电化学—生物法处理ABS废水技术及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对ABS生产废水处理工艺现状及其在处理中存在的问题,结合ABS生产废水水质成分复杂、毒性大、COD_(Cr)值高、可生化性差等特点,提出了“电化学-生物法耦合工艺”,并以某ABS生产废水为对象进行了试验研究。通过现场调研,对ABS生产环节中各个节点水质进行详实分析,并根据现场水质实际情况制定试验方案,设计试验装置。
     本文首先采用电-Fenton方法对ABS生产废水中的2种特征污染物(苯乙酮、丙烯腈)进行降解试验,进行降解机理分析。其次研究了生物活性炭(BAC)在处理ABS生产废水中的应用,分析其降解机理。最后,将电化学与生物法耦合为一体,研究了电化学-生物法对ABS生产废水处理效果与降解机理。
     试验结果表明,电-Fenton法对苯乙酮、丙烯腈2种特征污染物的处理效果较好。电解3 h后,苯乙酮、丙烯腈的去除率分别为98.8%、100%,两者COD_(Cr)的去除率分别为58.7%,57.8%。苯乙酮的紫外光谱分析及污染物跟踪监测结果表明,电-Fenton法可以破坏苯乙酮分子中的苯环结构,将其部分转化为其他有机物,废水COD_(Cr)明显下降。
     生物活性炭法处理ABS生产废水,反应3 h后COD_(Cr)去除率达到74.1%,BOD_5/COD_(Cr)值由0.27提高到0.41。电化学-生物法试验中,反应3 h后5 V、10 V、15 V电压下COD_(Cr)去除率分别为76.4%、75.0%、58.1%,BOD_5/COD_(Cr)值由0.27分别提高到0.46、0.34、0.28。在4种不同电压下的试验中,同样采用了三维荧光图谱和UV-vis图谱分析,得出该试验在反应初期效果显著,随后有机物含量不断下降,但去除效果明显不如初期。反应3 h后,GC-MS检测出水质中的残余成分,其中5 V和0 V电压下的产物大多为毒性较小的低聚物,10 V和15 V电压下产物的化学结构比5 V和0 V电压下产物的化学结构复杂。说明电压对微生物有双重作用,电压过高抑制微生物生长,从而影响处理效果;适当的电压不仅能促进微生物生长,而且对难降解有机物有较好的处理效果。
Electrochemistry-biology coupling technology was proposed in this paper, in order to problems occurred during the treatment of ABS production wastewater, toxicity, and whose composition was complex, COD_(Cr) was high, and biodegradability was poor. Experimental device and experimental program were developed based on the water conditions, which was obtained by site investigations and analysis of water quality. Two typical pollutants in ABS production wastewater, including acetophenone and acrylonitrile, were treated by Electro-Fenton, and degradation mechanism was analyzed. Furthermore, the use of BAC in ABS production wastewater treatment was studied, and degradation mechanism was also analyzed. And finally, the effect and mechanism of electrochemistry-biology coupling technology in the treatment of ABS wastewater was also studied.
     Results showed that the effect of Electro-Fenton to acetophenone and acrylonitrile comparatively good. The removal efficiency of acetophenone and acrylonitrile were 98.8% and 100%, and the removal efficiency of COD_(Cr) were 58.7% , 57.8%, respectively after 3-h electrolysis. The typical pollutant of acetophenone analyzed by three-dimensional fluorescence pattern and UV-vis showed that the degradation of acetophenone followed the removal of COD_(Cr) .We can get the intermediate products by GC-MS analysis.
     While treated by BAC, the removal efficiency of COD_(Cr) was 71.4%, and the value of BOD_5/COD_(Cr) increased from 0.27 to 0.41 after 3 hours. And during the electrochemistry-biology coupling process, the removal efficiency of COD_(Cr) were 76.4%, 75.0% and 58.1%, and BOD_5/COD_(Cr) value increased from 0.27 to 0.46, 0.34 and 0.28, under the voltage of 5V, 10V and 15V, respectively, after 3 hours. It could be inferred from the results that high voltage would inhibit the microbial growth, so the effect was bad, but the high voltage was effective for the persistent organic pollutants. While appropriate voltage promote the growth of microorganisms, so the result was better. In four different voltages trials, three-dimensional fluorescence pattern and UV-vis showed that the effect was remarkable initially. The GC-MS analysis showed that the residual elements of water quality after 3 h was different by different voltage. The residual elements of 0V and 5V were lower toxicity oligomer.But the residual elements undet the voltage of 10 V and 15 V were certain harm and contained the chains of benzene especially 15 V.
引文
[1]吴文新.ABS树脂生产现状及发展趋势[J].辽宁化工,1997,26(2):64~67
    [2]苏宏,柏承志,黄江丽等.ABS废水处理方法的研究[J].吉林化工学院学报,2000,17(2):45~49
    [3]赵东风,刘发强,蒋文庆.我国ABS树脂工业废水治理技术综述口[J].油气田环境保护,2003,13(2):8~l0
    [4]洪常春,郭忠,史一君.高浓度ABS树脂生产污水治理技术[J].油气田环境保护,2005,15(3):27~32
    [5]钱伯章.ABS树脂的国内外市场分析[J].CHINA RUBBER/PLASTICS TECHNOLOGY AND EQUIPMENT.2008,34(7):30~38
    [6]陈晓阳,高进,周海等.ABS树脂工业废水处理技术改进[J].石化技术与应用,2007,25(6):544~546
    [7]陈志坚,莫懿娉,叶笑风等.MBR法处理ABS废水的试验研究[J].环境科学与技术,2007,30(6):178~180
    [8]赵东风,刘海洪,刘广东.丙烯腈-丁二烯-苯乙烯树脂废水的生化处理研究[J].石油大学学报,2007,27(5):113~115
    [9]郭莲秀,赵旭涛,李贵贤等.混凝-内电解法处理ABS树脂废水的研究[J].兰州理工大学学报,2005,31(5):71~74
    [10]常文贵.电解芬顿法处理工业废水[J].化学研究与应用,2004,16(5):705~710
    [11]王翠,史佩红.电化学氧化法在废水处理中的应用[J].河北工业技,2004,21(1):49~54
    [12] Ozcan A,Sahin Y,oturan Ma.Removal of propham from water by using electro-Fenton technology:kine tics and mechanism[J].Chemosphere,2008,73:737-744
    [13]启胜禄,李坚斌.水的高级氧化技术-自由基反应[J].矿产与地质,2003,17(2):82~83
    [14]周珊,邓代举.电-Fenton法处理苯酚废水的实验研究[J].化学与生物工程,2004,4:34~37
    [15]李田,陈超鹏.活性炭吸附—光催化氧化深度净水工艺实验研究[J].上海环境科学,2002,21(6):342~345
    [16]陈一良,蒋珍茂,陈金龙.铁屑微电解法预处理苯酚生产废水的研究[J].重庆环境科学,2003,25(12):38~40
    [17]于采宏.微电解法处理氯霉素硝基废水实验研究[J].环境保护科学,2002,28(2):26~29
    [18]张乃东,郑威,彭永臻.电Fenton法处理难降解有机物的研究进展[J].上海环境科学,2002,21(7):440~441
    [19]蔡建国,石洪雁,李爱民.催化氧化法处理工业废水的研究进展[J].江苏环境科技,2003,16(4):39~42
    [20]刘凤喜,李志东,李娜等.Fenton法及电-Fenton处理难降解有机废水技术[J].中国环保产业,2008,2:48~54
    [21]彭永臻,郑威,张乃东.电Fenton法处理难降解有机废水的研究[J].环境科学,2002,21(7):440~441
    [22]闵怀,傅亮,陈泽举.Fenton法及其在废水处理中的应用研究[J].环境污染与防治,2004,26(1):28~30
    [23]班福忱,李亚峰,李慧星等.电-Fenton法处理硝基苯废水的试验研究[J].现代化工,2006,26(2):166~171
    [24]周珊.电-Fenton法处理4-氯酚废水[J].环境污染治理技术与设备,2004,5(10):56~59
    [25]于采宏,郎成明,刘峥等.微电解法处理氯霉素硝基废水实验研究[J].环境保护科学,2002,28(2):26~29
    [26] Chiang L,Chang J,Wen T..Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J].Water Research,1995,29(2):617~678
    [27]胡成生,王刚,吴超飞等.含甲醛毒性废水电-Fenton试剂氧化技术研究[J].环境科学,2003,24(6):106~111
    [28]甘明强,张广兰,褚衍洋.电-Fenton试剂法处理丙烯腈生产废水的研究[J].广西轻工业,2008,9(9):107~108
    [29]郭鹏,叶柏祥,刘向东等.电-Fenton法降解废水中有机物的研究现状及进展[J].广西轻工业,2008,1(1):102~107
    [30]解清杰,马涛,王琳玲.六氯苯污染沉积物的电-Fenton法处理[J].华中科技大学学报(自然科学版),2005,33:122~124
    [31]程云,严红燕,冯志力等.电-Fenton法处理硝基苯废水的实验研究[J].辽宁城乡环境科技,2004,24(3):38~40
    [32]解清杰,马涛,王琳玲等.六氯苯污染沉积物的电-Fenton法处理[J].华中科技大学学报(自然科学版),2005,33(3):122~124
    [33]班福忱,李亚峰,胡俊生等.电-Fenton法处理五氯硝基苯废水[J].沈阳建筑大学学报(自然科学版),2005,21(6):723~725
    [34]王代芝,周珊.电-Fenton法处理间甲基苯酚废水[J].江苏化工,2005,33(3):42~45
    [35] HsiaoY,Nobe K..Oxidative reactions of phenol and chlorobenzenewith in situ electro generated Fenton s' reagent[J].Chem.Eng.Common,1993,126(1):97~110
    [36] Brillas,Mur, Sauleda, et al. Aniline degradation under electr-ochemical and photocatalytic conditions. J.Adv. oxid.Techno.l, 1999, 4(1):109~114
    [37]方建章,李浩,雷恒毅.电生成Fenton试剂处理染料废水[J].化工环保,2004,24(4):284~287
    [38]徐桦,黄海云.改进电-Fenton法处理印染废水[J].常熟高专学报,2004,18(4):45~47
    [39]郑曦,陈日耀,兰瑞芳等.电生成Fenton试剂及其对染料降解脱色的研究[J].电化学,2003,9(1):98~103
    [40]陈震,郑曦,陈日耀等.电化学方法生成羟基自由基及其在酸性铬蓝降解脱色中的应用[J].环境化学,2001,20(3):275~280
    [41]陈玉峰,方熠,程尉等.电生成Fenton试剂处理工业印染废水的中试研究[J].福建师范大学学报(自然科学版),2005,21(2):58~61
    [42] Panizza.Removal of organic pollutants fromindustrial wastewaterby electrogenerated Fentons' reagent[J].Wat.Res.,2001,35(16):3987~3992
    [43] Lin S H, Chang C C. Treatment of landfill leachate by combined el- ectro-Fenton oxidationand sequencing batch reactormethod[J].Wat. Res.,2000, 34(17):4243~4249
    [44]王爱民,曲久辉,史红星.活性碳纤维阴极电芬顿反应降解微囊藻毒素研究[J].高等学校化学学报,2005,26(9):1669~1672
    [45]王永广,杨剑锋,柯洪.电解-Fenton法处理油田含油污水[J].扬州大学学报(自然科学版),2004,7(4):79~82
    [46]胡成生,王刚,吴超飞等.含甲醛毒性废水电-Fenton试剂氧化技术研究[J].环境科学,2003,24(6):106~111
    [47] BrillasE, Calpe J, Casado J, et al Mineralization of 2, 4-D by advanced electrochemical oxidation processes[J].WaterRes,2000,34(8): 2256~2262
    [48] HuangYH,Chen C C,HuangGH.Comparison ofanovel electro-Fentonmethod with Fenton s' reagent in treating a highly contaminated wastewater J.Wet. Sc.i Tech,2001,43(2):17~24
    [49] Marco P,Carlo S Giacomo C.Electrochemical remediation of copper (ll) from an industrial effluent part ll:thee-dimensional foam electrodes[J].Resources,Conservation and Recycling,1999,27(4):299~307
    [50]申哲民,贾金平,徐向荣等维电极法和Fenton试剂法对染料废水处理的效果比较[J].上海交通大学学报,2000,34(11):1531~1534
    [51] XIONG Y A, STRUNK, PETER J.Treatment of dye waster containing acid orange ll using a cell with three-phase three-dimensional electrode[J].Wat Res,2001,35(17):4226~4230
    [52]安太成,何春,朱锡海等三维电极电助光降解直接湖蓝水溶液的研究[J].催化学报,2001,22(2):193~197
    [53]覃奇贤,于德龙.三维电极在电镀废水处理中应用[J].电镀与环保,1994,12(14):23~25
    [54] Xiong Ya,Karlsson H T. [J].Advances in Envimnmental Research,2002,7(1):139~145
    [55]蒋萌阳,朱建荣,戴静波等复极性三维电极处理印染废水的能耗分析[J].宁波工程学院学报,2005,17(2):19~21
    [56] Xiong Ya,He chun,Karlsson H T,etal. [J].chemosphere,2003,50(1):13l~136
    [57]梁运姗,袁兴中,曾光明等.生物活性炭流化-泥滤耦合硝化与反硝化试验[J].环境科学学报,2008,28(6):1079~1084
    [58]卫娜.生物活性炭技术在污水处理中的应用及发展[J].山西建筑,2008,34(31):8~10
    [59]段蕾,吕炳南,李伟光.温度对生物活性炭处理效果影响的试验研究[J].哈尔滨商业大学学报,2008,24(2):151~158
    [60]金伟,李怀正,范瑾初.粉末活性炭吸附技术应用的关键问题[J].给水排水,2001,27(10):24~28
    [61] Bonne P A C,Beerendonk E F,Vander Hock J P.Retentron of Her-bicides and Pesticides in Relation to Aging of RO Membranes[J].Elservier Desalinaction,2001,(111)
    [62] H.Fr.Schroder.Characterization and Monitoring of Persistent Toxic Organics inthe Aquatic Environment[J].Wat.Sci.Tech.,1998,38(7)
    [63] R.Vahala,T.Ala-Peijari,J.Rintala,R.Lankanen.Evaluating Ozone Dose for AOC Removal in Two-step GAC Filters[J].Wat.Sci.Tech.,1998,37(9)
    [64] Sirotkin A S,Koshkina L Y U,Ippolitov K G.The BAC-process for treatment of waste water containing non-ionogenic synthetic surfac-tants[J].Wat.Res.,2001,35(13)
    [65]宓益磊,樊金红,马鲁铭.电-生物耦合技术对偶氮染料的去除研究[J].环境工程学报,2009,3(8):1457~1462
    [66]张昌盛,薛安,赵华章等.电-生物耦合技术在环境工程中的研究进展[J].2008,28(3):1~8
    [67]李杰.难降解有机物的生物处理技术发展[J].环境科学与技术,2005,28(增刊):187~189
    [68]王增玉,张敬东.难生物降解有机废水处理技术现状与发展[J].工业水处理,2002,22(12):1~5
    [69]马长宝,王栋,周集体等.环境过程中电化学方法的研究及发展趋势[J].化工装备技术,2004,25(3):55~58
    [70]刘丽丽,温青,矫彩山等.电催化氧化处理难降解有机废水的研究进展[J].化学工程师,2005,10(9):33~34
    [71] Flora J R V,Suidan M T,Islam S,eta1.Numerical modeling 0f a biofilm-electrode reactor used for enhanced denitrificafion[J].Wat.Sci.Tech. ,1994,29(10~1I):517~524
    [72] TanakaT,KurodaM.Improvement of submerged biofilterprocessbybie electrochemical method[J].J.Environmental Engineering,2000,126(6):541~548
    [73]朱又春,王亚林,朱南文等.电化学反应提高生物滤池的城市污水脱氮效果[J].环境污染与防治,2005,27(2):91~93
    [74]邓俊,朱又春,许燕滨等.废水的电极-SBR法处理效果初探[J].广东工业大学学报,2003,20(2):77~80
    [75]郭一令,王铮.旋转电极型生物反应器的脱氮研究[J].中国给水排水,2003,19(2):9~12
    [76]曲久辉,范彬,刘锁祥等.电解产氢自养反硝化去除地下水中硝酸盐氮的研究[J].环境科学,2001,22(6):49~52
    [77]范彬,曲久辉,雷鹏举等.异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究[J].环境科学学报,2001,21(3):257~262
    [78]范彬,曲久辉,刘锁祥等.复三维电极-生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报,2001,21(1):39~43
    [79]王海燕,曲久辉,雷鹏举等.电化学氢自养与硫自养集成去除饮用水中的硝酸盐[J].环境科学学报,2002,22(6):711~715
    [80]曹宏斌,李鑫钢,孙津生等.直流电对硝化细菌活性的影响[J].环境科学学报,2001,21(4):420~425
    [81]曹宏斌,姜斌,李鑫钢等.外电流对生物膜空隙率和分形维数分布的影响[J].环境科学,2003,24(4):85~88
    [82]钟方丽,曹宏斌,李鑫钢.外电场作用下的生物膜传质模型[J].吉林化工学院学报,,2003,20(4):59~61
    [83]钟方丽,曹宏斌.电场对细胞影响的研究进展[J].微生物学通报,2001,28(4):77~81
    [84]李相渡,王伟,王佳等.海水中微生物膜的生长对金属腐蚀过程的影响[J].腐蚀科学与防护技术,2002,14(4):218~222
    [85]王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002,22(3):184~188
    [86]李相波,王伟,王佳等.海洋中微生物膜的生长对金属腐蚀的过程影响[J].腐蚀科学与防护技术,2002,14(4):218~220
    [87]应迪文,贾金平,张乐华.电化学强化脱氮中反硝化对活性炭纤维电极电化学反应影响初步研究[J].环境污染与防治,2005,27(7):501~504
    [88] Vlyssides A,Arapoglou D,Mai S,Barampouti E M.Electrochemical detoxification offour phosphorothioate obsolete pesticides stocks[J].Chemosphere,2005,58:439~447
    [89] Garcia J G,lniesta J,Expofito E,Garcia V G,Montiel V,Aldaz A.Early stages of lead dioxide electrodeposition on rough titanium[J].Thin Solid Films,1999,352:49~56
    [90] Kim S,Kim T H,Park C,Shinb E B.Electrochemical oxidation ofpolyvinyl alcohol using a Ru02/Ti anode[J].Desalination,2003,155:49~57
    [91] Cui Y.Feng Y.Xie Z.Gu J D.Reaction pathways and mechanisms of the electrochemical degradation of phenol oil different electrodes[J].Water Research,2005,39:1972~1981
    [92]柳厚田,粱海河,杨炯等.铅锡合金在硫酸溶液中生长阳极Pb(H)氧化物膜的机理[J].高等学校化学学报,2002,10:16~120
    [93]李宁,黎德育,翟淑芳等.铅阳极的制造方法与性能[J].材料工程,2000,10:36~39
    [94]韦运县,周凌风,翟俊英等.钛-锰合金涂层电极在下田锰矿的应用[J].中国锰业,1994,12(6):42~46
    [95]谢建治,李博文,张书廷等.三维电极体系工作机理探讨[J].河北农业大学学报,2005,28(2):108~111
    [96]崔艳萍.复极性三维电极处理含酚废水的研究[J].能源环境保护,2004,18(1):23~26
    [97]贺道红,高乃云,曾文慧等.生物活性炭深度处理工艺挂膜研究[J].工业用水与废水,2006,37(2):16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700