G-四链体的三维结构及其与小分子相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合分子模建,分子动力学模拟方法,对G-四链体结构及其与药物小分子之间的相互作用进行了深入的研究,主要内容归纳如下:
     1.应用分子模建和分子动力学模拟方法研究了d(GGGTGGGTGGGTGGGT)和d(GTGGTGGGTGGGTGGGT)序列形成的G-四链体的三维结构。
     2.应用分子模建和分子动力学模拟方法研究了由d(GGGTGGGTGGGTGGGT)序列形成的G-四链体二聚体结构以及它和二萘嵌苯派生物Tel03之间的相互作用。
     3.应用分子动力学模拟方法研究了由d[(GGGTTA)3GGG]序列形成的两个反平行的篮式G-四链体结构的稳定性以及它们与卟啉类化合物TMPyP4的作用模式。
     4.分别在parm99和parmbsc0力场下应用分子动力学模拟研究了G-四链体的基本结构参数的变化,找到了G-四链体结构,尤其对于环区,在现有力场下不能被精确模拟的原因。
It is well known that Guanine-rich DNA sequences can fold in the presence of monovalent cations to form a four-stranded structure named G-quadruplex. More attention was paid to quadruplexes since G-rich sequences were found to have the potential to take these structures in several biologically important DNA regions, such as gene promoters and telomeres. In recent years, based on the structures of G-quadruplexes, many small molecular inhibitors of telomerase were exploitated. The investigation on the interaction mechanism between telomeric G-quadruplexes and small molecular inhibitors is very helpful as a platform for rational drug design. In addition, unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. Due to the high flexibility, the number of the G-quadruplexes and their complexes with small molecular ligands obtained by single crystal diffraction and high-resolution solution state NMR is limited, the investigation of the structures of G-quadruplexes and their complexes with theoretical methods is useful for further geometric research of G-quadruplex folding. Molecular dynamics simulations are now used widely, which allow for a description of DNA structure and dynamics at the atomic level. In this thesis, molecular modeling and molecular dynamics simulation methods are used to investigate several structures of G-quadruplexes in detail. Some creative results were obtained from our investigation. The main results are outlined as follows:
     1. Based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K+ or NH4+ in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. The principle component analysis indicates that the conformation spaces of all simulations are sampled well. The results demonstrate that the structures of G1 and G2 built by us are rational and credible.
     2. The sequences with short loops are able to be aggregated to form stable quadruplex multimers. Using molecular modeling and molecular dynamics simulations, a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1) and its interactions with a planar ligand of a perylene derivative (Tel03) were investigated. Detailed structure analysis, free energy calculation and principal components analysis show that the structure of the dimer with stacked parallel monomer structures is maintained well during the entire simulation. The Tel03 can bind to the dimer efficiently through the end stacking mode, and the binding mode of ligand stacked with the 3’-terminal thymine base is the most favorable whether for 1:1 or 1:2 complexes. The dominant motions in the free dimer occur on the loop regions and the presence of ligand reduces the flexibility of the loops.
     3. Cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) has been of particular interest since it can inhibit the activity of telomerase upon binding to human telomeric DNA quadruplexes. We investigated the binding interactions of TMPyP4 with two antiparallel basket-type human telomeric quadruplexes under K+ ion conditions by molecular modeling and molecular dynamics simulations. Detailed structures analysis, free energy calculation and principal component analysis show that the end stacking mode of A-1, B-1 and A-2 is the best binding mode, and next is the external loop stacking mode of A-9 and B-9 and the intercalation mode of A-4. The remaining external binding complexes are superior to the end stacking complexes of B-2 and B-4 and the intercalation complexes of A-3 and B-4. The sites that can stabilize the three-G-tetrad G-quadruplex structure are more than the two-G-tetrad G-quadruplex in the range of our investigation. In addition, we show the 3D structures of the G-quadruplex-TMPyP4 complexes with almost all possible binding modes.
     4. An important factor to determine the accuracy of molecular dynamics simulation is force field. Extended explicit molecular dynamics simulations were carried out on four quadruplex molecules with parm99 and parmbsc0 force fields. We provide a full characterization for the flexibility of quadruplexes by analyzing the root-mean-square displacements, average structures, backbone torsion angles, glycosidic torsion angles and phase angle of pseudorotation of the sugar ring. All these analyses reveal backbone torsions of G-DNA located in the noncanonical regions are not retained in both simulations. Most of the glycosidic torsion angles of loop bases deviate largely from the experimental values. Many phase angles of pseudorotation of the sugar rings are transformed to other puckers. Theα/γbackbone torsions have the most important effect to the flexibility of whole structure. The results allow us to find the reasons that G-DNA can not be described accurate enough, especially for the loops, and the rules of transformation of these structural parameters in both force fields are useful for further developing force field of the G-DNA structure.
引文
1. MATA J E, JOSHI S S, PALEN B, et al. A hexameric phosphorothioate oligonucleotide telomerase inhibitor arrests growth of burkitt’s lymphoma cellsin vitroandin vivo [J]. Toxicol Appl Pharm, 1997, 144:189.
    2. TODD A K, JOHNSTON M, NEIDLE S. Highly prevalent putative quadruplex sequence motifs in human DNA [J]. Nucleic Acids Res, 2005, 33: 2901.
    3. DEMPSEY L A, SUN H, HANAKAHI L A, MAIZELS N. G4 DNA binding by LRI and its subunits,nueleolin and hnRNP D, A role for GG Pairing inimmunoglobulin switch reeombination [J]. J. Biol. Chem, 1999; 274:1066.
    4. FANG G, CEEH T R. The beta subunit of oxytricha telomere-binding Protein promotes G-quartet of formation by telomeric DNA [J]. Cell 1993: 74: 875.
    5. ZAHLER A M, WILLIAMSON J R, CECH T R. Prescott D M. Inhibition of telomerase by G-quartet DNA struetures [J]. Narure, 1991:350:718.
    6. CAVALLARI M, CALZOLARI A, GARBESI A, et al. Stability and Migration of Metal Ions in G4-wires by Molecular Dynamics Simulations [J]. J. Phys. Chem. B, 2006, 110: 26337.
    7. WANG Y, PATEL D J. Solution structure of the human telomeric repeat d(AG3(T2AG3)3) G-tetraplex [J]. Structure, 1993, 1: 263.
    8. PARKINSON G N, LEE M P, NEIDLE S. Crystal structure of parallel quadruplexes from human telomeric DNA [J]. Nature 2002, 417, 876.
    9. DAI J, PUNCHIHEWA C, AMBRUS A, et al. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation [J]. Nucleic Acids Research, 2007, 35, 2440.
    10. LIM K W, AMRANE S, BOUAZIZ S, et al. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers, [J]. Journal of the American Chemical Society, 2009, 131:4301.
    11. SCHUITMAKER J J. Photodynamic therapy: a promising new modality for the treatment of canter [J]. J. Photochem. Photobiol. B, 1996, 34: 3.
    12. WHEELHOUSE R T, SUN D, HAN H, et al. Cationic porphyrins as telomerase inhibitors: the interaction of tetra(N-methyl-4-pyridyl)porphine with quadruplex DNA [J]. J. Am. Chem. Soc., 1998, 120: 3261.
    13. IZBICKA E, WHEELHOUSE R T, RAYMOND E, et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells [J]. Cancer Res., 1999, 59: 693.
    14. SHI D F, WHEELHOUSE R T, SUN D, et al. Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase [J]. J. Med. Chem, 2001, 44: 4509.
    15. ROSSETTI L, FRANCESCHIN M, SAVINOA M. Perylene diimides with different dide chains are selective in inducing different G-quadruplex DNA structures and in inhibiting telomerase [J]. Bioorg. Med. Chem. Lett, 2002, 12: 2527.
    16. FERULET-MARRIERE M A, POTOCKI-VERONESE G, DEVERRE J R, et al. RaPid method of rmean telomere Length measurement directly from cell lysates [J]. Biochem. BioPhys. Res. Comm, 2004, 314: 950.
    17. WRIGHT W E,FURLK W, GREIDER C W, et al. Modifications of a telomerase repeat amplification protocol result in increased reliability,linearity and sensitivity [J]. Nucleic Acids Res, 1995, 23(18): 3794.
    18. STEENEL BV, LANGE L D.Control of telomere length by the human telomeric Protein TRFI [J]. Nature, 1997, 38: 740.
    19. KATZ R A, SKALKA A M. The retroviral enzymes [J]. Annu. Rev. Biochem, 1994, 63:133.
    20. VINK C, PLASTERK R H A. The human immunodeficiency virus integrase protein [J]. Trends Genet, 1993, 9:433.
    21. RANDO R F, OJWANG J, ELBAGGARI, et al. Suppression of Human Immunodeficiency Virus Type 1 Activity in Vitro by Oligonucleotides WhichForm Intramolecular Tetrads [J]. Journal of Biological Chemistry, 1995, 270: 1754.
    22. JING N, HOGAN M E. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV ther- apeutic drug [J]. Journal of Biological Chemistry, 1998, 273: 34992.
    1 MSI manual, Forcefield-Based Simulations General Theory & Methodology,1997.
    2 ANDREW R L.Molecular Modeling: Principles and Applications[M]. London: Addison Wesley Longman Limited,1996.
    3唐敖庆,杨忠树,李前树.量子化学[M].北京:科学出版社,1982.
    4王志中.现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    5 BORN M,OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik,1927,84:457.
    6 ANDREWS D H. The Relation Between the Raman Spectra and the Structure of Organic Molecules [J]. Physical Review,1930,36:544.
    7 WESTHEIMER F H,MEYER J E. The Theory of the Racemization of Optically Active Derivatives of Diphenyl [J]. Journal of Chemical Physics,1946,14:733.
    8 BARTON D H R. Interactions between non-bonded atoms, and the structure of cis-decalin [J]. Journal of the Chemical Society,1948,70:340.
    9 WESTHEIMER F H.Steric Effect in Organic Chemistry[M]. New York: John Wiley and Sons,1956.
    10 HENDRICKSON J B. Molecular Geometry. I. Machine Computation of the Common Rings [J]. Journal of the Chemical Society,1961,83:4537.
    11 ALLINGER N L,MILLER M A,CATLEDGE F A,et al. Conformationalanalysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrickson-Wiberg method [J]. Journal of the Chemical Society,1967,89:4345.
    12 LIFSON S,WARSHEL A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules [J]. Journal of Chemical Physics,1968,49:5116.
    13陈凯先,蒋华良,嵇汝运.计算机辅助药物设计─原理、方法及应用[M].上海:上海科学技术出版社,2000.
    14 BURKERT U,ALLINGER N L.Molecular Mechanics [M].Washington D. C: American Chemical Society,1982.
    15 LEVITT M,LIFSON S. Refinement of protein conformations using a macromolecular energy minimization procedure [J]. Journal of Molecular Biology,1969,46:269.
    16 FLECHER R,REEVES C M. Function minimization by conjugate gradients [J]. The Computer Journal,1964,7:149.
    17 FLECHER R.Practical Methods of Optimization[M].New York: John Wiley & Sons,1980.
    18 POWELL M J D. Restart procedures for the conjugate gradient method [J]. Mathematical Programming,1977,12:241.
    19 BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm [J]. International Journal of Applied Mathematics,1970,6:222.
    20 FLECHER R. A new approach to variable metric algorithms [J]. The Computer Journal,1970,13:317.
    21 GOLDFARB D A. A family of variable metric methods derived by variational means [J]. Mathematics of Computation,1970,24:23.
    22 SHANNO D F. Conditioning of quasi-Newton methods for functionminimization [J]. Mathematics of Computation,1970, 24:647.
    23 LDER B J,WAINWRIGHT T E. Phase Transition for a Hard Sphere System [J]. Journal of Chemical Physics,1957,27:1208.
    24 RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon [J]. Physical Review,1964,136:405.
    25 ERMI E.Collected Papers[M]. Chicago:University of Chicago Press,1965.
    26 VERLET L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review,1967,159:98.
    27 DUAN Y,KOLLMAN P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution [J]. Science,1998,282:7401.
    28 ZHONG Q,JIANG Q,MOORE P B,et al. Molecular dynamics simulation of a synthetic ion channel [J]. Biophysical Journal,1998,74:3.
    29 ZHONG Q,MOORE P B,NEWNS D M,et al. Molecular dynamics study of the LS3 voltage-gated ion channel [J]. FEBS Letters,1998,427:267.
    30 MI H,TUCKERMAN M E,SCHUSTER D I,et al. A molecular dynamics study of HIV-1 protease complexes with C60 and fullerene-based anti-viral agents [J]. Proceedings of the Electrochemical Society,1999,99:256.
    31 TUCHERMAN M E,MARTYNA G J. Understanding Modern Molecular Dynamics: Techniques and Applications [J]. The Journal of Physical Chemistry B,2000,104:159.
    32 ALLEN M P,TILDESLEY D J.Computer Simulation of Liquids[M].New York: Clarendon Press, 1987.
    33 GEAR C W.Numerical Initial Value Problems in Ordinary Differential Equations[M]. New Jersey:Prentice-Hall, Englewood Cliffs,1971.
    34 HOCKNEY R W. The potential calculation and some applications [J].Methods in Computational Physics,1970,9:136.
    35 POTTER D.Computational Physics[M]. New York:Wiley,1972.
    36 SWOPE W C,ANDERSIN H C,BERENS P H,et al. A Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: appliclation to small water clusters [J]. Journal of Chemical Physics,1982,76:637.
    37 BEEMAN D. Some Multistep Methods for Use in Molecular Dynamics Calculations [J]. Journal of Computational Physics,1976,20,130.
    38 WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts [J]. Chemical Physics Letters,1970,10:257.
    39 HAILE J M,GUPTA S. Extensions of the molecular dynamics simulation method. II. Isothermal systems [J]. Journal of Chemical Physics,1983,79:3067.
    40 HOOVER W G,EVANS D J,HICKMAN R B,et al. Lennard-Jones triple-point bulk and shear viscosity. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics [J]. Physical Review A,1980,22,1690.
    41 EVANS D J,MORRIS G P. Isothermal-Isobaric Molecular Dynamics. Chemical Physics [J]. 1983,77:63.
    42 EVANS D J. Computer“experiment”for nonlinear thermodynamics of Couette flow [J]. Journal of Chemical Physics,1983,78:3297.
    43 VAN SWOL F,WOODCOCK L V,CAPE J N. Melting in two-dimensions: determination of phase transition boundaries [J]. Journal of Chemical Physics,1980,73:913.
    44 BROUGHTON J Q,GILMER G H,WEEKS J D. Constant Pressure Molecular Dynamics Simulations of the 2D r-12 System: Comparison with Isochores and Isotherms [J]. Journal of Chemical Physics,1981,75:5128.
    45 BROWN D,CLARKE J H R. A Comparison of Constant Energy, Constant Temperature and Constant Pressure Ensenbles in Molecular Dynamics Simulations of Atomic Liquid [J]. Molecular Physics,1984,51:1243.
    46 ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. Journal of Chemical Physics,1980,72:2384.
    47 HAILE J M,GRABEN H W. Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic-isobaric ensemble [J]. Journal of Chemical Physics,1980,73:2412.
    48徐筱杰,陈丽蓉.化学及生物体系中的分子识别[J].化学进展,1996,8:189.
    49 KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis [J]. Proceedings of the National Academy of Sciences,1958, 44:98.
    50 KUNTZ I D. Structure-based strategies for drug design and discovery [J]. Science,1992,257:1078.
    51 KUNTZ I D,MENG E C,SHOICHET B K. Structure-based molecular design [J]. Accounts of Chemical Research,1994,27:117.
    52 KUNTZ I D,BLANEY J M,OATLEY S J,et al. A geometric approach to macromolecule-ligand interactions [J]. Journal of Molecular Biology, 1982,161:269.
    53 SHOICHET B K,BODIAN D L,KUNTZ I D. Molecular docking using shape descriptors [J]. Journal of Computational Chemistry,1992,13:380.
    54 MENG E C,SHOICHET B K,KUNTZ I D. Automated docking with grid-based energy evaluation [J]. Journal of Computational Chemistry,1992,13:505.
    55 MENG E C,GSCHWEND D A,BLANEY J M,et al. Orientational sampling and rigid-body minimization in molecular docking [J]. Proteins,1993, 17:266.
    56 ALLEN F H , BELLARD S , BRICE M D , et al. The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information [J]. Acta Crystallographica,1979,35:2331.
    57 RUSINKO A,SHERIDAN R P,NILAKATAN R,et al. Using CONCORD to construct a large database of three-dimensional coordinates from connection tables [J]. Journal of Chemical Information and Computer Sciences, 1989,29:251.
    58 MORRIS G M,GOODSELL D S,HALLIDAY R S,et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. Journal of Computational Chemistry,1998,19:1639.
    59 Affinity 98.0 Usre Guide, Version 98.0, MSI, San Diego, 1998.
    60 KOLLMAN P A,MASSOVA I,REYES C M,KUHN B,et al. Calculating structures andfree energies of complex molecules: combining molecular mechanics and continuum models [J]. Acc. Chem. Res.,2001, 33: 889-897.
    61 SMITH K C,HONING B. Evaluation of the conformational free energies of loops in proteins [J]. Proteins Struct Funct Genet,1994,18: 119-132.
    62 SRINIVASAN J,CHEATHAM T E,CIEPLAK P,et al.Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices [J]. J. Am. Chem. Soc,1998,120:9401-9409.
    63 YANG A S,HITZ B,HONIG B. Free energy determinants of secondary structure formation. III. Beta-turns and their role in protein folding [J]. J. Mol. Biol,1990,94:7684.
    64 YANG A S,HITZ B. Free energy determinants of secondary structure formation Antiparallel beta-sheets [J]. J. Mol. Biol,1995,252:366.
    65 SITKOFF D,SHARP K.A,Honig B. Accurate calculation of hydration free energies using macroscopic solvent models [J]. J. Phys. Chem,1994,98:1978.
    66 SANNER M F,OLSON A J,SPEHNER J C. Reduced surface: an efficient way to compute molecular surfaces [J]. Biopolymers,1996,38:305.
    67 JOSEPH W,OCHTERSKI PH D. Thermochemistry in Gaussian 2000.
    68 ROHRBACHER A,et al. The Dynamic of Noble Gas-Halogen Molecules and clusters [J]. Annu Rev Phys Chem,2000,51:405.
    69 FEIG M,IM W,BROOKS C J. Implicit solvation based on generalized Born theory in different dielectric environments [J] J. Chem. Phys,2004,120:903.
    70 STILL W,TEMPCZK A,HAWLEY R,HENDRICSON T. Semianalytical treatment of solvation for molecular mechanics and dynamics [J] J. Am. Chem. Soc,1990,112:6127.
    71 AMADEI A,LINSSEN A B M,BERENDSEN H J C. Essential dynamics of proteins [J]. Proteins: Struct. Funct. Genet,1993,17:412.
    72 GARCIA A E. Large-amplitude nonlinear motions in proteins [J]. Phys. Rev. Lett,1992,66:2696.
    73 KITAO A,HIRATA F,GO N. The effect of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum [J]. J. Chem. Phys,1991,158:447.
    74 VAN AALTEN D M F,AMADEI A,VRIEND G,et al. The essential dynamics of thermolysin-conformation of hinge-bending motion and comparison of simulations in vacuum and water [J]. Proteins: Struct. Funct. Gen,1995,22:45.
    75 DE GROOT B L,VAN AALTEN D M F,AMADEI A,et al. Domain motions in bacteriophage T4 lysozyme; a comparison between molecular dynamics and crystallographic data [J]. Proteins: Struct. Funct. Genet,1998,31:116.
    76 VAN AALTEN D M F, CONN D A,DE GROOT B L,et al. Protein dynamics derived from clusters of crystal structures [J]. Biophys. J,1997,73:2891.
    77 ABSEHER R,HORSTINK L,HILBERS C W,et al. Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap [J]. PROTEINS: Struct. Funct. Gen,1998,31:370.
    78 DE GROOT B L,VAN AALTEN D M F,SCHEEK R M,et al. Prediction of protein conformational freedom from distance constraints [J]. PROTEINS: Struct. Funct. Gen,1997,29:240.
    79 SAENGER W. Principles of Nucleic Acid Structure. Springer, New York. 1984.
    80 PEREZ A, MARCHAN I, SVOZIL D, et al, Refinement of the AMBER force field for nucleic acids. Improving the description of alpha/gamma conformers [J]. Biophysical Journal, 92:3817-3829, 2007
    1. SUNDQUIST W I, KLUG A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops [J]. Nature, 1989, 342: 825.
    2. HENDERSON E, HARDIN C C, WALK S K, et al. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanineguanine base pairs [J]. Cell, 1987, 51: 899.
    3. WILLIAMSON J R, RAGHURAMAN M K, CECH T R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model [J]. Cell, 1989, 59: 871.
    4. GELLERT M, LIPSETT M N, DAVIES D R. Helix formation by guanylic acid [J]. Proceedings of the National Academy of Sciences, 1962, 48: 2013.
    5. SUNDQUIST W I, KLUG A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops [J]. Nature, 1989, 342: 825.
    6. SEN D, GILBERT W. A sodium-potassium switch in the formation of four-stranded G4-DNA [J] Nature, 1990, 344: 410.
    7. TODD A K, JOHNSTON M, NEIDLE S. Highly prevalent putative quadruplex sequence motifs in human DNA [J]. Nucleic Acids Research, 2005, 33: 2901.
    8. HUPPERT J L, BALASUBRAMANIAN S. Prevalence of quadruplexes in the human genome [J] Nucleic Acids Research, 2005, 33: 2908.
    9. HUPPERT J L, BALASUBRAMANIAN S. G-quadruplexes in promoters throughout the human genome [J]. Nucleic Acids Research, 2007, 35: 406.
    10. RANDO R F, OJWANG J, ELBAGGARI, et al. Suppression of Human Immunodeficiency Virus Type 1 Activity in Vitro by Oligonucleotides Which Form Intramolecular Tetrads [J]. Journal of Biological Chemistry, 1995, 270: 1754.
    11. WYATT J R, VICKERS T A, ROBERSON J L, et al. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion [J]. Proceedings of the National Academy of Sciences, 1994, 91: 1356.
    12. JING N, GAO X., RANDO R F, et al. Potassium-induced loop confor- mation transition of a potent anti-HIV oligonucleotide [J]. Journal of Biomolecular Structure and Dynamics, 1997, 15: 573.
    13. DE SOULTRAIT V R, LOZACH PY, ALTMEYER R, et al. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents, [J]. Journal of Molecular Biology, 2002, 324: 195.
    14. JING N, HOGAN M E. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV ther- apeutic drug [J]. Journal of Biological Chemistry, 1998, 273: 34992.
    15. WILLIAMSON J R. G-quartet structures in telomeric DNA [J]. Annual Review of Biophysics & Biomolecular Structure, 1994, 23: 703.
    16. AMBRUS A, CHEN D, DAI J, et al. human telomeric sequence forms a hybrid-type intramolecular g-quadruplex structure with mixed parallel/antiparallel strands in potassium solution [J]. Nucleic Acids Research, 2006, 34: 2723.
    17. BALAGURUMOORTHY P, BRAHMACHARI S K. Structure and stability ofhuman telomeric sequence [J]. Journal of Biological Chemistry, 1994, 269: 21858.
    18. BALAGURUMOORTHY P, BRAHMACHARI SK, MOHANTY D, et al. Hairpin and parallel quartet structures for telomeric sequences [J]. Nucleic Acids Research, 1992, 20: 4061.
    19. JIN R, GAFFNEY B L, WANG C, et al. Thermodynamics and structure of a dna tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T) [J]. Proceedings of the National Academy of Sciences, 1992, 89: 8832.
    20. REZLER E M, SEENISAMY J, BASHYAM S, et al. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure [J]. Journal of the American Chemical Society , 2005, 127: 9439.
    21. BALAGURUMOORTHY P, BRAHMACHARI S K, MOHANTY D, et al. Hairpin and parallel quartet structures for telomeric sequences [J]. Nucleic Acids Research, 1992, 20: 4061.
    22. GIRALDO R, SUZUKI M, CHAPMAN L, et al. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study [J]. Proceedings of the National Academy of Sciences, 1994, 91: 7658.
    23. Berova N, Nakanishi K, Woody R W. Circular dichroism: principles and applications [Μ]. New York, Chichester, U.K: Wiley-VCH, 2000
    24. JING N, RANDO RF, POMMIER Y, et al. Ion selective folding of loop domains in a potent anti-HIV oligonucleotide [J]. Biochemistry, 1997, 36: 12498.
    25. HARDIN C C, PERRY A G, WHITE K. Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids [J]. Biopolymers, 2001, 56: 147.
    26. PORUMB H, MONNOT M, FERMANGJIAN S. Circular dichroism signatures of features simultaneously present in structured guanine-rich oligonucleotides: a combined spectroscopic and electrophoretic approach. [J]. Electrophoresis, 2002, 23: 1013.
    27. DAPIC V, ABDOMEROVIC V, MARRINGTONL R, et al. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides [J]. Nucleic Acids Research, 2003, 31: 2097.
    28. HAZEL P, HUPPERT J, BALASUBRAMANIAN S, et al. Loop-length dependent folding of G-quadruplexes [J]. Journal of the American Chemical Society, 2004, 126: 16405.
    29. RACHWAL P A, BROWN T, FOX KR. Effect of G-tract length on the structure and stability of intramolecular DNA quadruplexes [J]. Biochemistry, 2007, 46: 3036.
    30. BUGAUT A, BALASUBRAMANIAN S. A sequence-independent study of the in uence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes [J]. Biochemistry, 2008, 47: 689.
    31. SEENISAMY J, REZLER E M, POWELL T J, Hurley L H. The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP [J]. Journal of the American Chemical Society, 2004, 126: 8702.
    32. Li H, Yuan G, Du D. Investigation of Formation, Recognition, Stabilization, and Conversion of Dimeric G-Quadruplexes of HIV-1 Integrase Inhibitors by Electrospray Ionization Mass Spectrometry [J]. Journal of The American Society for Mass Spectrometry, 2008, 19: 550.
    33. REN J, QU X, TRENT J O, CHAIRES J B. Tiny telomere DNA [J]. Nucleic Acids Research, 2002, 30: 2307.
    34. BAKER E S, LEE J T, SESSLER JL, et al. Cyclo[n]pyrroles: Size and site-specific binding to G-quadruplexes [J]. Journal of the American Chemical Society, 2006, 128: 2641.
    35. GABELICA V, TEULADE-FICHOU M P, DE PAUW E, et al. Stabilizationand structure of telemetric and c-myc region intramolecular G-quadruplexs: the role of central cations and small planar ligans, [J]. Journal of the American Chemical Society, 2007, 129: 895.
    36. RUEDA M, KALKO S G, LUQUE F J, et al. The structure and dynamics of DNA in the gas phase [J]. Journal of the American Chemical Society, 2003, 125: 8007.
    37. RUEDA M, LUQUE FJ, OROZCO M. Nature of minor-groove binders-DNA complexes in the gas phase [J]. Journal of the American Chemical Society, 2005, 127: 11690.
    38. RUEDA M, LUQUE FJ, OROZCO M. G-quadruplexes can maintain their structure in the gas phase [J]. Journal of the American Chemical Society, 2006, 128: 3608.
    39. GALE D C, SMITH R D. Characterization of Noncovalent Complexes Formed between Minor Groove Binding Molecules and Duplex DNA by Electrospray Ionization-Mass Spectrometry, [J]. Journal of the American Society for Mass Spectrometry, 1995, 6: 1154.
    40. HOFSTADLER S A, GRIFFEY R H. Analysis of noncovalent complexes of DNA and RNA by mass spectrometry [J]. Chemical Reviews, 2001, 101: 377.
    41. GABELICA V, DE PAUW E. Collision-induced dissociation of 16-mer DNA duplexes with various sequences: evidence for conservation of the double helix conformation in the gas phase [J]. International Journal of Mass Spectrometry, 2002, 219: 151.
    42. GABELICA V, DE PAUW E, ROSU F. Interaction between antitumor drugs and a double-stranded oligonucleotide studied by electrospray ionization mass spectrometry., [J]. Journal of The American Society for Mass Spectrometry, 1999, 34: 1328.
    43. WAN KX, SHIBUE T, GRO ML. Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry [J]. Journal of The American Society for Mass Spectrometry, 2000, 122: 300.
    44. GABELICA V, ROSU R, HOUSSIER C, et al. Gas phase thermal denaturation of oligonucleotide duplex and complexes with minor groove binders [J]. Rapid Communications in Mass Spectrometry, 2000, 14: 464.
    45. ROSU F, VALERICA G, HOUSSIER C, et al. Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry [J]. Nucleic Acids Research, 2002, 30: e82
    46. GABELICA V, DE PAUW E. Comparison between solution-phase stability and gas-phase kinetic stability of oligodeoxynucleotide duplexes [J].Journal of The American Society for Mass Spectrometry, 2001, 36: 397.
    47. SPONER J, SPACKOVA N. Molecular dynamics simulations and their application to four-stranded DNA, Methods, 2007, 43: 278.
    48. PHILLIPS K, DAUTER Z, MURCHIE AIH, et al. The crystal structure of a parallel-stranded guanine tetraplex at 0.95? resolution [J]. Journal of Molecular Biology, 1997, 273: 171.
    49. AMBRUS A, CHEN D, DAI J, et al. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization [J]. Biochemistry, 2005, 44: 2048.
    50. PRICE DJ, BROOKS CL. A modified TIP3P water potential for simulation with Ewald summation [J]. Journal of Chemical Physics, 2004, 121: 10096.
    51. DARDEN T, PERERA L, LI L, et al. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations [J]. Structure, 1999, 7: R55.
    52. HAUPTMAN H A. Shake-and-bake: an algorithm for automatic solution ab initio of crystal structures [J]. Methods in Enzymoly, 1997, 277: 3.
    53. CASE D A, DARDEN T A, CHEATHAM III T E, et al. AMBER 10 [M].San Francisco: University of California, 2008.
    54. PEREZ A, MARCHAN I, SVOZIL D, et al. Refinement of the AMBER force field for nucleic acids. Improving the description of alpha/gamma conformers [J]. Biophysical Journal, 2007, 92: 3817.
    55. PEREZ A, LUQUE F J, OROZCO M. Dynamics of B-DNA on the microsecond time scale [J]. Journal of the American Chemical Society, 2007, 129: 14739.
    56. BERENDSEN HJC, POSTMA JPM, VAN GUNSTEREN WF, et al. Molecular dynamics with coupling to an external bath [J]. Journal of Chemical Physics, 1984, 81: 3684.
    57. HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics and Modelling, 1996, 14: 27-38
    58. AMADEI A, LINSSEN A B, BERENDSEN H J. Essential dynamics of proteins [J]. Proteins, 1993, 17: 412.
    59. HAIDER S, PARKINSON GN, NEIDLE S. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers [J]. Biophysical Journal, 2008, 95: 296.
    60. KITAO A, GO N. Investigating protein dynamics in collective coordinate space [J]. Current Opinion in Structural Biology, 1999, 9: 164.
    61. HESS B. Similarities between principal components of protein dynamics and random diffusion, [J]. Physical Review E, 2000, 62: 8438.
    62. HESS B. Convergence of sampling in protein simulations [J]. Physical Review E, 2002, 65 (3 Part 1), 031910
    63. BURGE S, PARKINSON GN, HAZEL P, et al. Quadruplex DNA: sequence, topology and structure, Nucleic Acids Research, 2006, 34: 5402.
    64. SMARGIASSO N, ROSU F, HSIA W, et al. G-Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation, [J]. Journal of the American Chemical Society, 2008, 130: 10208.
    65. FADRNA E, SPACKOVA N, SARZYNSKA J, et al. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields [J]. Journal of Chemical Theory and Computation, 2009, 5, 2514.
    1. CHEN F M, Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences [J]. Biochemistry, 1992, 31: 3769.
    2. HENDERSON E, HARDIN C C, WALK S K, et al, Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs [J]. Cell, 1987, 51: 899.
    3. WILLIAMSON J R, RAGHURAMAN M K, CECH T R, Monovalent cation-induced structure of telomeric DNA: The G-quartet model [J]. Cell, 1989, 59: 871.
    4. GELLERT M, LIPSETT M N, DAVIES D R, Helix formation by guanylic acid, [J]. Proceedings of the National Acadamy of Science USA, 1962, 48: 2013.
    5. DAVIS J T, G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry, [J]. Angewandte Chemie International Edition, 2004, 43: 668.
    6. PATEL D J, BOUAZIZ S, KETTANI A, WANG Y, NEIDLE S, Oxford Handbook of Nucleic Acid Structures, chapter 13, Oxford University Press, 1999
    7. REZLER E M, BEARSS D J, HURLEY L H, Telomeres and telomerases as drug targets, [J]. Current Opinion Pharmacology, 2002, 2: 415.
    8. READ M, HARRISON RJ, ROMAGNOLI B, et al, Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors [J]. Proceedings of the National Acadamy of Science USA, 2001, 98: 4844.
    9. SPACKOVA N, BERGER I, SPONER J, Nanosecond molecular dynamics simulations of parallel and antiparallel guanine quadruplex DNA molecules [J]. Journal of the American Chemical Society,1999, 121: 5519.
    10. SPACKOVA N, CUBERO E, SPONER J, et al, Theoretical study of the guanine to 6-thioguanine substitution in duplexes, triplexes, and tetraplexes [J]. Journal of the American Chemical Society, 2004, 126:14642.
    11. BUGAUT A, BALASUBRAMANIAN S, A sequence-independent study of the in uence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes [J]. Biochemistry, 2008, 47: 689.
    12. KUMAR N, MAITI S, A thermodynamic overview of naturally occurring intramolecular DNA quadruplexes [J]. Nucleic Acids Research, 2008, 36: 5610.
    13. HAZEL P, HUPPERT J L, Balasubramanian S, Neidle S, Loop-length dependent folding of G-quadruplexes [J]. Journal of the American Chemical Society, 2004, 126: 16405.
    14. RACHWAL P A, FINDLOW I S, WERNER J M, et al, Intramolecular DNA quadruplexes with different arrangements of short and long loops [J]. Nucleic Acids Research, 2007, 35: 4214.
    15. KUMAR N, SAHOO B, MAITI S, et al, Effect of loop length variation on quadruplex-Watson Crick duplex competition [J]. Nucleic Acids Research, 2008, 36: 4433.
    16. ARORA A, MAITI S, Stability and molecular recognition of quadruplexes with different loop length in the absence and presence of molecular crowding agents [J]. The Journal of Physical Chemistry B, 2009, 113: 8784.
    17. SMARGIASSO N, ROSU F, HSIA W, et al, G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation [J]. Journal of the American Chemical Society, 2008, 130: 10208.
    18. KATO Y, OHYAMA T, MITA H, et al, Dynamics and Thermodynamics of Dimerization of Parallel G-Quadruplexed DNA Formed from d(TTAGn) (n = 3?5) [J]. Journal of the American Chemical Society, 2005, 127: 9980.
    19. LI H, YUAN G, DU D, Investigation of Formation, Recognition, Stabilization, and Conversion of Dimeric G-Quadruplexes of HIV-1 Integrase Inhibitors by Electrospray Ionization Mass Spectrometry [J]. Journal of The American Society for Mass Spectrometry, 2008, 19: 550.
    20. HAN F X, WHEELHOUSE R T, HURLEY L H, Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects ontelomerase inhibition [J]. Journal of The American Society for Mass Spectrometry, 1999, 121: 3561.
    21. DAVID W M, BRODBELT J, KERWIN S M, et al, Investigation of Quadruplex Oligonucleotide-Drug Interactions by Electrospray Ionization-Mass Spectrometry [J]. Analytical Chemistry, 2002, 74: 2029.
    22. GAVATHIOTIS E, HEALD R A, STEVENS F G, et al, Recognition and Stabilization of Quadruplex DNA by a Potent New Telomerase Inhibitor: NMR Studies of the 2:1 Complex of a Pentacyclic Methylacridinium Cation with d(TTAGGGT)4 [J]. Angewandte Chemie International Edition, 2001, 40: 4749.
    23. FRANCESCHIN M, ALVINO A, CASAGRANDE V, et al, SPECIFIC INTERACTIONS WITH INTRA- AND INTERMOLECULAR G-QUADRUPLEX DNA STRUCTURES BY HYDROSOLUBLE CORONENE DERIVATIVES: A NEW CLASS OF TELOMERASE INHIBITORS [J]. Bioorganic & Medicinal Chemistry, 2007, 15: 1848.
    24. HAN H Y, LANGLEY D R, RANGAN A, et al, Selective Interactions of Cationic Porphyrins with G-Quadruplex Structures [J]. Journal of The American Society for Mass Spectrometry, 2001, 123: 8902.
    25. FEDOROFF O Y, SALAZAR, M HAN H Y, et al, NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA [J]. Biochemistry, 1998, 37: 12367.
    26. KERN JT, THOMAS PW, KERWIN SM, The Relationship between Ligand Aggregation and G-quadruplex DNA Selectivity in a Series of 3,4,9,10-Perylenetetracarboxylic Acid Diimides [J]. Biochemistry, 2002, 41: 11379.
    27. KERWIN S M, CHEN G, KERN J T, et al, Perylene Diimide G-Quadruplex DNA Binding Selectivity is Mediated by Ligand Aggregation [J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12: 447.
    28. READ M A, NEIDLE S, Structural characterization of a guanine-quadruplex ligand complex [J]. Biochemistry, 2000, 39: 13422.
    29. CLARK G R, PYTEL P D, SQUIRE C J, et al, Structure of the first parallel DNA quadruplex-drug complex, [J]. Journal of the American Chemical Society, 2003, 125: 4066.
    30. HAIDER S M, PARKINSON G N, NEIDLE S, Structure of a G-quadruplex-ligand complex [J]. Journal of Molecular Biology, 2003, 326: 117.
    31. PARKINSON G N, GHOSH R, NEIDLE S, Structural basis for binding of porphyrin to human telomeres [J]. Biochemistry, 2007, 46: 2390.
    32. CAMPBELL N H, PARKINSON G N, RESZKA A R, et sl, Structural basis of DNA quadruplex recognition by an acridine drug [J]. Journal of the American Chemical Society, 2008, 130: 6722.
    33. GAVATHIOTIS E, HEALD R A, STEVENS M F, et al, Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat [J]. Journal of Molecular Biology, 2003, 334: 25.
    34. MEHTA A K, SHAYO Y, VANKAYALAPATI H, et al, Structure of a quinobenzoxazine--G-quadruplex complex by REDOR NMR, [J]. Biochemistry, 2004, 43: 11953.
    35. PHAN A T, KURYAVYI V, GAW H Y, et al, Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter [J]. Nature Chemical Biology, 2005, 1: 167.
    36. PARKINSON G N, CUENCA F, NEIDLE S, Topology conservation and loop flexibility in quadruplex-drug recognition: crystal structures of inter- and intramolecular telomeric DNA quadruplex-drug complexes [J]. Journal of Molecular Biology, 2008, 381: 1145.
    37. AGRAWAL S, PRASAD OJHA R, MAITI S, Energetics of the Human Tel-22 Quadruplex?Telomestatin Interaction: A Molecular Dynamics Study [J]. The Journal of Physical Chemistry B, 2008, 112: 6828.
    38. HAIDER S, PARKINSON G N, NEIDLE S, Molecular dynamics and principal components analysis of human telomeric quadruplex multimers [J].Biophysical Journal, 2008, 95: 296.
    39. Li M H, Zhou Y H, Luo Q, Li Z S, J Mol Model, The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas Phase[J]. 2010, 16: 645-657
    40. InsightII, Homology User Guide, SanDiego:Biosym/MSI, 2000.
    41. PRICE D J, BROOKS C L, A modified TIP3P water potential for simulation with Ewald summation [J]. Journal of Chemical Physics, 2004, 121: 10096.
    42. DARDEN T, PERERA L, LI L, et al, New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations [J]. Structure,1999,7: R55.
    43. HAUPTMAN H A, Shake-and-bake: an algorithm for automatic solution ab initio of crystal structures, [J]. Methods in Enzymoly, 1997, 277: 3.
    44. CASE D A, DARDEN T A, CHEATHAM III T E, et al. AMBER 10[M].San Francisco:University of California, 2008.
    45. PEREZ A, MARCHAN I, SVOZIL D, et al, Refinement of the AMBER force field for nucleic acids. Improving the description of alpha/gamma conformers [J]. Biophysical Journal, 2007, 92: 3817.
    46. LU X, OLSON W, 3DNA: A software package for the analysis. rebuilding. and visualization of three-dimensional nucleic acid structure [J]. Nucleic Acids Research, 2003, 31: 5108.
    47. BABIN V, BAUCOM J, DARDEN T A, et al, Molecular dynamics simulations of DNA with polarizable force fields: Convergence of an ideal B-DNA structure to crystallographic structure [J].The Journal of Physical Chemistry B, 2006, 110: 11571.
    48. HUMPHREY W, DALKE A, SCHULTEN K, VMD: visual molecular dynamics [J]. Journal of Molecular Graphics and Modelling, 1996, 14: 27.
    49. LUO R, DAVID L, GILSON M K, Accelerated Poisson-Boltzmann calculations for static and dynamic systems [J]. Journal of Computational Chemistry, 2002, 23: 1244.
    50. SITKOFF D, SHARP K A, HONIG B, Accurate calculation of hydration freeenergies using macroscopic solvent models, J. Phys. Chem., 1994, 98: 1978.
    51. FADRNA E, SPACKOVA N, STEFL R, et al, Cheatham III TE, Sponer J, Molecular dynamics simulations of guanine quadruplex loops: Advances and force field limitations [J]. Biophysical Journal, 2004, 87: 227.
    52. AMADEI A, LINSSEN A B, BERENDSEN H J, Essential dynamics of proteins [J]. Proteins, 1993, 17: 412.
    53. KITAO A, GO N, Investigating protein dynamics in collective coordinate space [J]. Current Opinion in Structural Biology, 1999, 9: 164.
    54. HESS B, Similarities between principal components of protein dynamics and ran- dom diffusion [J]. Physical Review E, 2000, 62: 8438.
    55. Hess B, Phys Rev E, Convergence of sampling in protein simulations, 2002, 65(3 Part 1), 031910
    56. KOLLMAN PA, MASSOVA I, REYES C, et al., Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models [J].Acc. Chem. Res., 2000, 33: 889.
    57. WANG J, MORIN P, WANG W, et al , Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA [J].Journal of the American Chemical Society, 2001, 123: 5221.
    58. FERRARI A M, DEGLIESPOSTI G, SGOBBA M, et al, Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors [J].Bioorganic & Medicinal Chemistry Letters. 2007, 15, 7865.
    59. SPACKOVA N, CHEATHAM III TE, RYJACEK F, et al, J. Molecular dynamics simulations and thermodynamic analysis of DNA drug complexes. Minor groove binding between 4, 6-diamidino-2-phenylindole (DAPI) and DNA duplexes in solution [J].Journal of the American Chemical Society, 2003, 125: 1759.
    60. FADRNA E, SPACKOVA N, SARZYNSKA J, et al, Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force field, [J].Journal of Chemical Theory and Computation, 2009, 5: 2514.
    1. MOYZIS R K, BUCKINGHAM J M, CRAM L S, et al, A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes [J]. Proceedings of the National Acadamy of Science USA, 1988, 85: 6622.
    2. WRIGHT W E, TESMER V M, HUFFMAN K E, et al, Normal human chromosomes have long G-rich telomeric overhangs at one end, [J]. Genes & Development, 1997, 11: 2801.
    3. CHEN F M. Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences [J]. Biochemistry, 1992, 31: 3769.
    4. HENDERSON E, HARDIN C C, WALK S K, et al, Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs [J]. Cell, 1987, 51: 899.
    5. WILLIAMSON J R, RAGHURAMAN M K, CECH T R, Monovalent cation-induced structure of telomeric DNA: the G-quartet model [J]. Cell, 1989, 59: 871.
    6. ZAHLER A M, WILLIAMSON J R, CECH T R, et al, Inhibition of telomerase by G-quartet DNA structures [J]. Nature, 1991, 350: 718.
    7. KIM N W, PIATYSZEK M A, PROWSE K R, et al, Specific association of human telomerase activity with immortal cells and cancer [J]. Science, 1994, 266: 2011.
    8. READ M A, NEIDLE S. Structural Characterization of a Guanine?Quadruplex Ligand Complex [J]. Biochemistry 2000, 39: 13422.
    9. RANDAZZO A, GALEONE A, LUCIANO M, 1H-NMR study of the interaction of distamycin A and netropsin with the parallel stranded tetraplex [d(TGGGGT)]4 [J]. Chemical Communations, 2001, 11: 1030.
    10. CLARK G. R, PYTEL P D, SQUIRE C J, et al, Structure of the first parallelDNA quadruplex-drug complex [J].Journal of the American Chemical Society, 2003, 125: 4066.
    11. HAIDER S M, PARKINSON G. N, NEIDLE S, Structure of a G-quadruplex-Ligand Complex [J]. Journal of Molecular Biology, 2003, 326: 117.
    12. WHEELHOUSE R T, SUN D, HAN H, et al, Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N- methyl-4-pyridyl)porphine with quadruplex DNA [J]. Journal of the American Chemical Society, 1998, 120: 3261.
    13. PARKINSON G. N, GHOSH R, NEIDLE S, Structural basis for binding of porphyrin to human telomeres [J]. Biochemistry, 2007, 46: 2390.
    14. MITA H, OHYAMA T, TANAKA Y, et al, Formation of a complex of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin with G-quadruplex DNA [J]. Biochemistry, 2006, 45, 6765.
    15. HAN H, LANGLEY D R, RANGAN A, et al. Selective interactions of cationic porphyrins with G-quadruplex structures, [J]. Journal of the American Chemical Society, 2001, 123: 8902.
    16. HAQ I, TRENT J O, CHOWDHRY B Z, et al. Intercalative G-tetraplex stabilization of telomeric DNA by a cationic Porphyrin, [J]. Journal of the American Chemical Society, 1999, 121: 1768.
    17. WEI C, JIA G., YUAN J, et al. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs [J]. Biochemistry, 2006, 45: 6681.
    18. ZHANG H J, WANG X F, WANG P, et al. Spectroscopic study on the binding of a cationic porphyrin to DNA G-quadruplex under different K+ concentrations [J]. Photochemical & Photobiological Sciences, 2008, 7: 948.
    19. GAYNUTDINOV T I, NEUMANN R D, PANYUTIN I G.. Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences [J]. Nucleic Acids Research, 2008, 36: 4079.
    20. MARTINO L, PAGANO B, FOTTICCHIA I, et al. Shedding light on theinteraction between TMPyP4 and human telomeric quadruplexes [J]. The Journal of Physical Chemistry B, 2009, 113: 14779.
    21. WANG Y, PATEL D J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex [J]. Structure 1993, 1: 263.
    22. LIM K W, AMRANE S, BOUAZIZ S, et al. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers, [J]. Journal of the American Chemical Society, 2009, 131: 4301.
    23. PHAN A T, KURYAVYI V, GAW H Y, et al. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter, [J]. Nature Chemical Biology, 2005, 1: 167.
    24. InsightII, Homology User Guide, SanDiego:Biosym/MSI, 2000.
    25. CASE D A, DARDEN T A, CHEATHAM III T E, et al. AMBER 10[M].San Francisco: University of California, 2008.
    26. WANG, J., WOLF, R. M., CALDWELL, J. W., et al, Development and testing of a general amber force field, [J]. Journal of Computational Chemistry, 2004, 25: 1157.
    27. PRICE D J, BROOKS C L, A modified TIP3P water potential for simulation with Ewald summation [J]. Journal of Chemical Physics, 2004, 121: 10096.
    28. DARDEN T, PERERA L, LI L, et al. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations, [J]. Structure, 1999, 7: R55.
    29. HAUPTMAN, H. A., Shake-and-bake: an algorithm for automatic solution ab initio of crystal structures [J]. Methods in Enzymoly, 1997, 277: 3.
    30. PEREZ A, MARCHAN I, SVOZIL D, et al. Refinement of the AMBER force field for nucleic acids. Improving the description of alpha/gamma conformers [J]. Biophysical Journal, 2007, 92: 3817.
    31. LUO R, DAVID L, GILSON M K. Accelerated Poisson-Boltzmann calculations for static and dynamic systems, [J]. Journal of Computational Chemistry, 2002, 23: 1244.
    32. SITKOFF D, SHARP K A, HONIG B. Accurate Calculation of HydrationFree Energies Using Macroscopic Solvent Models [J]. Journal of Chemical Physics, 1994, 98: 1978.
    33. FADRNA E, SPACKOVA N, STEFL R, et al. Molecular dynamics simulations of guanine quadruplex loops: Advances and force field limitations [J]. Biophysical Journal. 2004, 87: 227.
    34. HAIDER S, PARKINSON G. N, NEIDLE S. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers, [J]. Biophysical Journal, 2008, 95: 296.
    35. AMADEI A, LINSSEN A B, BERENDSEN H J. Essential dynamics of proteins. Proteins, [J]. Proteins, 1993, 17: 412.
    36. KITAO A, GO N. Investigating protein dynamics in collective coordinate space, [J]. Current Opinion in Structural Biology, 1999, 9: 164.
    1. SPACKOVA N, BERGER I, SPONER J. Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules, [J]. Journal of the American Chemical Society, 1999, 121: 5519.
    2. SPACKOVA N, CUBERO E, SPONER J, et al. Theoretical study of the guanine 6-thioguanine substitution in duplexes, triplexes, and tetraplexes [J]. Journal of the American Chemical Society, 2004, 126: 14642.
    3. STEFL R, CHEATHAM III T E, SPACKOVA N, et al. Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates [J]. Biophysical Journal, 2003, 85: 1787.
    4. RUEDA M, LUQUE F J, OROZCO M, G-quadruplexes can maintain their structure in the gas phase [J]. Journal of the American Chemical Society, 2006, 128: 3608.
    5. AGRAWAL S, PRASAD OJHA R, MAITI S. Energetics of the Human Tel-22 Quadruplex?Telomestatin Interaction: A Molecular Dynamics Study [J].Journal of the American Chemical Society, 2008, 112: 6828.
    6. PAGANO B, MATTIA C A, CAVALLO L, et al. Stability and cations coordination of DNA and RNA 14-mer G-quadruplexes: a multiscale computational approach [J]. The Journal of Physical Chemistry B, 2008, 112: 12115.
    7. HAIDER S, PARKINSON G N, NEIDLE S. Molecular dynamics and principal Principal Components Analysis of human telomeric quadruplex multimers [J]. Biophysical Journal, 2008, 95: 296.
    8. FADRNA E, SPACKOVA N, SARZYNSKA J, et al. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force field [J]. Journal of Chemical Theory and Computation, 2009, 5: 2514.
    9. Li M H, Zhou Y H, Luo Q, Li Z S. J Mol Model, The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas Phase[J]. 2009, 16: 645.
    10. WANG Y, PATEL D J. Solution structure of the human telomeric repeat d(AG3(T2AG3)3) G-tetraplex, [J]. Structure, 1993, 1: 263.
    11. DAI J, PUNCHIHEWA C, AMBRUS A. et al. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation [J]. Nucleic Acids Research, 2007, 35: 2440.
    12. PARKINSON G N, LEE M P, NEIDLE S. Crystal structure of parallel quadruplexes from human telomeric DNA [J]. Nature 2002, 417: 876.
    13. SCHULTZE P, SMITH F W, FEIGON J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG) [J]. Structure 1994, 15: 221.
    14. PRICE D J, BROOKS C. L, A modified TIP3P water potential for simulation with Ewald summation [J].Journal of Chemical Physics, 2004, 121: 10096.
    15. DARDEN T, PERERA L, LI L, et al. New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations, [J]. Structure, 1999, 7: R55.
    16. HAUPTMAN H A. Shake-and-bake: an algorithm for automatic solution abinitio of crystal structures [J]. Methods in Enzymoly, 1997, 277: 3.
    17. CASE D A, DARDEN T A, CHEATHAM III T E, et al. AMBER 10[M]. San Francisco: University of California, 2008.
    18. LU X, OLSON W, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures, [J]. Nucleic Acids Research, 2003, 31: 5108.
    19. BABIN V, BAUCOM J, DARDEN T A, et al. Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure [J]. The Journal of Physical Chemistry B, 2006, 110: 11571.
    20. HUMPHREY W, DALKE A, SCHULTEN K. VMD - Visual Molecular Dynamics [J]. Journal of Molecular Graphics and Modelling, 1996, 14: 33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700