吡格列酮对STZ诱导的糖尿病大鼠肾脏和骨骼肌免疫损伤的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:糖尿病(DM)慢性并发症可累及全身各组织器官,传统的治疗方法主要为严格的控制血糖和对症处理,但效果不佳。近年来的研究发现免疫学因素在DM慢性并发症的发病过程中可能发挥重要的作用。我们近几年在临床上开展的肾活检和骨骼肌活检证实,部分2型糖尿病患者肾脏和骨骼肌有多种免疫复合物沉积。在已经完成的系列研究中,我们选用环孢菌素A(CsA)对DM大鼠短期干预(8周),发现能明显延缓糖尿病肾脏疾病(DKD)的发生。但是当DM病程明显延长时疗效如何?我们尚需观察。近年来越来越多的研究显示,噻唑烷二酮类药物(Thiazolidinediones,TZDs)具有免疫调节作用,而TZDs是否影响DM慢性并发症时的免疫异常反应,尚未见有关研究报道。
     p38丝裂原活化蛋白激酶(p38MAPK)信号转导通路是细胞信息传递的交汇点或共同通路,在应激、炎症反应、细胞凋亡、细胞内蛋白质合成与分泌、细胞分化等过程中发挥重要作用。以往的研究表明,p38MAPK的激活在DM肾脏病变、神经病变和大血管病变发病的早期阶段起到重要作用。然而,p38MAPK是否在DKD发展阶段中发挥作用尚有争议,是否参与糖尿病骨骼肌病变的发生和发展,尚未见有关研究报道。
     TZDs类药物可激活脂肪细胞和肝上皮细胞p38MAPK活性,但不激活人系膜细胞p38MAPK。CsA能通过抑制钙调神经磷酸酶(CaN)和蛋白激酶C(PKC)使心肌p38MAPK活性降低。然而,TZDs和CsA是否影响DKD和糖尿病骨骼肌病变时肾皮质和骨骼肌的p38MAPK活性,尚未见有关研究报道。
     本实验采用STZ诱导的DM大鼠模型,观察DKD和糖尿病骨骼肌病变时吡格列酮(PIO)、CsA对肾脏和骨骼肌免疫球蛋白异常沉积、p38MAPK活性、细胞凋亡以及炎症因子和葡萄糖转运蛋白(GLUTs)表达的影响,并确定其治疗效果,从而为临床选择药物防治DKD和糖尿病骨骼肌病变提供一定的理论依据。
     方法:96只雄性SD大鼠,其中84只以静脉注射STZ的方法制造DM大鼠模型,另外12只大鼠作为正常对照组(CON组)。所有成模大鼠根据血糖水平分层后,随机分为PIO小剂量治疗组(A组,4mg/kg/d)、PIO大剂量治疗组(B组,20mg/kg/d)、PIO联合甘精胰岛素治疗组(C组,PIO 4mg/kg/d+甘精胰岛素4U//kg/d)、CsA治疗组(D组,1mg/kg/d)、CsA联合甘精胰岛素治疗组(E组CsA1mg/kg/d+甘精胰岛素4U//kg/d)、甘精胰岛素治疗组(F组,4U//kg/d)、DM未治疗组(G组)。PIO配置成混悬液后予以灌胃,CsA溶于橄榄油后予以皮下注射,甘精胰岛素予以皮下注射。成模16周后处死。留取血、尿标本分别检测肾功能、胰岛素和尿微量白蛋白。光镜和电镜下观察各组大鼠肾脏和骨骼肌的病理组织学改变,通过免疫组化和免疫荧光方法检测上述器官IgG、IgA和IgM的表达。采用免疫组化方法观察DM大鼠肾脏和骨骼肌p-p38MAPK、TGFβ1、TNFα、Bax、Bcl-2、Fas、Fas-L、GLUT1和GLUT4表达水平的变化。
     结果:1.G组大鼠出现明显肾小球硬化和纤维化,近端肾小管上皮细胞(PTEC)有广泛的糖原颗粒沉积、并出现局灶样或弥漫性空泡样变性。电镜观察显示肾小球毛细血管基底膜不规则增厚,系膜区增宽,上皮细胞足突融合。G组大鼠骨骼肌纤维普遍性萎缩,电镜观察显示肌丝呈灶状溶解。各PIO或CsA治疗组大鼠肾脏和骨骼肌病变均有不同程度减轻。2.G组大鼠肾皮质和骨骼肌均可见IgG、IgA、IgM异常沉积,各PIO或CsA治疗组大鼠肾皮质和骨骼肌免疫球蛋白的沉积明显减少。3.G组大鼠肾皮质p-p38MAPK、TGFβ1、TNF-α、Bax、Fas、Fas-L、GLUT1和GLUT4表达较CON组均明显增加,Bax/Bcl-2比升高。与G组相比,各PIO或CsA治疗组大鼠肾皮质以上各项指标均有不同程度降低。4.G组大鼠骨骼肌纤维p-p38MAPK、TGFβ1、TNF-α、Bax、Fas、Fas-L表达较CON组均明显增加,Bax/Bcl-2比升高,GLUT1和GLUT4表达均明显减少。与G组相比,各PIO或CsA治疗组大鼠肾皮质p-p38MAPK、TGFβ1、TNF-α、Bax、Fas、Fas-L表达量以及Bax/Bcl-2比均有不同程度降低,GLUT1表达均无变化,GLUT4表达均增加。
     结论:1.STZ诱导DM大鼠的肾脏和骨骼肌均出现免疫球蛋白的异常沉积,提示在DM慢性并发症的发生和发展过程中,免疫反应可能起到了关键的作用。2.应用PIO和CsA进行免疫调节或免疫抑制治疗能有效减轻肾脏和骨骼肌病变的程度,并减少肾脏和骨骼肌中免疫球蛋白的沉积量,提示在临床上早期给予免疫调节或免疫抑制治疗可能会预防或延缓DKD和糖尿病骨骼肌病变的发生。3.在DKD的发展阶段(16周),DM大鼠肾皮质p38MAPK信号转导通路仍被激活,同时肾皮质TGFβ1、TNF-α、促凋亡基因蛋白、GLUT1和GLUT4表达增加。以上因素相互作用,共同促进了DKD的发生和发展。4.糖尿病骨骼肌病变时,大鼠骨骼肌p38MAPK信号转导通路被激活,同时TGFβ1、TNF-α和促凋亡基因蛋白表达增加,共同促进了糖尿病骨骼肌病变的发生和发展;骨骼肌GLUT1和GLUT4表达下降导致了机体葡萄糖的利用障碍。5.PIO和CsA治疗能抑制DM大鼠肾皮质和骨骼肌p38MAPK活性,减少TGFβ1、TNF-α、促凋亡基因蛋白的表达,并改善肾脏GLUT1和GLUT4、骨骼肌GLUT4的异常表达。
The effects of pioglitazone on the autoimmune injuries to the kidneys andskeletal muscle in STZ-induced diabetic rats
     Objective:The chronic complications may appear in all organs in the daibetispatients,which severely damage their health.The mechanism of these chroniccomplications still remains unclear while recent studies have implied that theabnormal immune responses may play an important role in the pathogenesis ofchronic complications of diabetes.By biopsy,we also demonstrated the deposition ofimmunological complexes and complements of various kinds on the kidneys andskeletal muscle in the most patients of T2DM.Our previous studies showed thatdiabetes kidney disease(DKD) of diabetic rats (eight weeks)could be effectivelyprevented by the administration of cyclosporine A(CsA).But we did not know howabout its effects in the rats with longer course of diabetes.Recently,more and morestudies indicate Thiazolidinediones(TZDs) showed immunoregulatory effect,butthere is no report about weather they has the regulatory effects on the abnormalautoimmunity of the chronic complications of diabetes.
     p38 mitogen-activated protein kinase (MAPK) pathway plays an important rolein the processes of stress,inflammation,apoptosis,protein synthesis and secretion,and cell differentiation.p38MAPK activation is a feature of early stage of DKD,diabetic neuropathy and macrovascular disease.However,whether p38MAPKactivatin could be detected in advanced stages of DKD remains to be elucidated,andwhether p38MAPK is associated with the development of diabetic myopathy ofskeletal muscle had not been reported.
     It has been shown that TZDs may activate p38MAPK in adipocytes and liverepithelial cells,but it has no effect on p38MAPK activation of human mesangial cells.p38MAPK activation may be suppressed by CsA in cardiomyocytes throughinhibitting calcineurin(CaN) and PKC.Till now,however there is still no any reporton whether p38MAPK activation could be affected by TZDs and CsA in the renalcortex and skeletal muscle during the course of DKD and diabetic myopathy of skeletal muscle.
     In the current study,our investigation aimed at the abnormal deposition ofimmunoglobulins in the renal cortex and skeletal muscle of STZ-induced diabetic ratsand evaluate the protective effects of pioglitazone(PIO) and CsA against theseimmunological complexes.And the effects of pioglitazone(PIO) or CsA were studiedon the activity of p38MAPK,apoptosis,the expression of inflammatory factors andglucose transporters(GLUTs) in the diabetic rats.
     Materials and methods:The DM rat models were made by intravenousinjection of STZ(45mg/kg).Then,they were randomly divided into seven groups,including small-dose PIO group (group A,4mg/kg/d),large-dose PIO group (group B,20mg/kg/d),small-dose PIO combined with glargine group (group C,PIO 4mg/kg/dand glargine 4U//kg/d),CsA group (group D,lmg/kg/d),CsA combined with glarginegroup(group E,CsA lmg/kg/d and glargine 4U//kg/d),glargine trentmentgroup(group F,glargine 4U//kg/d) and no-treatment group(group G).Another groupof normal rats(group CON) was also monitored simultaneously.Sixteen weeks later,renal function,urine albumin and serum insulin were evaluated.The pathologicalchanges were studied in kidneys and skeletal muscle by light and electron microscope.The deposition of immunoglobulins was detected on the renal cortex and skeletalmuscle by immunohistochemistry and immunofluorescence.At the same time,theexpression of p-p38MAPK,TGFβ1,TNFα,Bax,Bcl-2,Fas,Fas-L,GLUT1 andGLUT4 was detected by immunohistochemistry.
     Results:1.In group G,glomerular sclerosis,fibrosis,widespread deposition ofglycogen granules in proximal tubular epithelial cells(PTEC) were showed by lightmicorscope.Irregular thicking of glomerular basement membrane,mesangialexpansion and fusion of epithelial cells foot processes were observed by electronmicroscope.Pathological changes of skeletal muscle were characterized primarily bywidespread myatrophy and dotted dissolving of myofilament.The above-mentionedchanges relieved to some extent in the groups treated with PIO or CsA.2.Comparedwith the control group,the deposition of IgG,IgA and IgM was remarkably increasedin renal cortex and skeletal muscle of group G rats.The immunoglobulins depositionon these organs was obviously decreased in PIO or CsA treatment groups than in group G.3.Compared with the control group,the expressions ofp-p38MAPK,TGFβ1,TNF-α,Bax,Fas,Fas-L,GLUT1 and GLUT4 in the renal cortexof diabetic rats were significantly increased in group G,and the ratio of Bax/Bcl-2was elevated.While all the values were obviously decreased in the groups treatedwith PIO or CsA than in group G.4.Compared with the control group,theexpressions of p-p38MAPK,TGFβ1,TNF-α,Bax,Fas and Fas-L in the skeletalmuscle were significantly increased,and the ratio of Bax/Bcl-2 was elevated,theexpression of GLUT1 and GLUT4 were decreased markedly in group G.Theexpressions of p-p38MAPK,TGFβ1,TNF-α,Bax,Fas and Fas-L were obviouslydecreased in the groups treated with PIO or CsA than in group G,and the expressionof GLUT4 was increased,but the expression of GLUT 1 had no change.
     Conclusions:1.The deposition ofimmunoglobulins on renal cortex and skeletalmuscle of STZ-induced diabetic rats suggests that the autoimmune injuries happenedto those tissues and was involved in the pathogenesis of the chronic diabeticcomplications.2.Immunoregulatory or immunosuppressive treatment with PIO orCsA have demonstrated protective effects on kidney and skeletal muscle by inhibitingthe abnormal deposition of immunoglobulins on them.3.Renal cortical p38MAPKactivity was increased in diabetic rats at advanced stages of DKD,as compared withnon-diabetic rats,and the expressions of TGFβ1,TNF-α,pro-apoptotic protein,GLUT1 and GLUT4 were demonstrated in the renal cortex.All the factors interactedwith each other and promoted the development of diabetes kidney diseases.4.Thep38MAPK pathway was activated in the rats of diabetic myopathy of skeletal muscle,at the same time,the expression of TGFβ1,TNF-α,pro-apoptotic protein wereincreased.5.p38MAPK activity and the expressions of TGFβ1,TNF-αandpro-apoptotic protein could be suppressed by treatment with PIO or CsA on the renalcortex and skeletal muscle in the diabetic rats,simultaneously,abnormal expressionsof GLUT1 and GLUT4 in the kidneys and the decreased expression of GLUT4 in theskeletal muscle could be improved.
引文
[1]Gerd Bodlaj,J(o|¨)rg Berg,Robert Pichler,et al.Type 2 diabetes in patients with end-stage renal disease is not associated with further increased serum inflammatory parameters[J].J NEPHROL,2004;17:112-117.
    [2]Mailloux LU.Hypertension in chronic renal failure and ESRD:prevalence,pathophysiology,and outcomes[J].Semin Nephrol,2001;21:146-56.
    [3]Ogawa T,Taguchi T,Tanaka Y,et al.Intravenous immunoglobulin therapy for diabetic amyotrophy[J].Intern Med,2001,40:349-352.
    [4]Courtney AE,McDonnell GV,Patterson VH.Human immunoglobulin for diabetic amyotrophy--a promising prospect? Postgraduate Medical Journal[J].2001,77:326-328.
    [5]Morii T,Fujita H,Toyoshima I,et al.Efficacy of immunoglobulin and prednisolone in diabetic amyotrophy[J].Endocrine Journal,2003,50(6),831-832.
    [6]Kelkar P,Parry GJ.Mononeuritis multiplex in diabetes mellitus:evidence for underlying immune pathogenesis[J].J Neurol Neurosurg Psychiatry,2003,74:803-806.
    [7]邱明才,林珊,高志红,等.有胫前黑斑的2型糖尿病患者皮肤黑斑和肾活检.天津医药[J].2004,32(5):257-259.
    [8]李德强.环孢菌素A对STZ诱导的糖尿病大鼠肾脏自身免疫和炎症损伤的预防作用探讨[D].天津;天津医科大学,2006.
    [9]崔瑾.环孢菌素A对STZ诱导的糖尿病大鼠多器官免疫损伤的治疗作用[D].天津;天津医科大学,2006.
    [10]孟春梅.STZ诱导的糖尿病大鼠视网膜的免疫损伤[D].天津;天津医科大学,2005.
    [11]高桦.糖尿病大鼠多器官免疫损伤以及肿瘤坏死因子-α在肾脏表达水平的实验研究[D].天津;天津医科大学,2005.
    [12]王朝讯.环孢素A抑制链脲佐菌素诱导的糖尿病大鼠大脑免疫和NF-κ3通路激活的实验研究[D].天津;天津医科大学,2007.
    [13]侯宁宁.链脲佐菌素诱导的糖尿病大鼠外周神经病变免疫损伤和环孢素A的抑制作用[D].天津;天津医科大学,2007.
    [14]雒珞.环孢素A对链脲佐菌素诱导糖尿病大鼠胰岛功能障碍的影响[D].天津;天津医科大学,2007.
    [15]Pistrosch F,Herbing K,Kindel B,et al.Rosiglitazone improves glomerular hyperfiltration,renal endothelial dysfunction,and microalbuminura of incipient diabetic nephropathy in patients[J].Diabetes,2005,54(7):2206-2211.
    [16]Bakris GL,Ruilope LM,McMorn SO,et al.Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria[J].J Hypertens,2006,24(10):2047-2055.
    [17]Wakino S,Hayashi K,Tatematsu S,et al.Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats[J].Hypertension Res,2005,28(3):255-262.
    [18]Ohga S,Shikata K,Yozai K,et al.Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-{kappa}B activation[J].Am J Physiol Renal,2007,292(4):1141-1150.
    [19]Nakamura T,Ushiyama C,Osada S,et al.Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria[J].Metabolism,2001,50(10):1193-1196.
    [20]Clark RB,Bishop-Bailey D,Estrada-Hernandez T,et al.The nuclear receptor PPARγ and immunoregulation:PPARγ mediates inhibition of helper T cell responses[J].J Immuno,2000,164:1364-1371.
    [21]Natarajan C,Bright JJ.Peroxisome proliferator-activated receptor-y agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production,IL-12 signaling and Th1 differentiation[J].Genes Immun,2002,3:59-70.
    [22]Natarajan C,Muthian G,Barak Y,et al.Peroxisome proliferator-activated receptor-γ-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis[J].Immunol,2003,171:5743-5750.
    [23]Shiojiri T,Wada K,Nakajima A,et al.PPARγ ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice[J].Eur.J.Pharmacol,2002,448:231-238.
    [24]Saubermann L,Nakajima JA,Wada K,et al.Peroxisome proliferator-activated receptor γ agonist ligands stimulate a Th2 cytokine response and prevent acute colitis[J].Inflamm.Bowel Dis,2002,8:330-339.
    [25]Woerly G,Honda K,Loyens M,et al..Peroxisome proliferator-activated receptors-γ down-regulate allergic inflammation and eosinophil activation[J].J Exp Med,2003,198:411-421.
    [26]Hammad H,de Heer HJ,Soullie T,et al.Activation of peroxisome proliferator-activated receptor-γ in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma[J].Am J Pathol,2004,164:263-271.
    [27]Mueller C,Weaver V,Vanden Heuvel JP,et al.Peroxisome proliferator-activated receptor γ ligands attenuate immunological symptoms of experimental allergic asthma[J].Arch.Biochem.Biophys,2003,418:186-196.
    [28]Ueki S,Matsuwaki Y,Kayaba H,2004.Peroxisome proliferator-activated receptor γ regulates eosinophil functions:a new therapeutic target for allergic airway inflammation[J].Int Arch Allergy Immunol,2004,134(Suppl 1):30-36.
    [29]Beales PE,Liddi R,Giorgini AE,et al..Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse[J].Eur J Pharmacol,1998,357:221-225.
    [30]Augstein P,Dunger A,Heinke P,et al.Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-γ expression in splenic T cells[J].Biochem Biophys Res Commun,2003,304:378-384.
    [31]全世明,曾耀英,何贤辉,等.环孢菌素A对小鼠T细胞活化影响的血清免疫药理学评价[J].细胞与分子免疫学杂志,2002,18:225-227.
    [32]Christie MR,Molvig J,Hawkes CJ,et al.IA-2 antibody-negative status predicts remission and recovery of C-peptide levels in type 1 diabetic patients treated with cyclosporin[J].Diabetes Care,2002,25:1192-7.
    [33]Casteels KM,Mathieu C,Waer M,et al.Prevention of type I diabetes in nonobese diabetic mice by late intervention with nonhypercalcemic analogs of 1,25-dihydroxyvitamin D3 in combination with a short induction course of cyclosporin A[J].Endocrinology,1998,139:95-102.
    [34]Weikko A.Koivisto,Mikael Knip,Marjatta Leirisalo-Repo,et al.Seven years of remission in a type 1 diabetic patient.Influence of cyclosporin and regular exercise[J].Diabetes Care,1993,16:990-995.
    [35]徐建华,孙中华,颜燕,等.应用于保健食品功能学评价的糖尿病动物模型研究[J].中国卫生检验杂志,2002,12(6):668-669.
    [36]Abrass CK.Evaluation of the presence of circulating immune complexes and their relationship to glomerular IgG deposits in streptozotocin-induced diabetic rats[J].Clin Exp Immunol,1984,57(1):17-24
    [37]Inoue W,Tomino Y,Miura M,et al.Immunofluorescence staining in unfixed or fixed renal biopsy specimens from patients with diabetic nephropathy[J].Acta Pathol Jpn,1985,35(5):1135-1140
    [38]Mekori YA,Steiner P,Farkash R,et al.Deposits of immunoglobulins and C3 in the walls of human renal arteries[J].Clin Exp Immunol,1981,43(2):254-259.
    [39]Utimura R,Fujihara CK,Mattar AL,et al.Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes[J].Kid Int,2003,63:209-216.
    [40]刘少军,顾勇,杨海春,等.霉酚酸酯对肾大部切除大鼠肾脏的保护作用[J].中华肾脏病杂志,2002,18(3):199-203.
    [41]陈俊英,吕永曼.抗炎治疗在糖尿病肾病中的应用展望[J].国际泌尿系统杂志,2006,26(5):710-714.
    [42]孙致连,叶山东.炎症因子与糖尿病肾病关系的研究进展[J].国际病理科学与临床杂志.2008,28(4):366-369.
    [43]Abrahamian H,Endler G,ExnerM,et a.l Association of low-grade inflammation with nephropathy in type 2 diabetic patients:role of elevated CRP-levels and 2 different gene-polymorphisms ofproinflammatory cytokines[J].Exp Clin Endocrinol Diabetes,2007,115(1):38-41.
    [44]Temelkova-KurktschievT,HenkelE,KoehlerC,eta.l Subclinical inflammation in newly detected type Ⅱ diabetes and impaired glucose tolerance[J].Diabetologia,2002,45:151.
    [45]Leinonen E,Hurt-Camejo E,W iklund O,et a.l Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesionmolecules in type 2 diabetes[J].Atherosclerosis,2003,166:387-394.
    [46] Mora C, Navarro JF. The role of inflammation as a pathogenic factor in the development of renal disease in diabetes[J]. Curr Diab Rep, 2005, 5(6): 399-401.
    [47] DallaVestraM, Mussap M, Gallina P, eta.l Acute-phasemarkers of inflammation and glomerular structure in patientswith type 2 diabetes[J]. JAm SocNephro,l 2005,16(Suppl1): 78-82.
    [48]Mora C, Navarro JF. Inflammation and diabetic nephropathy[J]. CurrDiab Rep,2006, 6(6): 463-468.
    [49] Navarro JF, Mora C, G(?)mezM, et a.l Influence of renal involvement on peripheral blood mononuclear cell expression behavior oftumor necrosis factor-{alpha} and interleukin-6 in type 2 diabeticpatients[J]. NephrolDialTransplant,2008,23(3): 919-926.
    [50]Yamagishi S, MatsuiT, NakamuraK, eta.l Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species[J]. Ophthalmic Res, 2008, 40(1):10-15.
    [51]Chipitsyna G, Gong Q, Gray CF, et a.l Induction of monocyte Chemoattractant protein-1 expression by angiotensin Ⅱ in the pancreatic islets and beta-cells[J].Endocrinology, 2007, 148(5):2198-2208.
    [52]Nakamura T, UshiyamaC, SuzukiS, eta.l Urinary excretion of podocytes in patients with diabetic nephropathy[J]. Nephro.l Dia.l Transplant, 2000,15: 137983.
    [53] TashiroK, Koyanagi I, Saitoh A, et a.l Urinary levels of monocyte Chemoattractant protein-1 (MCP-1) and interleukin-8 ( IL-8), and renal injuries in patientswith type 2 diabetic nephropathy[J]. J Clin. Lab. Ana.l 2002, 16: 14.
    [54] Sassy PC, Heudes D, Mandet C, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats[J]. Diabetes,2000,49(3):466-475.
    [55]Noronha IL,Fujihara CK,Zatz R.The inflammatory component in progressive renal disease-are interventions possible[J]? Nephrol Dial Transplant,2002,17(3):363-368.
    [56]Utimura R, Fujihara CK,Mattar AL,et al.Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes[J].Kidney Int, 2003, 63(1):209-216.
    [57]Chow F, Ozols E,Nikolic-Paterson DJ,et al.Macrophages in mouse type 2 diabetic nephropathy:correlation with diabetic state and progressive renal injury[J].Kidney Int, 2004,65(1):116-128.
    [58]Meade CJ, Brandon DR, Smith W,et al.The relationship between hyperglycemia and renal immune complex deposition inmicewith inherited diabetes[J]. Clin Exp Immunol, 1981,43:109-120.
    [59]Isshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their Insulin-sensitizing action in diabetic rats[J]. Diabetes,2000,49 :1022-1032.
    [60]Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-κB activation[J].Am J Physiol Renal Physiol,2007,292:1141-1150.
    [61]Panchapakesan U, Sumual S, Pollock CA, et al. PPAR agonists exert antifibrotic effects in renal tubular cells exposed to high glucose[J].Am J Physiol Renal Physiol,2005,289:1153-1158.
    [62]Pershadsingh H.A, Heneka MT, Saini R, Amin NM, et al. Effect of pioglitazone treatment in a patient with secondary multiple sclerosis[J].Neuroinflammation,2004,1:3.
    [63]Murat A, Pellieux C, Brunner HR, et al. Calcineurin blockade prevents cardiac mitogen-activated Protein kinase activation and hypertrophy in renovascular hypertension[J]. J Biol Chem,2000,275:40867-40873.
    [64]Halestrap AP, Woodfield KY, Connern CP, et al. Oxidative stress, thiol reagents,and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase[J]. J Biol Chem,1997,272:3346.
    [65]Scorrano L, Ashiya M, Buttle K, et al.A distinct pathway remodels mitochontrial cristae and mobilize cytochrome c during apoptosis[J].Dev Cell,2002,2(1):55.
    [66]Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes[J].Gastroenterology, 2003,124(2):494.
    [67]Ding WX, ShenHM, OngCN·Critical role of reactive oxygen specie and mitochondrial permeability transition in microcystin-induced rapi apoptosis in rat hepatocytes[J].Hepatology,2000,32(3):547.
    [68]Chen HW,Chien CT,Yu SL,et al.Cyclosporine A regulate oxidative stress induced apoptosis in cardiomyocytes.mechanisms via ROS generation,iNOS and HSP70[J].Br J Pharmacol,2002,137(6):771.
    [69]O'Harre JA.Prevalence and forms of neuropathic morbidity in 800 diabetes[J].Ir J Med Sci,1994,163:132-135.
    [70]蒙碧辉,舒昌达,糖尿病骨骼肌病变[J].国外医学内分泌学分册,2002,22:336-338.
    [71]Sa wada G,Wyse BM,Blanks MC,et al.Morphometric evaluation of capillary basement membrane thickness in the quadriceps muscle of diabetic and nondiabetic Chinese hamsters[J].Histol Histopathol,1986,1(1):1-8.
    [72]Barnett AH,Spiliopoulos AJ,Ptke DA,et al.Muscle capillary basement membrane in identical twins discordant for insulin-dependent diabetes[J].Diabetes,19 83,32(6):557-560.
    [73]Kindig CA,Sexton WL,Fedde MR,et al.Skeletal muscle microcirculatory structure and hemodynamics in diabetes[J].Respir-Physiol,1998,111:163-75.
    [74]Kelkar P,Masood M,Parry G J.Distinctive pathologic findings in proximal diabetic neuropathy(diabetic amyotrophy)[J].Neurology,2000,55(1):83-88.
    [75]Dyck PJ,Windebank AJ.Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies:new insights into pathophysiology and treatment[J].Muscle Nerve,2002,25:477-491.
    [76]Khema R Sharma,John cross,Oscar Darronay,et al.Demyelinating neuropathy in diabetes mellitus[J].Archives of Neurology,2002,59:758-765.
    [77]Thomas PK.Clinical features and investigation of diabetic somatic peripheral neuropathy[J].Clin Neurosci,1997,4:341-345.
    [1]Robinson MJ,Cobb MH.Mitogen2 activated protein kinase pathway[J].Curr Opin Cell Biol,1997(2),9:180-186.
    [2]Kyriakis JM,Avruch J.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J].Physiol Rev,2001,81(4):807-869.
    [3]Hisayo Fujita,Sayu Omori,Kenji Ishikura,et al.ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells[J].Am J Physiol Renal Physiol.2004,286:120-126.
    [4]Purves T,Middlemas A,Agthong S,et al.A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy[J].FASEB J,2001,15:2508-2514.
    [5]Agthong S,Tomlinson DR.Inhibition of p38 MAP kinase corrects biochemical and neurological deficits in experimental diabetic neuropathy[J].Ann NY Acad Sci,2002,973:359-362.
    [6]Begum N,Ragolia L.High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38MAPK activation[J].Am J Physiol Cell Physiol,2000,278:C81-91.
    [7]Shanmugam N,Kim YS,Lanting L,et al.Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products[J].J Biol Chem,2003,278:34834-34844.
    [8]Kang SW,Adler SG,LaPage J,et al.p38MAPK and MPAK kinase 3/6 mRNA and activities are increased in early diabetic golmeruli[J].Kidney Int,2001,60(2):543-552.
    [9]段惠军,王丽晖,史永红,等.糖尿病大鼠肾脏组织中磷酸化p38丝裂原活化蛋白激酶的表达特征及意义[J].中国中西医结合急救杂志,2004,11(6):372-376.
    [10]Komers R,Lindsley JN,Oyama TT,et al.Renal p38 MAP kinase activity in experimental diabetes[J].Laboratory Investigation,2007,87,548-558.
    [11]Agthong S,Tomlinson DR.Inhibition of p38 MAP kinase corrects biochemical and neurological deficits in experiental diabetic neuropathy[J].Ann NY Axad Sci,2002,973:359-362.
    [12]Purves T,Middlemas A,Agthong s,et al.A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy[J].FASEB J.2001,15:2508-2514.
    [13]Carlson CJ,Koterski S,Sciotti RJ,et al.Enhanced basal activation of mitogen-activated protein kinase in adiposities from type 2 diabetes potential role P38 in the downregulation of GLUT4 expression [J].Diabetes, 2003, 52(3): 634-641.
    [14]Terada Y, Znoshitas S, Naka SO, et al. Regulation of cyclin D1 expression and cell cycle progression bymitogen-activated protein kinase cascade[J]. Kidney Int,1999, 56:1258.
    [15]Fujita H, Omori S, Ishikura K, et al. ERK and p38 mediate high-glucose induced hypertrophy and TGF-beta expression in renal tubular cells[J]. Am J Physiol Renal Physiol, 2004,286(1):120-126.
    [16]Pistrosch F, Herbing K, Kindel B, et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminura of incipient diabetic nephropathy in patients[J].Diabetes,2005,54(7):2206-2211.
    [17]Bakris GL, Ruilope LM, McMorn SO, et al.Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria[J]. J Hypertens, 2006, 24(10):2047-2055.
    [18]Wakino S, Hayashi K, Tatematsu S, et al. Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats[J]. Hypertension Res,2005,28(3):255-262.
    [19]Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-{kappa}B activation[J].Am J Physiol Renal,2007,292(4):1141-1150.
    [20]Nakamura T, Ushiyama C, Osada S, et al. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria[J]. Metabolism,2001,50(10):1193-1196.
    [21]Teruel T, Hernandez R, Benito M, et al. Rosiglitazone and retinoic acid induce uncoupling protein-1 (UCP-1) in a p38 mitogen-activated protein kinase-dependent manner in fetal primary brown adipocytes[J]. J Biol Chem,2003,278:263-269.
    [22]Lennon AM, Ramauge M, Dessouroux A, et al. MAP kinase cascades are activated in astrocytes and preadipocytes by 15-deoxy-△~(12-14)-prostaglandin J2 and the thiazolidinedione ciglitazone through peroxisome proliferator-activated receptorγ-independent mechanisms involving reactive oxygenated species[J]. J Biol Chem,2002 277: 29681-29685.
    [23]Wilmer WA, Dixon C, Lu L, Hilbelink T, and Rovin BH A cyclopentenone prostaglandin activates mesangial MAP kinase independently of PPAR gamma [J].Biochem Biophys Res Commun, 2001,281:57-62.
    [24] Colgan J, Asmal M, Yu B, et al. Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine[J]. J Immunal, 2005, 174 (10):6030-6038.
    [25] Murat A, Pellieux C, Brunner HR, et al. Calcineurin blockade prevents cardiac mitogen-activated Protein kinase activation and hypertrophy in renovascular hypertension[J]. J Biol Chem,2000,275:40867-40873.
    [26] Blenis J. Signal transduction via the MAP kinase:proceed at your own RSK[J].Proc Natl Acad Sci USA,1993,90(13): 5889-5992.
    [27] Howe LR, Leevers SJ, Gomez N, et al. Activation of the MAP kinase pathway by the protein kinase raf[J]. Cell ,1992 ;71(2):335-342.
    [28] Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science,1994 ; 265 (5173): 808-811.
    [29] Li Z, Jiang Y, Ulevitch RJ, et al. The primary structure of p38 gamma:a new member of p38 group of MAP kinase[J]. Biochem Biophys RES,1996,228(2):334-340.
    [30] Raingeaud J, Gupta S, Rogers JS, et al. Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine[J]. J Biol Chem, 1995,270:7420-7426.
    [31] Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group MAP kinases-p38a[J]. Biol Chem, 1997,272(48):30122-30128.
    [32] Jiang Y, Gyam H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta[J]. J Biol Chem,1997,278:30122-30128
    [33] Garrington TP, Johnson GL. Organization and vegulation of mitogen-activated protein kinase signaling pathways[J].Curr Opin Cell Biol, 1999,11(2):211-218.
    [34] Oraori S, Hida M, Ishikura K, et al. Expression of mitogen-activated protein Kinase family in rat renal development[J]. Kidnay Int, 2000, 58(1):27-37.
    [35] Fujita H, Omori S, Ishikura K, et al. ERK and p38 mediate high-glucose induced hypertrophy and TGF-beta expression in renal tubular cells[J]. Am J Physiol Renal Physiol, 2004,286(1): 120-126.
    [36]Dai T, Natarajan R, Nast CC, et al. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton[J]. Kidney Int, 2006,69:806-814.
    [37]Adhikary L, Chow F, Nikolic-Paterson DJ,et al. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy[J]. Diabetologia, 2004,47:1210-1222.
    [38]Sakai N, Wada T, Furuichi K, et al. Involvement of extracellular signal regulated kinase and p38 in human diabetic nephropathy[J]. Am J Kidney Dis, 2005,45:54-65.
    [39]Zhang SL, Tang SS, Chen X, et al. High levels of glucose stimulate angiotensinogen gene expression via the P38 mitogen-activated protein kinase pathway in rat kidney proximal tubular cells[J].Endocrinology, 2000,141:4637-4646.
    [40]Hsieh TJ, Fustier P, Zhang SL, et al. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells[J]. Endocrinology, 2003,144:4338-4349.
    [41]Hsieh TJ, Zhang SL, Filep JG, et al. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells[J]. Endocrinology,2002,143:2975-2985.
    [42]Burt DJ, Gruden G, Thomas SM, et al. P38 mitogen-activated protein kinase mediates hexosamine-induced TGFbetal mRNA expression in human mesangial cells[J]. Diabetologia, 2003,46:531-537.
    [43]Susztak K, Raff AC, Schiffer M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J]. Diabetes, 2006,55:225-233.
    [44]Liu BF, Miyata S, Hirota Y, et al. Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells[J]. Kidney Int, 2003,63:947-957.
    [45]Somwar R, Perreault M, Kapur S, et al.Activation of p38 mitogen-activated protein kinase a and β by insulin and contraction in rat skeletal muscle:potential role in the stimulation of glucose transport[J]. Diabetes,2000,49:1794-1800.
    [46]Kayali AG, Austin DA, Webster NJ. Stimulation of MAPK cascades by insulin and osmotic shock:lack of an involvement of p38 mitogen activated protein kinase in glucose transport in 3T3-L1 adipocytes[J].Diabetes,2000,49:1783-1793.
    [47]Fujishiro M,Gotoh Y,Katagiri H,et al.MKK6/3 and p38MAPK pathway activation is not necessary for insulin induced glucose uptake but regulates glucose transporter expression[J].J Biol Chem,2001,276:19800-19806.
    [48]Kawano YC,Ryder JW,Rincon J,et al.Evidence against high glucose as a mediator of ERK1/2 or p38MAPK phosphorylation in rat skeletal muscle[J].Am J Physiol Endocrinol Metab,2001,281:1255-1259.
    [49]Igarashi M,Wakasaki H,Takahara N,et al.Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways[J].J Clin Invest 103:185-195,1999.
    [50]Koistinen HA,Chibalin AV,Zierath JR.Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from Type 2 diabetic patients[J].Diabetologia,2003,46:1324-1328.
    [51]Wolf G,Schroeder R,Ziyadeh FN,et al.High glucose stimulates expression of p27 in cultured mouse mesangial cells:Relationship with hypertrophy[J].Am J Physiol,1997,273:348.
    [52]Van der BJ,Berden JHM.Selective proteinuria in diabetic Rephropathy in the rat is associated with a relative decrease in glomemlar basement membranes[J].Diabetologia,1995,38:161.
    [53]朱禧星.现代糖尿病学[M].上海:复旦大学出版社,2000:159.
    [54]D'Agord SB,Lacchini S,Bertoluci MC,et al.Increased renal GLUT1 abundance and urinary TGF-beta 1 in streptozotocin-induced diabetic rats:Implications for the development of nephropathy complicating diabetes[J].Horm Metab Res,2001,3 3:664-669.
    [55]Isono M,Cruz MCID,Chen S,et al.Extracellar signal-regulated kinase mediates stimulation of TGFβ1 and matrix by high glucose in messangial cells[J].J Am Soc Nephrol,2000;11:2222-2230.
    [56]Gruden G,Zonca S,Hayward A,et al.Mechanical stretch-induced fibronectin and transforming growth factor-β1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent[J].Diabetes,2000;49:655-61.
    [57]Wahab NA, Parker S, Sraer JD, Mason RM. The decorin high glucose responds element and mechanism of its activation in human mesangial cells[J]. J Am Soc Nephrol, 2000; 11:1607.
    [58]lsshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats[J]. Diabetes,2000,49(6): 1022-1032.
    [59]Panchapakesan U, Sumual S, Pollock CA, et al. PPARγagonists exert antifibrotic effects in renal tubular cells exposed to high glucose[J]. Am J Physiol Renal Physiol,2005,289:1153-1158.
    [60]Bernasconi P, Di Blasi C, Mora M, et al. Transforming growth factor-betal and fibrosis in congenital muscular dystrophies[J]. Neuromuscul Disord,1999, 9:28-33.
    [61]Confalonieri P, Bernasconi P, Cornelio F, et al. Transforming growth factor-beta 1 in polymyositis and dermatomyositis correlates with fibrosis but not with mononuclear cell infiltrate[J]. J Neuropathol Exp Neurol,1997, 56:479-484.
    [62]Andreetta F, Bernasconi P, Baggi F, et al.Immunomodulation of TGF-betal in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: Implications for antifibrotic therapy[J]. J Neuroimmunol.2006,175(1-2):77-86.
    [63]Li Y, Foster W, Deasy M. Transforming Growth Factor-β1 Induces the Differentiation of Myogenic Cells into Fibrotic Cells in Injured Skeletal Muscle[J].Am J Pathol.2004,164(3):1007-1019.
    [64]Li Y, Huard J. Differentiation of Muscle-Derived Cells into Myofibroblasts in Injured Skeletal Muscle[J]. Am J Pathol.2002,161(3): 895-907.
    [65]Mora C, Navarro JF. The role of inflammation as a pathogenic factor in the development of renal disease in diabetes[J]. Curr Diab Rep, 2005, 5(6): 399-401.
    [66]Moriwaki Y, Inokuchi T, Yamamoto A, et al. Effect of TNF-alpha inhibition on urinary albumin excretion in experimental diabetic rats [J]. Acta Diabetol, 2007,44(4):215-218.
    [67]Koike N, Takamura T, Kaneko S. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-alpha stimulation, and effects of a phosphodiesterase inhibitor[J]. Life Sci, 2007, 80(18): 1721-1728.
    [68]Mora C,Navarro JF.Inflammation and diabetic nephropathy[J].Curr Diab Rep,2006,6(6):463-468.
    [69]刘平平,李兴.TNF-α、脂联素在糖尿病骨骼肌病变中的作用[J].中国医学研究与临床,2006,4(11):36-37.
    [70]Ruan H,Miles PD,Ladd CM,et al.Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factoralpha:implication for insulin resistance[J].Diabetes,2002,51:3176-3188.
    [71]Wiyazaki Y,Pipek R,Mandarino LJ,et al.Tumor necrosis factoralpha and insulin resistance in obese type 2 diabetic patients[J].Int J Obese Rent Metab Disord.2003,27:88-94.
    [72]赵燕,杨秋萍.糖尿病肾病与细胞凋亡及其相关基因研究进展[J].医学综述,2007,13(12):911-913.
    [73]White E.Life,death,and the pursuit of apoptosis[J].Genes Dev,1996,10(1):1-15.
    [74]Korsmeyer SJ.Bcl-2 gene family and the regulation of programmed cell death[J].Cancer Res,1999,59(7 Suppl):1693-1700.
    [75]Smith C,Farrah T,Goodwin G,et al.The TNF receptor superfamily of cellular and viral proteins:activation,constimulation,and cell death[J].Cell,1994,76(6):959-962.
    [76]Zhang W,Khanna P,Chan LL,et al.Diabetes induced apoptosis in rat kidney[J].Biochem Mol Med,1997,61(1):58-62.
    [77]Sugiyama H,Kashihara N,Makino H,et al.Apoptosis in glomerular sclerosis[J].Kidney Int,1996,49(1):103-111.
    [78]Mishra R,Emancipator SN,Kern T,et al.High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells[J].Kidney Int,2005,67(1):82-93.
    [79]Susztak K,Raff AC,Schiffer M,et al.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J].Diabetes,2006,55(1):225-233.
    [80]Kumar D,Zimpelmann J,Robertson S,et al.Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney[J].Nephron Exp Nephrol,2004,96(3):77-88.
    [81]张艳玲,段惠军,李春香,等.糖尿病大鼠肾脏细胞凋亡与Bax和Bcl-2基因表 达[J].中国糖尿病杂志,2002,10(3):159-162.
    [82]Yang B,Jonnson TS,Thoamas GL,et al.Expression of apoptosis-related genes and proteins in experimental chronic renal scarring[J].J Am Soc Nephrol,2001,12(2):275-288.
    [83]Reed JC.Bcl-2 and the regulation of programmed cell death[J].J Cell Biol,1994,124:1-6.
    [84]Oritiz A,Ziyadeh FN,Neilson EG.Expression of apoptosis-regulatory genes in renal perximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys[J].J Investig Med,1997,45:50-56.
    [85]Murataa I,Takemuraa G,Asano K,et al.Apoptotic Cell Loss following Cell Proliferation in Renal Glomeruli of Otsuka Long-Evans Tokushima Fatty Rats,a Model of Human Type 2 Diabetes[J].Am J Nephrol,2002,22:587-595.
    [86]Alberto OA,Theodore M,Danoff G,et al.Regulation of Fas and Fas ligand expressionin cultured murine renal cells and in the kidney during endotoxemia[J].Am J Physiol.1996,241:193-1201.
    [87]Kelly DJ,Oakley SA,Zhang Y,et al.Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic(mRen-2)27 rats:Attenuation with renin-angiotensin blockade[J].Nephrology,2003,9(1):7-13.
    [88]杜美蓉,李大金.环孢素A的药效学研究[J].中国药学杂志,2005,40(1):1-3.
    [89]Halestrap AP,Woodfield KY,Connern CP,et al.Oxidative stress,thiol reagents,and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase[J].J Biol Chem,1997,272:3346.
    [90]Scorrano L,Ashiya M,Buttle K,et al.A distinct pathway remodels mitochontrial cristae and mobilize cytochrome c during apoptosis[J].Dev Cell,2002,2(1):55.
    [91]Kim JS,Qian T,Lemasters JJ.Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes[J].Gastroenterology,2003,124(2):494.
    [92]Ding WX,ShenHM,OngCN-Critical role of reactive oxygen specie and mitochondrial permeability transition in microcystin-induced rapi apoptosis in rat hepatocytes[J].Hepatology,2000,32(3):547.
    [93]Chen HW,Chien CT,Yu SL,et al.Cyclosporine A regulate oxidative stress induced apoptosis in cardiomyocytes:mechanisms via ROS generation,iNOS and HSP70[J].Br J Pharmacol,2002,137(6):771.
    [94]Lee MJ,Lee JS,Lee MC.Apoptosis of skeletal muscle on steroid-induced myopathy in rats[J].J Korean Med Sci,2001,16(4):467-474.
    [95]Jejurikar SS,Marcelo CL,Kuzon WM.Skeletal muscle denervation increases satellite cells susceptibility to apoptosis[J].Plast Reconstr Surg,2002,11(1):160-168.
    [96]Belizario JE,Lorite MJ,Tisdale MJ.Cleavage of caspases-1,-3,-6,-8 and-9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia[J].Br J Cancer,2001,84(8):1135-1140.
    [97]Yasuhara S,Kanakubo E,Perez ME,et al.The 1999 Moyer award.Burn injury induces skeletal muscle apoptosis and the activation of caspase pathways in rats[J].J Burn Care Rehabil,1999,20(6):462-470.
    [98]蒙碧辉,刘红,梁莹等.糖尿病骨骼肌超微病变与微血管病变的关系[J].新医学,2003,34(4):242-243.
    [99]Joost HG,Bell GI,Best JD,et al.Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators[J].Am J Physiol,2002,282:974-976.
    [100]Mueckler M:Facilitative glucose transporters.Eur J Biochem 219:713-725,1994.
    [101]Heilig C,Zaloga C,Lee M,et al.Immunogold localization of high-affinity glucose transporter isoforms in normal rat kidney[J].Lab Invest,1995,73:674.
    [102]Heilig CW,Brosius FC,Henry DKD.Glucose transporters of the glomerulus and the implications for diabetic nephropathy[J].Kidney Int,1997,52(S60):91-99.
    [103]Heilig CW,Kreisberg JI,Freytag S,et al.Antisense GLUT-1 protects mesangial cells from glucose induction of GLUT-1 and fibronectin expression[J].Am J Physiol Renal Physiol,2001,280:657-666.
    [104]Chen S,Heilig KO,Brosius FC 3rd,et al.Diabetes increases glomerular Glut1,and antisense-Glut1 protects against diabetic glomerulosclerosis[J].J Am Soc Nephro,2003,14:46.
    [105]Inoki K,Haneda M,Maeda S,et al.TGF-beta 1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells[J].Kidney Int,1999,55:1704-1712.
    [106]Nose A, Mori Y, Uchiyama-Tanaka Y, et al. Regulation of glucose transporter(GLUT1) gene expression by angiotensin Ⅱ in mesangial cells:Involvement of HB-EGF and EGF receptor transactivation[J]. Hypertens Res ,2003,26:67-73.
    [107]D'Agord SB, Lacchini S, Bertoluci MC, et al. Increased renal GLUT1 abundance and urinary TGF-beta 1 in streptozotocin-induced diabetic rats:Implications for the development of nephropathy complicating diabetes[J].Horm Metab Res,2001,33:664-669.
    [108]D'Agord SB, Lacchini S, Bertoluci MC, et al. Impact of renal denervation on renal content of GLUT1, albuminuria and urinary TGF-beta1 in streptozotocin-induced diabetic rats[J]. Auton Neurosci,2003,104:88-94.
    [109]Depre C, Young ME, Ying J, et al. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction[J]. J Mol Cell Cardiol ,2000, 32:985-996.
    [110]Hirsch B, Rosen P. Diabetes mellitus induces long lasting changes in the glucose transporter of rat heart endothelial cells[J]. Horm Metab Res,1999,31:645-652.
    [111]Badr GA, Tang J, Ismail-Beigi F, et al.Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels[J]. Diabetes,2000,49:1016-1021.
    [112]Ciaraldi TP, Mudaliar S, Barzin A, et al. Skeletal muscle GLUT1 transporter protein expression and basal leg glucose uptake are reduced in type 2 diabetes[J]. J Clin Endocrinol Metab,2005,90:352-358.
    [113]Heilig CW, Liu Y, England RL, et al. D-glucose stimulates mesangial cell Glutl expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cell[J].Diabetes, 1997,46:1030-1039.
    [114]Zhang J, Liu Z, Liu H, et al. Regulation of the expression and function of glucose transporter-1 by TGF-beta 1 and high glucose in mesangial cells[J]. Chin Med J (Engl), 2000,113:508-513.
    [115]Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature,2001,414:813-820.
    [116]Gruden G, Zonca S, Hayward A, et al. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent[J].Diabetes,2000,49:655-661.
    [117]King GL,Kunisaki M,Nishio Y,et al.Biochemical and molecular mechanisms in the development of diabetic vascular complications[J].Diabetes,1996,45(Suppl3):105-108.
    [118]Kolm-Litty V,Sauer U,Nerlich A,et al.High glucose induced transforming growth factor beta 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cell[J].J Clin Invest,1998,101:160-169.
    [119]Burt DJ,Gruden G,Thomas SM,et al.P38 mitogen-activated protein kinase mediates hexosamine-induced TGFbetal mRNA expression in human mesangial cells[J].Diabetologia,2003,46:531-537.
    [120]Igarashi M,Wakasaki H,Takahara N,et al.Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways[J].J Clin Invest,1999,103:185-195.
    [121]Koya D,King GL.Protein kinase C activation and the development of diabetic complications[J].Diabetes,1998,47:859-866.
    [122]Henry DKD,Busik JV,Brosius FC,et al.Glucose transporters control gene expression of aldose reductase,PKCalpha,and GLUT1 in mesangial cells in vitro[J].Am J Physiol,1999,277:97-104.
    [123]刘志红,张婷婷,王金泉.肾组织中葡萄糖转运蛋白与糖尿病肾病的关系[J].肾脏病与透析移植杂志,1999,8(3):206-209.
    [124]黄颂敏,赖学莉,杜新.高糖和胰岛素对肾小球系膜细胞葡萄糖转运蛋白4表达及易位的影响[J].中华肾脏病杂志,2007,23(4):242-245.
    [125]DeFronzo RA,Jocot E,Jequier E,et al.The effect of insulin on the disposal of intravenous glucose[J].Diabetes,1981,30:1000-1007.
    [126]Wilson CM,Cushman SW.Insulin stimulation of glucose transporter activity in rat skeletal muscle:increase in cell surface GLUT4 as assessed by photo labelling[J].Biochem J,1994,299:755-759.
    [127]Roy D,Marette A.Exercise induces the translocation of GLUT4 to transverse tubule from an intracellular pool in rat skeletal muscle[J].Biochem Biophys Res Commun,1996,223:147-152.
    [128]Ren JM, Semenkovich CF, Gulve EA, et al. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin stimulated glycogen storage in muscle[J].J Biol Chem, 1994,269:14396-14401.
    [129]Lund S, Holman GD, Schmitz O, et al. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin[J]. Proc Natl Acad Sci USA, 1995,92:5817-5821.
    [130]Zorzano A, Munoz P, Camps M, et al. Insulin-induced redistribution of GLUT4 glucose carrier in muscle fiber.in research of GLUT4 trafficking pathways[J].Diabetes, 1996, 45 (Suppl1):70-81.
    [131]Ploug T, van Deurs B, Ai H, et al.Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are reduced by insulin and muscle contractions[J]. J Cell Biol,1998, 142: 1429-1446.
    [132]Pedersen O, Bak JF, Andersen PH, et al. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM[J].Diabetes, 1990,39:865-870.
    [133]Ciaraldi TP, Mudaliar S, Barzin A, et al.Skeletal muscle GLUT1 transporter protein expression and basal leg glucose uptake are reduced in type 2 Diabetes[J]. J Clin Endo& Metab,2004, 90(1):352-358.
    [134]Maianu L, Keller SR, Garvey WT. Adipocytes exhibit abnormal subcellular distribution and transloration of veieles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus:implications tegartling defects in vesicle tracking[J]. J Clin Endocrinol Melab,2001,86(11):5450-5456.
    [135]Zisman A, Peroni O, Abel E, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance[J].Nat Med, 2000, 6(8):924-928.
    [136]Brozinick JT. GLUT4 over expression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure[J].Diabetes,2001, 50(3):593-600.
    [137]Tozzo E, Gnudi L, Kahn BB. Amelioration of insulin resistance in steroptozotocin diabetes mice by transgenic overexpression of GLUT4 driver by an adipose-specific promoter[J]. Endocrinology, 1997,13 8 (4) 1604-1611.
    [138]Zorzano A, Sevilla L, Tomas E, et al. GLUT4 trafficking in cardiac and skeletal muscle:isolation and characterization of distinct intracellular GLUT4-containing vesicle populations[J]. Biochem Soc Trans,1997,25:968.
    [139] Carlson CJ, Koterski S, Sciotti RJ, et al. Enhanced Basal Activation of Mitogen-Activated Protein Kinases in Adipocytes From Type 2 Diabetes.Potential Role of p38 in the Downregulation of GLUT4 Expression[J]. Diabetes, 2003,52:634-641.
    [1]Gerd Bodlaj,J(o|¨)rg Berg,Robert Pichler,et al.Type 2 diabetes in patients with end-stage renal disease is not associated with further increased serum inflammatory parameters[J].J Nephrol,2004;17:112-117.
    [2]Mailloux LU.Hypertension in chronic renal failure and ESRD:prevalence,pathophysiology,and outcomes[J].Semin Nephrol,2001;21:146-56.
    [3]Blenis J.Signal transduction via the MAP kinase:proceed at your own RSK[J].Proc Natl Acad Sci USA,1993,90(13):5889-5992.
    [4]Howe LR,Leevers SJ,Gomez N,et al.Activation of the MAP kinase pathway by the protein kinase raf[J].Cell,1992,71(2):335-342.
    [5]Han J,Lee JD,Bibbs L,et al.A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J].Science,1994,265(5173):808-811.
    [6]Li Z,Jiang Y,Ulevitch RJ,et al.The primary structure of p38 gamma:a new member of p38 group of MAP kinase[J].Biochem Biophys RES,1996,228(2):334-340.
    [7]Raingeaud J,Gupta S,Rogers JS,et al.Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine[J].J Biol Chem,1995,270:7420-7426.
    [8]Jiang Y,Gram H,Zhao M,et al.Characterization of the structure and function of the fourth member of p38 group MAP kinases-p38α[J].Biol Chem,1997,272(48):30122-30128.
    [9]Jiang Y,Gyam H,Zhao M,et al.Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases,p38delta[J].J Biol Chem,1997,278:30122-30128
    [10]Garrington TP,Johnson GL.Organization and vegulation of mitogen-activated protein kinase signaling pathways[J].Curr Opin Cell Biol,1999,11(2):211-218.
    [11]Omori S,Hida M,Ishikura K,et al.Expression of mitogen-activated protein Kinase family in rat renal development[J].Kidnay Int,2000,58(1):27-37.
    [12]Kang SW,Adler SG,LaPage J,et al.p38MAPK and MPAK kinase 3/6 mRNA and activities are increased in early diabetic golmeruli[J].Kidney Int, 2001,60(2):543-552.
    [13]段惠军,王丽晖,史永红,等.糖尿病大鼠肾脏组织中磷酸化p38丝裂原活化蛋白激酶的表达特征及意义[J].中国中西医结合急救杂志,2004,11(6):372-376.
    [14]Fujita H,Omori S,Ishikura K,et al.ERK and p38 mediate high-glucose induced hypertrophy and TGF-beta expression in renal tubular cells[J].Am J Physiol Renal Physiol,2004,286(1):120-126.
    [15]Dai T,Natarajan R,Nast CC,et al.Glucose and diabetes:effects on podocyte and glomerular p38MAPK,heat shock protein 25,and actin cytoskeleton[J].Kidney Int,2006,69:806-814.
    [16]Adhikary L,Chow F,Nikolic-Paterson DJ,et al.Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy[J].Diabetologia,2004,47:1210-1222.
    [17]Komers R,Lindsley JN,Oyama TT,et al.Renal p38 MAP kinase activity in experimental diabetes[J].Laboratory Investigation,2007,87,548-558.
    [18]Sakai N,Wada T,Furuichi K,et al.Involvement of extracellular signal regulated kinase and p38 in human diabetic nephropathy[J].Am J Kidney Dis,2005,45:54-65.
    [19]Isono M,Cruz MCID,Chen S,et al.Extracellar signal-regulated kinase mediates stimulation of TGFβ1 and matrix by high glucose in messangial cells[J].J Am Soc Nephrol,2000,11:2222-2230.
    [20]Gruden G,Zonca S,Hayward A,et al.Mechanical stretch-induced fibronectin and transforming growth factor-β1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent[J].Diabetes,2000,49:655-61.
    [21]Wahab NA,Parker S,Sraer JD,Mason RM.The decorin high glucose responds element and mechanism of its activation in human mesangial cells[J].J Am Soc Nephrol,2000,11:1607.
    [22]Yoshida K,Kuwano K,Hagimoto N,et al.MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis[J].J Pathol,2002,198:388-396.
    [23]Chin BY,Mohsenin A,Li SX,et al.Stimulation of pro-alpha(1)(1)collagen by TGF-beta(1)in mesangial cells:Role of the p38MAPK pathway[J].Am J Physiol Renal Physiol,2001,280:495-504.
    [24]Nick JA, Avdi NJ, Young SK, et al. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils[J]. J Clin Invest,1999,103:851-858.
    [25]Read MA, Whitley MZ, Gupta S, et al. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways[J]. J Biol Chem,1997, 272:2753-2761.
    [26]Pietersma A, Tilly BC, Gaestel M, et al. p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the 150 Hommes, Peppelenbosch, van Deventer post-transcriptional level[J]. Biochem Biophys Res Commun,1997,230:44-48.
    [27]Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP)kinase pathways:regulation and physiological functions. Endocr Rev,2001,22:153-183.
    [28]Sugiyama H, Kashihara N, Makino H, et al.Apoptosis in glomerular sclerosis[J].KidneyInt,1996,49(1):103-111.
    [29]Nebreda, A.R., and Porras, A. p38 MAP kinases: beyond the stress response[J].Trends Biochem Sci,2000,25:257-260.
    [30]Zechner D, Craig R, Hanford DS, et al. MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner[J]. J Biol Chem.l998,273:8232-8239.
    [31]Okamoto S, Krainc D, Sherman K, et al. Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation[J]. Proc Natl Acad Sci USA,2000,97:7561-7566.
    [32]Park JM, Greten FR, Li ZW, et al. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition[J]. Science,2002,297:2048-2051.
    [33]Le-Niculescu H, Bonfoco E, Kasuya Y, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death[J]. Mol Cell Biol. 1999,19:751-763.
    [34]DeZutter GS, Davis RJ. Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway[J]. Proc Natl Acad Sci USA,2001,98: 6168-6173.
    [35]Mackay K, Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia[J]. J Biol Chem.1999,274:6272-6279.
    [36]Saurin AT, Martin JL, Heads RJ, et al. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes[J].FASEB J,2000,14:2237-2246.
    [37]Liu BF, Miyata S, Hirota Y, et al. Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells[J] .Kidney Int,2003,63(3):947-957.
    [38]Porras A, Zuluaga S, Black E, et al.p38a mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli[J]. Molecular Biology of the Cell,2004,15:922-933.
    [39]Mishra R, Emancipator SN, Kern T, et al. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells [J].Kidney Int, 2005,67(1):82-93.
    [40]Susztak K, Raff AC, Schiffer M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J].Diabetes,2006,55(1):225-233.
    [41]Kumar D, Zimpelmann J, Robertson S, et al. Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney [J]. Nephron Exp Nephrol, 2004,96 (3):77-88.
    [42]Heilig CW, Kreisberg JI, Freytag S, et al. Antisense GLUT-1 protects mesangial cells from glucose induction of GLUT-1 and fibronectin expression[J].Am J Physiol Renal Physiol,2001,280:657-666.
    [43]Chen S, Heilig KO, Brosius FC 3rd, et al. Diabetes increases glomerular Glutl,and antisense-Glutl protects against diabetic glomerulosclerosis [J]. J Am Soc Nephro, 2003,14:46.
    [44]Fujishiro M, Gotoh Y, Katagiri H, et al. MKK6/3 and p38MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression[J]. J Biol Chem,2001,276(23):19800-19806.
    [45]Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414:813-820.
    [46]Lisnock J, Tebben A, Frantz B, et al. Molecular basis for p38 protein kinase inhibitor speciflcity[J]. Biochemistry, 1998,37(47):16573-16581.
    [47] Jung DS, Li JJ, Kwak SJ, et al. FR167653 inhibits fibronectin expression and apoptosis in diabetic glomeruli and in high-glucose-stimulated mesangial cells[J]. Am J Physiol Renal Physiol,2008,295:595-604.
    [48] Schindler JF, Monahan JB and Smith WG p38 pathway kinases as anti-inflammatory drug targets[J]. J Dent Res,2007,86, (9), 800-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700