锻铝微弧氧化过程控制问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化是一种在含有特定离子的电解液中通过高压放电处理和电化学氧化的共同作用,在铝、镁、钛等有色金属及其合金材料表面原位产生陶瓷层的表面处理技术。微弧氧化技术处理工艺简单,对环境无污染,处理工件能力强,而且大幅度提高了铝及其合金材料的性能,达到了第二代工程材料(金属)和第三代工程材料(陶瓷)的完美结合,是一项很有发展前途的轻合金表面处理技术。
     由于微弧氧化机理研究难度比常规氧化过程要大的多,国内微弧氧化技术自动化程度还不高,提高微弧氧化自动化水平并实现智能化控制是一个亟待解决的问题。
     本文分析了微弧氧化过程,把微弧氧化分为三个阶段:阳极氧化阶段、火花放电和微弧氧化阶段、熄弧阶段,通过实验,可以了解到每个阶段电流和电压变化有自己的特点。在此基础上通过控制电路和软件调整实现了锻铝微弧氧化工艺过程的自动化控制,达到了锻铝表面改性工艺自动控制的目的。
     本文以PIC16F788A单片机为核心控制芯片,在利用本实验室自行研制的微弧氧化电源的基础上,根据等离子体微弧氧化工艺特点,综合考虑各种因素,设计了一种等离子体锻铝微弧氧化工艺控制系统。所设计系统为电源模式可调、电压可调、电流可调、频率可调、占空比可调的微弧氧化过程控制装置。电压、电流、频率和占空比等工艺参数在最初由键盘输入给定后,单片机会自动选取每个阶段所需要的参数量,引导系统完成整个微弧氧化工艺过程,最终生成陶瓷膜层。工艺试验过程中,工艺参数可被中断重新设置输入,系统将自动调整参数配置,完成整个工艺操作过程。
     本文主要研究内容包括:等离子体微弧氧化工艺过程特点研究,现场控制电路及主控制程序模块的设计;数据输入输出的电路及按键控制软件模块和D/A转换软件模块的设计;显示电路及液晶显示软件模块的设计。
     实验表明,该等离子体微弧氧化控制系统能够完成锻铝微弧氧化工艺控制。该控制系统对电压的动态控制精度为±1%;对电流的动态控制精度为±5%;对频率的稳态控制精度为±1%;对占空比的稳态控制精度为±5%;对时间的动态控制精度为±0.1%;工艺参数控制基本达到所要求的目标。
Aluminum has been broadly used in the engineering field due to its broad reserves, low density, great intensity and excellent performance in extrusion process among all the metal materials. However, the crucial disadvantages of aluminum are its softness, easy to wear and easy to be corroded in the medium, which lead to the failure of the products. The oxidized coating in the traditional coating technology, i.e. anticathode-oxidation, chemistry-oxidation, is to a large extent relatively thin, lower in hardness, and some process technology even cause a severe pollution to the environment, which is no longer feasible to the practical application.
     Microarc-oxidization is a deposition technology of plasma electrolysis, a coating technology which produces the ceramic coating in the surface of non-ferrous metals such as aluminum, magnesium, titanium and its respectively alloy materials via the joint reaction of high pressure electricity discharge and electrochemistry oxidation in an electrolyte contained certain ion. It breaks through the voltage limit of traditional anticathode-oxidation and obtains the idea ceramic coating in the surface of the said metals via the strengthening reaction of high pressure electricity discharge. Micro arc-oxidization technology is a technology of simple product process, non-pollution and high capacity of processing workpiece, which greatly improved the performance of aluminum and its alloy and lead to the perfect combination of the second-generation engineering materials (metal) and the third-generation engineering materials (ceramic), which is a very promising lightalloy coating technology.
     Due to the difficulties in the research of the technics mechanism of microarc-oxidization, the development of the research of industrialization application of micro arc-oxidization techniques and the high-power electrical source that goes with a large scale industrialization and automatic production line is slow.
     This paper, on the basis of microarc-oxidization power supply which was developed by our laboratory, carries out the automatic control of forged aluminum microarc-oxidization technics via controlled circuit and adjustment of software by using of PIC16F788A single-chip as the core controlling chip in order to change the nature of the surface of forged aluminum and enhance the production efficiency of microarc-oxidization technics. This paper, based on the particular demands of coating processing of plasma microarc-oxidization techniques,in consideration of all kinds of factors, designs a controlling system of plasma microarc-oxidization techniques. This system is an on-site controlling unit consists of single-chip and its relevant peripheral equipments to carry out the automatic controlling of microarc-oxidization. Its main research includes: the design of on-site controlling system of plasma microarc-oxidization and modules of main controlling program; the design of circuit of data input and output, modules of key controlling software and modules of D/A conversion software; the design of display circuit and liquid crystal display circuit.
     By using the controlling system of microarc-oxidization techniques developed by our laboratory, inputting the certain technics parametric, combining the main circuit, letting the controlling system monitor the whole microarc-oxidization techniques process, the experiment shows that the controlling system of plasma microarc- oxidization is reliable. All the technics parametric of microarc-oxidization can reach its goal. Meanwhile, the actual operation on the spot also shows that the controlling system improved the accuracy of repeated control of microarc-oxidization techniques, reduced the intensity of labors and cut down the production cost.
引文
[1]高云震,任继嘉,宁福元.铝合金表面处理[M].北京:冶金工业出版社,1991,1~8.
    [2] Kurze P, Kryamann W, Schneider H G.. Application Fileds of ANOF Layers and Compoesites[J]. Cryst Rescearch Technol, 1986,21(1):1603~1609.
    [3] Nie X, Tsotasos C, Wilson A, et al.Characteristics of a plasma electrolytic nirocarburising treatment from stainless [J]. Surface Coat Technol, 2001, 139:135-142.
    [4]薛文彬,邓志威,来永春.铝合金表面微弧氧化技术[J].中国有色金属学报,1997, 7(10):140-142.
    [5]刘风岭,骆更新,毛立新.微弧氧化与材料表面陶瓷化[J].材料保护,1998,31(3): 22-24
    [6]王玉林,沈德久.铝材微弧氧化陶瓷膜的电绝缘性[J].轻合金加工技术,2001,29(10):34-35
    [7] XUE W B. , WANG C , CHEN R n aluminate solution [J]. Mater Lett , 2002,5(2): 435-441
    [8] Jun Tian, Zhuangzi Luo, Shangkui Qi, et al. Structure and anti-wear behavior of micro-arc oxidized coatings on aluminum alloy [J]. Surface Coat Technol, 2002, 154:1-7.
    [9] Krishna L R, Somaraju K R C, Sundarajan G. The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidantion[J]. Surface Coat Technol, 2003, 163-164:484-490.
    [10] Nie X, Meletis E I, Jiang J C, et al. Abrasive wear/corrosion properties and TEM analysis of AL2O3 coatings fabricated using plasma electrolysis[J]. Surface Coat Technol, 2002, 149:245-241.
    [11] Gnedenkov S V, Khrianfova O A, Zavidnaya A G, et al. Pro-duction of hard and heat-resistant coatings on aluminum using a plasma micro-discharge[J]. Surface Coat Technol, 2000, 123:24-28.
    [12]薛文彬,邓志威.铝合金微弧氧化膜的形成及其特性[J].电镀与精饰,1996, 18(5):3-6.
    [13]薛文彬,邓志威.铝合金微弧氧化膜的尺寸变化规律[J].有色金属学报,1997,7(3): 140-143.
    [14]薛文彬,邓志威.镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998,19(3): 42-45.
    [15]薛文彬,邓志威.钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构[J].金属热处理,2000,25(2):5-7.
    [16]左洪波,孔庆山.等离子体增强电化学表面陶瓷化[J].材料保护,1995,28(7):21-22.
    [17] Van T B, Brown S D, Wirt Z G P, et al. Mechanism of Anode Spark Deposition[J]. Am Ceram Soc Bull, 1977, 56(6):563.
    [18] WU H H , JIN Z S, LONG B B , Characterization of microarc oxidation process on aluminum alloy[J]. China Phys Lett,2003,20(10):1815-1818.
    [19] Timoshenko A V, Opara B K, Magurova Yu V. Formation of Protective Wear-resistent Oxide Coating on Aluminum Alloys by the Microplasma Mehhods From Aqueous Electrolyte Solutions[A].International Corrosion Congress[C], 1993, 1:280-293.
    [20]旷亚非,候朝辉.阳极氧化过程中电击穿理论的进展[J].电镀与涂饰,2000,1(3):38-41.
    [21]李淑华,程金生. LY12AL合金微弧氧化过程中电流和电压变化规律[J].腐蚀科学与防护技术,2001,13(6):362-363.
    [22]薛文彬,邓志威,来永春.铝合金表面微弧氧化技术[J].中国有色金属学报,1997,7(10):140-142.
    [23] XUE G L ,LU X G , BAI Y Z , et. Characterization of Microarc Oxidation Discharge Process for Depositing Ceramic Coating[J]. China Phys. Lett ,2001,(8): 1141-1143.
    [24] XUE W B ,WANG. CHEN R Y, DENG Z W , Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution [J]. Mater. Lett. ,2002, 5(2):435-441.
    [25]卢立红,沈德久. Q235钢热浸镀铝层的微弧氧化[J].腐蚀与防护,2001,22(2): 58-60.
    [26]顾伟超,沈德久.电弧喷涂的微弧氧化[J].材料保护,2002,35(12):37-38.
    [27]蒋百灵,白力静,蒋永锋,等.铝合金涂微弧氧化陶瓷层组织结构与性能的研究[C].第一届国际机械工程学术会议论文集,2001(3):23-26.
    [28]吴汉华,龙北红,吕宪义,等.铝合金微弧氧化过程中电学参量的特性研究[J].物理学报,2005,54(4):1697-1701.
    [29]贺子凯.电流密度对微弧氧化氧化膜层厚度和硬度的影响[J].表面技术,2003,32(3):21-23.
    [30]刘全心,蔡启舟,王力世,等.微弧氧化中火花形态的变化规律[J].轻合金加工技术2005,33(5):43-45.
    [31] A I Mamaev,Y Chekanova, Z M Ramazanova. Parameters of Plusating Microplasma Processes on Aluminum and Its alloys[J]. Protection of Metals, 2006,36(6):605-6083.
    [32]李学海.PIC单片机实用教程-基础篇[M].北京:航空航天大学出版社,2004:12
    [33]罗翼,张宏伟.PIC单片机应用系统开发典型实例[M].北京:中国电力出版社,2005:23-38.
    [34]武汉博控科技有限公司.图形点阵液晶显示模块使用手册(上)[M].
    [35]孙南海,危立辉.正负脉冲电源用双重保护电路的研究[J].现代电子技术,2004(4):46-48.
    [36]孙奉娄.一种简单的可控硅整流稳幅控制电路[J].中南民族学院学报(自然科学版),1999,18(3):1-4.
    [37]孙奉娄,危立辉.离子氮化斩波电源[J].中南民族学院学报(自然科学版),1995, 14(4):28-30.
    [38]罗翼,张宏伟.PIC单片机应用系统开发典型实例[M].北京:中国电力出版社, 2005:25-30
    [39]李学海.PIC单片机实用教程-提高篇[M].北京:航空航天大学出版社,2004: 143
    [40]武汉博控科技有限公司.图形点阵液晶显示模块使用手册(下)[M].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700