植物非生物逆境研究及蝴蝶兰新品种培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章低温诱导型的水稻OsFAD8基因的启动子OsFAD8P的克隆与响应分析
     细胞膜膜脂蛋白的不饱和脂肪酸与饱和脂肪酸的相对含量影响着细胞膜的流动性,从而调节植物对低温的耐受性。本文克隆了OsFAD8的5’端编码序列,命名为OsFAD8P,为首次报道的水稻中冷诱导型启动子。同时研究了其在各种特定的条件下启动下游基因的表达及其表达量随温度的变化而改变的趋势。包含此启动子重组表达载体的构建,以及通过农杆菌介导的转基因的方法,转入草本及木本植物中可启动下游GUS蛋白表达,同时发现转基因水稻愈伤组织和拟南芥幼苗中GUS的表达量随处理温度降低和时间延长而增多。另外在拟南芥的不同发育时期,其在果荚中几乎观察不到表达量,但是在萌发5d的种子,7d的幼苗中可看到表达。然而在幼苗的根基部、靠近花序部位的茎中和叶子的经脉中有大量表达;叶肉细胞中几乎观察不到表达量。此启动子对ABA,6-BA等一些激素的调控也有响应。同时过表达GUS的拟南芥植株与对照相比生长发育正常。
     为了研究从月季中分离的小分子热激蛋白Rchsp17.8的生理功能,把Rchsp17.8的编码框插入到表达载体PHB的35S组成型启动子后面,通过农杆菌GV3101转化烟草,获得转基因植株。在高温、干旱、渗透、高盐等胁迫条件下分别检测转基因烟草形态、失水率、电导率、脯氨酸含量及其内外源基因表达模式。结果显示:经胁迫处理后,与对照相比转基因烟草抗性表型明显,电导率较低,脯氨酸含量大幅度提高,失水率降低;P5CS基因的表达量上调,说明转Rchsp17.8基因烟草苗在高温以及高渗透胁迫下表现出明显的耐受性。
     面对目前花卉业这个已经成为具有较大经济效益的产业,通过花卉品质的改变来提高花卉的观赏价值及经济价值越来越受到重视。花卉品质包括花形、花色、花香、花大小、花期长短等,其中尤为重要的被人们关注的品质是花色与花期的长短。花卉品质的优劣直接关系到其观赏价值与经济价值,然而蝴蝶兰属于高档商品花卉,因此蝴蝶兰花卉品质的改良也因此显得尤为重要,本实验通过基因枪转化以及农杆菌转化法转化PhCHS5以及PhF3’5’H基因以期获得花色优质蝴蝶兰新品种,从而提高蝴蝶兰的商业价值,另外首次共转多个基因,达到了蝴蝶兰花色改良的新尝试,进而为深入研究蝴蝶兰花色素相关基因表达的调节机制提供依据。
The relative quantity of two kinds of fatty acids including unsaturated and saturated fatty acids of membrane lipids are very important for plants to cope with the cold-stress, for the reason that it can regulate the fluidity of membrane. We cloned the 5'-region of gene OsFAD8, called OsFAD8P. It is the first time for the work of cold-induced promoter in Oryza sativa L.We investigated the expression of GUS which was promoted by this promoter on different situation and the expression trend of GUS quantity go with the change of the temperature. We cloned the cold-inducible genetic constructs:OsFAD8P-GUS, and conducted the genetic transformation on the herbage and woody plants by Agrobacterium-mediated transformation method. In transgenic callus tissue of rice and seedings of Arabidopsis thaliana, the promoter OsFAD8P promoted the expression of the down-stream gene when exposured to cold, and the quantity of GUS was more expressed as the temperature decreased and time prolonged. GUS was hardly detected in the pod, but it was observed after the seed of Arabidopsis thaliana germinated 5 days later and also in 7 days old seeding of the Arabidopsis thaliana. While it was abundantly expressed in the nervation of the leaves, stem near the inflorescence and base of the root. Little expression was detected in the mesophyll. And the promoter also sensitive to other abiotic-stress as well as hormone like ABA,6-BA, and the growth and development of the transgenic plants are normal as the WT.
     Rchspl7.8 cloned from Chinese rose is belongs to a cytosolic class I sHSP, and it is induced under different stress. In order to study the physiological function of Rchspl7.8, we subcloned the ORF of Rchsp17.8 recombined after 35S:promoter into DH5α, then transformed into plant gene expression vector Agrobaterium rumefaciens, Leaf disc of tobacco was infected by Agrobaterium and three transformants were attained. We assessed the phenotype, relative electrical leakage, proline content, water lose rate under high temperature, osmotic stress, and salt stress respectively, and the transcript levels of P5CS gene was also investigated by semi-quantitative RT-PCR Results showed that transgenic line showed lower relative electrical leakage, more proline content, lower water lose rate, and the expressed of P5CS was elevated. Compared with the non-transgenic lines, transformed ones showed obvious resistance to high temperature and osmotic stress. The possible mechanism to different abiotic stress was also discussed.
     The economic value of flowers are much more larger than before. So how to change the quality of them, it seems quite important. Quality of flowers is including: shape of flowers, the size of flowers, the color of flowers, the flowers fragrance, and the florescence time. And especially the color and the florescence time are appreciated by people. And Phalaenopsis are much more popular in the society as ornamental than before. In order to increase the commercial value of the Phalaenopsis, people pay much more attention to improve the quality of them from the aspects of color and time of flowering. We try to change the color of Phalaenopsis by transfer the gene PhCHS5 and PhFS'5'H, so as to obtain the new species of Phalaenopsis and improve the commercial value of the Phalaenopsis, at the same time, the co-transformation is a n ew try for the breeding in this study and it can be a further study for the gene regulation of Phalaenopsis.
引文
[1]S. Gibson, V. Arondel, K. Iba, C. Somerville. Cloning of a temperature-regulated gene encoding a chloroplast Omega-3 desaturase from Arabidopsis thaliana. Plant Physiol,1994,106(4):1615-1621
    [2]Wang JW, Ming F, Pittman J, Han YY, Hu J, Guo B, Shen DL. Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast ω-3 fatty acid desaturase. Bichem Biophys Res Commun,2002,340(4): 1209-1216
    [3]Stokes S. Baker, Kathy S. Wilhelm, Michael F. Thomashow. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol. Biol.,1994,24:701-713
    [4]Mariya Khodakovskaya, Richard McAvoy, Jeanne Peters, HaoWu, YiLi. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta,2006, 223:1090-1100
    [5]李霞,戴传超,程睿。不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制。作物学报,2006,32(1):76-83
    [6]Yokoi S, Higashi S I, Kishitani S. Introduction of the DNA for Arabidosis glycerol-3-phosphateaeyl transferase (GPAT) confer unsaturationof fatty acidand chilling tolerance of photosynthesis on rice. Mot. Breeding,1998, (4):269-275
    [7]杜娟,朱祯,李晚忱。植物逆境诱导启动子mwcsl20的克隆及表达特性研究。作物学报,2005,31(10):1328-1332
    [8]Jiang C, Lu B, Sillgl J. Requirement of a CCGAC cis-acting element for cold induction ofthe BN115 gene from winter Brassica napus. Plant Mol Biol.,1996, 30:679-684
    [9]Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shninozaki K., Caminci P., Hayashinzaki Y., and Shinozaki K. Monitoring the expression pattern of 1 300 Arabidopsis genes under drought and cold stresses by using a full length cDNA microarray. Plant Cell,2001,13(1):61-72
    [10]de Bruxelles G.L., Peacock W.J., Dennis E.S., Dolferus R. Abscisic acid induces the alcohol dehydrogenase geneln Arabidopsis, Plant Physiology,1996,111(2): 381-391
    [11]Kim JY, Song HR, Taylor BL, Carre IA. Light regulated translation mediates gated induction of the Arabidopsis clock protein LHY. The EMBO Journal, 2003,2(2):935-944
    [12]Marraccini P., Courjault C., Caillet V., Lausanne F., Lepage B., Rogers W.J., Tessereau S., Deshayes A. Rubisco small subunit of Coffea Arabica:cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants Plant Physiol. Biochem.,2003,41(1):17-25
    [13]Chen S-F, Shu Q-Y. Biological mechanism of and genetic engineering for drought tolerance in plants. Chinese Bulletin of Botany,1999,16(5):555-560(in Chinese with English abstract)
    [14]Kasuga M, Liu Q, Miura S. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Natural Biotech., 1999,17:287-291
    [15]Houde M, Danyluk J, hliberte J F, Rassart E, Dhindsa R S,Sarhan F. Cloning, characterization and expression of a cDNA encoding a 50-kiledalton protein specifically induced by cold acclimation in wheat. Plant Physiol.,1992,99: 1381-1387
    [16]Vazquez-Telo A, Ouellet F, Sarhan F. Low temperature-stimulated phesphorylation regulates the binding of nuclear factor to the promoter of wcs120, a cold-specific gene in wheat. Mol Cen Cehet,1998,257:157-166
    [17]Ouelet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both moneotyledonous and dicotyledonous species. FEBS Letters,1998,423:324-328
    [1]Balogi Z, Torok, Z, Balogh G., Josvay K, Shigapova N, Vierling E, Vigh L, Horvath L. Heat shock lipid in cyanobacteria during heat/light-acclimation. Archives of Biochemistry and Biophysics,2005,436(2):346-354
    [2]Boyer J S. Plant productivity and environment. Science,1982,218,443-448
    [3]Buhl M B, Stewart C L. Effect of NaCl on proline synthesis and utilization in excised barley leaves. Plant Physiology,1983,72:664-667
    [4]高国庆,周汉群,唐荣华。花生品种抗旱性鉴定。花生科技,1995,3:7-9
    [5]Harndahl U, Hall R B, Osteryoung K W, Vierling E, Bornman J F, Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones,1999, 4(2):129-138
    [6]Helm K W, Schmeits J, Vierling E. An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiology,1995,107:287-288
    [7]姜蕊,胡永红,蒋昌华,赵宏伟,胡尚连,明凤。热胁迫下月季叶片蛋白双向电泳分析。中国生物工程杂志,2006,26:91-94
    [8]Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology,2003,50(2):585-595
    [9]Nathalie Verbruggen, Christian Hermans. Proline accumulation in plants:a review. Amino Acids,2008,35:753-759
    [10]Lopez-Matas M A, Nunez P, Soto A, Allona I., Casado R, Collada C, Guevara M A, Argoncillo C, Gomez L. Protein Cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiology,2004,13(4):1708-1717
    [11]Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual,3rd ed. Cold Spring Harbor Laboratory Press.2001
    [12]Sangster T A, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Current Opinion Plant Biology,2005, 8(1):86-92
    [13]Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf K D. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007,10:310-316
    [14]Zsolt Torok, Zsolt To ro k, Pierre Goloubinoff, Ibolya Horvath, Nelly M, Tsvetkova, Attila Glatz, Gabor Balogh, Viktoria Varvasovszki, Dmitry A, Los Elizabeth Vierling, John H, Crowe, and Laszlo Vigh. Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences of USA,2001,99:13504-13509
    [15]Tsvetkova N M, Horvath I., Torok Z, Wolkers W F, Balogi Z, Shigapova N, Crowe L M, Tablin F, Vierling E, Crowe J H, Vigh L. Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences of the United States of America,2002,99(21):13504-13509
    [16]Vierling E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1991,42:579-620
    [17]Waters E R, Lee G. J, Vierling E. evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany,1996,47:325-338
    [18]韦朝领,袁家明。植物抗逆境的分子生物学研究进展。安徽农业大学学报,2000,27(2):204-208
    [19]翁锦周,洪月云。植物热激转录因子在非生物逆境中的作用。分子植物育种,2006,4(1):88-94
    [20]张志良。植物生理学实验指导。北京:高等教育出版社,1990
    [1]Chai M.L., Xu C.J., Senthil K.K., Kim J.Y., Kim D.H. Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Scientia Horticulturae.2002,96:213-224
    [2]M.M. Belarmino, M. Mii. Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Reports.2000,19:435-442
    [3]Wang YT. Effects of reversed day/night temperatures on a Doritaenopsis hybrid orchid. Hort Science,2004,39,834.
    [4]Mishiba Kei-ichiro, Chin Dong Poh, Mii Masahiro. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep.2005,24:297-303
    [5]Men S., Ming, Wang X., Liu Y.R., Wei C., Li Y. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep.2003,21:592-598
    [6]Van Houwelingen A, Souer E, Spelt K, Kloos D, Mol J, Koes R. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J,1998,13:39-50
    [7]柴明良。农杆菌介导的蝴蝶兰基因转化系统的建立。园艺学报,2004,31(4):537-539
    [1]Zietkiewiez E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994, 20:176-183
    [2]Wang Z, Weber J L, Zhong G. Survey of plant short random DNA repeats. Theor. Appl. Genet.,1994,88:1-6
    [3]Qian W, Ge S, Hong DY. Genetic variation within and among populations of a wild rice Oryza granulate from China detected by RAPD and ISSR markers. Theor. Appl.Genet.,2001,102:440-449
    [4]Debnath S C. Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nordic Journal of Botany,2009,27:141-148
    [5]Joshi S P, Gupta V S, Aggarwal R K. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza]. Theor. Appl.Genet.,2000,100:1311-1320
    [6]Wolfe A D, Randle C P. Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences. Syst. Bot.,2001,26:120-130
    [7]Reddy P M, Sarla N, Siddiq E A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica,2002,128:9-17
    [8]Kalita M C, Mohapatra T, Dhandapani A. Comparative evaluation of RAPD, ISSR and anchored-SSR markers in the assessment of genetic diversity and fingerprinting of oilseed Brassica genotypes. Plant Biochem. Biotech.,2007,16: 41-48
    [9]Yao M Z, Chen L, Liang Y R. Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breed,2008,127:166-172
    [10]Debnath S C. Inter simple sequence repeats (ISSR) to assess genetic diversity within a collection of wild ligonberry(Vaccinium vitis-idaea L.) clones. Can J Plant Sci.,2007,87:337-344
    [11]Arnau G, Lallemand J, Bourgoin M. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica, 2002,129:69-79
    [12]Korbin M, Kuras A, Zurawicz E. Fruit plant germplasm characterization using molecular markers generated in RAPD and ISSR-PCR. Cell. Mol. Biol. Lett., 2002,7:785-794
    [13]Debnath S C, Khanizadeh S, Jamieson A R. Inter simple sequence repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. Can J Plant. Sci.,2008,88:313-322
    [14]Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR finger printing of potato cultivars. Theor. Appl. Genet.,1999,98:107-112
    [15]Gardner N, Hokanson S C. Inter simple sequence repeat fingerprinting and genetic variation of Clematis cultivars and commercial germplasm. HortScience, 2005,40:1982-1987
    [16]Chang Y K, Veilleux R E, Iqbal M J. Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. Journal of the American Society for Horticultural Science,2009,134(1):58-66
    [17]Lin C C, Chen Y H, Chen W H. Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Botanical Bulletin of Academia Siniea,2005,46:88-100
    [18]Paterson A H, Tanksley S D, Sorrells M E. DNA markers in plant improvement. Advances In Agronomy,1991,46:39-90
    [19]李萍,石金磊,胡永红。凤梨亚科光萼荷属与其近源属亲缘关系的ISSR分子鉴定。种子,2007,26(11)35-40
    [20]明凤。蝴蝶兰不同花色品种遗传多样性的RAPD分析。上海农业学报,2003,19(2):44-47
    [21]赵谦,杜虹,庄东红。14个蝴蝶兰品种遗传关系的ISSR分析。植物研究,2008,28(2):227-23l
    [22]赵谦,庄东红,杜虹。ISSR在蝴蝶兰亲缘关系分析中的初步应用。汕头大学学报(自然科学版),2007,22(4):66-70
    [23]付燕,罗楠,杨芩。枇杷属植物ISSR反应体系的建立和优化。果树学报,2009,26(2):180-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700