeling of nitrogen chemistry incombustion [J]. Prog.Energy Combust. Sci, 1989, 15:287-338.
    [2] MILLER J A, KEE R J, WESTBROOK C, Chemical Kinetics and CombustionModeling [J]. Annu. Rev. Phys. Chem., 1990, 41:345-387.
    [3] BROWNSWORD R A, SIM I R, SMITH I W M. The radiative association of CHwith H2: a mechanism for formation of CH3 in interstellar clouds [J]. Astrophys. J.,1997,485:195-202.
    [4]CANOSA A, SIMS I R, TRAVERS D, et al. Reactions of the methylidine radicalwith CH4, C2H2, C2H4, C2H6 and but-1-ene studied between 23 and 295 K with aCRESU apparatus [J]. Astron. Astrophys., 1997, 323:644-651.
    [5] RYDBECK O E H, ELLDER J, IRVINE W M. Radio Detection of Interstellar CH[J]. Nature, 1973, 246:466-468.
    [6] LIEN D J. Areanalysis of the interstellar CH abundance [J]. Astrophys. J., 1984,284:578-588.
    [7] RIDGWAY S T, CARBON D F, HALL D N B, et al. An atlas of late-type stellarspectra, 2400-2778 inverse centimeters [J]. Astrophys. J. Suppl., 1984, 54:177-209.
    [8] LAMBERT D L, GUSTAFSSON B, ERIKSSON B, et al. The chemicalcomposition of carbon stars I. Carbon, nitrogen, and oxygen in 30 cool carbon stars inthe galactic disk [J]. Astrophys. J. Suppl., 1986, 62:373-425.
    [9] BLEEKRODE R, NIEUWPROOT W C. Absorption and EmissionMeausurements of C2 and CH Electronic bands in Low Pressure Oxyacetylene Flames[J]. J. Chem. Phys., 1965, 43:3680-3687.
    [10] ZACHWIEJA M. New investigations of the A2△-X2πBand System of theCHRadical and a New Reduction of the Vibtation-Rotation Spectrum of CH from theATOMS Spectra [J]. J. Mol. Spectrosc, 1995, 170:285-309.
    [11] HERZBERG G, JONES J W C. New spectra of the CH molecule. [J]. Astrophys.J. 1969, 158:399-418.
    [12] BERNATH P F, BRAZIER C R, OLSEN T, et al. Spectroscopy of the CH free radical [J]. J. Mol. Spectrosc, 1991, 147:16-26.
    [13] BERNATH P F. The Vibration-Rotation Emission Spectrum of CH(X2P) J. Chem.Phys., 1987,86:4838-4842.
    [14] LUQUE P A, BERG J B, JEFFRIES G P, et al. Simultaneous laser-inducedfluorescence and sub-Doppler polarization spectroscopy of the CH radical [J]. Appl.Phys. B., 204, 78:93-102.
    [15] KIEFER Z, LI J, ZETTERBERG M, et al. Simultaneous laser-inducedflourescence and sub-Doppler polarization spectroscopy of the CH-radical [J]. OpticsCommunications, 2007, 270:347-352.
    [16] RUSCIC B, BOGGS J E, BURCAT A, et al. IUPAC Critical Evaluation ofThermochemical Properties of Selected Radicals: Part I [J]. J Phys Chem Ref Data2005, 34:573-656.
    [17] IKEJIRI K, OHO YAM A H, NAGAMACHI Y, et al. A highly intensestate-selected CH radical beam and its application to the CH + O2 reaction [J]. Chem.Phys. Lett, 2005, 401:465-469.
    [18] MANAA M R, YARKONY D R. On the mechanism of the reactionCH(X 2II)+N2(X l∑+g)→HCN(lX∑+)+N(4S). A theoretical treatment of the electronicstructure aspects of the intersystem crossing [J]. J. Chem. Phys., 1991, 95:1808-1816.
    [19] SEIDEMAN T, WALCH S P. Two-dimensional potential energy surfacesfor CH(X2II)+N2(X1∑+g)→HCN(X1∑+)+N(4S) J. Chem. Phys., 1994, 101:3656-3661.
    [20] SEIDEMAN T. Resonances in the CH+N2→HCN+N(4S) reaction: Thedynamics of a spin-forbidden process [J]. J. Chem. Phys., 1994, 101:3662-3670.
    [21] BERMAN M R, TSUCHIYA T, GREGUSOVA A, et al. HNNC radical and itsrole in the CH+N2 reaction [J]. J. Phys. Chem. A, 2007, 111:6894-6899.
    [22] BERGEAT A, CALVO T, DORTHE G, et al. Fast-Flow Study of the CH+CHReaction Products [J]. J. Phys. Chem. A, 1999, 103:6360-6365.
    [23] JURSIC B S. Complete Basis Set ab Initio Study of the CH Insertion Reactionwith Water, Ammonia, and Hydrogen Fluoride [J]. J. Phys. Chem. A., 1998,102:9255-9260.
    [24] FLEURAT-LESSARD P, RAYEZ J C, BERGEAT A, et al. Reaction ofmethylidyne CH(X2II) radical with CH4 and H2S: overall rate constant and absoluteatomic hydrogen production [J].Chem. Phys., 2007, 279:87-99.
    [25] DAUGEY N, CAUBET P, RETAIL B, et al. Kinetic measurements onmethylidyne radical reactions with several hydrocarbons at low temperatures [J]. Phys.Chem. Chem. Phys., 2005, 7:2921-2927.
    [26] LOISON J C, BERGEAT A, CARALP F, et al. Rate Constants and H AtomBranching Ratios of the Gas-Phase Reactions of Methylidyne CH(X2II) Radical witha Series of Alkanes [J]. J. Phys. Chem. A., 2006, 110:13500-13506.
    [27] MCKEE M K, BLITE K M A, HUGHES K J, et al. H atom branching ratiosfrom the reactions of CH with C2H2, C2H4, C2H6 and neo-CsH12 at room temperatureand 25 torr [J]. J. Phys. Chem. A., 2003, 107:5710-5716.
    [28] GALL AND N, CARALP F, HANNACHI Y, et al. Experimental and TheoreticalStudies of the Methylidyne CH(X2II) Radical Reaction with Ethane (C2H6): OverallRate Constant and Product Channels [J]. J. Phys. Chem. A., 2003, 107:5419-5426.
    [29]GOULAY F, TREVITT A J, MELONI G, et al. Cyclic Versus Linear IsomersProduced by Reaction of the Methylidyne Radical (CH) with Small UnsaturatedHydrocarbons [J]. J. Am. Chem. Soc, 2009, 131:993-1005.
    [30] LOISON J C, BERGEAT A. Rate constants and the H atom branching ratio ofthe reactions of the methylidyne CH(X2II) radical with C2H2, C2H4, C3H4(methylacetylene and allene), C3H5 (propene) and C4H8 (trans-butene) [J]. Phys.Chem. Chem. Phys., 2009, 11:655-664.
    [31] WALCH S P. Walch Characterization of the minimum energy paths for thereactions of CH(X2II) and lCH2 with C2H2 [J]. J. Chem. Phys., 1995, 103:7064-7071.
    [32] VEREECKEN L, PEETERS J. Detailed Microvariational RRKM MasterEquation Analysis of the Product Distribution of the C2H2+CH(X2II) Reaction overExtended Temperature and Pressure Ranges [J]. J. Phys. Chem. A., 1999,103:5523-5533.
    [33] NGUYEN T L, MEBEL A M, LIN R I, et al. Product Branching Ratios of theC(3P)C2H3(2A') and CU(2Il)+C2H2(1∑g±) Reactions and Photodissociation ofH2CC=CH(2Bi) at 193 and 242 nm: an ab Initio/RRKM Study [J]. J. Phys. Chem. A.,2001,105:11549-11559.
    [34] LAURA R, MCCUNN B J, FITZPATRICK M J, et al. Unimolecular dissociationof the propargyl radical intermediate of the CH+C2H2 and C+C2H3 reactions [J]. J.Chem. Phys., 2006, 125:133306(1)- 133306(11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700